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Chapter 1 Introduction to System Programming

�UNIX is basically a simple operating system, but you have to be a genius to understand
the simplicity.� - Dennis Ritchie, 1941 - 2011.
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History of UNIX,
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1.1 Introduction

Amodern software application typically needs to manage both private and system resources. Private
resources are its own data, such as the values of its internal data structures. System resources are
things such as �les, screen displays, and network connections. An application may also be written
as a collection of cooperating threads or sub-processes that coordinate their actions with respect to
shared data. These threads and sub-processes are also system resources.

Modern operating systems prevent application software from managing system resources directly,
instead providing interfaces that these applications can use for managing such resources. For exam-
ple, when running on modern operating systems, applications cannot draw to the screen directly or
read or write �les directly. To perform screen operations or �le I/O they must use the interface that
the operating system de�nes. Although it may seem that functions from the C standard library
such as getc() or fprintf() access �les directly, they do not; they make calls to system routines
that do the work on their behalf.

The interface provided by an operating system for applications to use when accessing system re-
sources is called the operating system's application programming interface (API ). An API typically
consists of a collection of function, type, and constant de�nitions, and sometimes variable de�nitions
as well. The API of an operating system in e�ect de�nes the means by which an application can
utilize the services provided by that operating system.

It follows that developing a software application for any platform1 requires mastery of that plat-
form's API. Therefore, aside from designing the application itself, the most important task for the
application developer is to master the system level services de�ned in the operating system's API.
A program that uses these system level services directly is called a system program, and the type
of programming that uses these services is called system programming. System programs make re-
quests for resources and services directly from the operating system and may even access the system

1We use the term platform to mean a speci�c operating system running on a speci�c machine architecture.
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Figure 1.1: Simple I/O model used by beginning programmer.

resources directly. System programs can sometimes be written to extend the functionality of the
operating system itself and provide functions that higher level applications can use.

These lecture notes speci�cally concern system programming using the API of the UNIX operating
system. They do not require any prior programming experience with UNIX. They also include
tutorial information for those readers who have little experience with UNIX as a user, but this
material can be skipped by the experienced UNIX users.

In the remainder of these notes, a distinction will be made between the user's view of UNIX and
the programmer's view of UNIX. The user's view of UNIX is limited to a subset of commands that
can be entered at the command-line and parts of the �le system. Some commands and �les are not
available to all users, as will be explained later. The programmer's view includes the programming
language features of the kernel API, the functions, types, and constants in all of the libraries, the
various header �les, and the various �les used by the system. Familiarity with basic C programming
is assumed.

1.2 A Programming Illusion

A beginning programmer typically writes programs that follow the simple I/O model depicted in
Figure 1.1: the program gets its input from the keyboard or a disk �le, and writes its output to
the display screen or to a �le on disk. Such programs are called console applications. because the
keyboard and display screen are part of the console device. Listings 1.1 and 1.2 contain examples
of such a program, one using the C Standard I/O Library, and the other, the C++ stream library.
Both get input from the keyboard and send output to the display device, which is some sort of a
console window on a monitor.

The comment in Listing1.1 states that the program copies from stdin to stdout. In UNIX2, every
process has access to abstractions called the standard input device and the standard output device.
When a process is created and loaded into memory, UNIX automatically creates the standard
input and standard output devices for it, opens them, and makes them ready for reading and
writing respectively3. In C (and C++), stdin and stdout are variables de�ned in the <stdio.h>

2In fact, every POSIX-compliant operating system must provide both a standard input and standard output
stream.

3It also creates a standard error device that defaults to the same device as standard output.
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header �le, that refer to the standard input and standard output device4 respectively. By default,
the keyboard and display of the associated terminal are the standard input and output devices
respectively.

Listing 1.1: C program using simple I/O model.

#inc lude <s td i o . h>
/* copy from s td in to stdout */
i n t main ( )
{

i n t c ;
whi l e ( ( c = getchar ( ) ) != EOF )

putchar ( c ) ;
r e turn 0 ;

}

Listing 1.2: Simple C++ program using simple I/O model.

#inc lude <iostream>
us ing namespace std ;
/* copy from s td in to stdout us ing C++ */
i n t main ( )
{

char c ;
whi l e ( ( c = c in . get ( ) ) && ! c in . e o f ( ) )

cout . put ( c ) ;
r e turn 0 ;

}

These programs give us the illusion that they are directly connected to the keyboard and the display
device via C library functions getchar() and putchar() and the C++ iostream member functions
get() and put(). Either of them can be run on a single-user desktop computer or on a multi-user,
time-shared workstation in a terminal window, and the results will be the same. If you build and
run them as console applications in Windows, they will have the same behavior as if you built and
ran them from the command-line in a UNIX system.

On a personal computer running in single-user mode, this illusion is not far from reality in the sense
that the keyboard is indirectly connected to the input stream of the program, and the monitor is
indirectly connected to the output stream. This is not the case in a multi-user system.

In a multi-user operating system, several users may be logged in simultaneously, and programs
belonging to di�erent users might be running at the same time, each receiving input from a di�erent
keyboard and sending output to a di�erent display. For example, on a UNIX computer on a network
into which you can login, many people may be connected to a single computer via a network program
such as SSH, and several of them will be able to run the above program on the same computer at
the same time, sending their output to di�erent terminal windows on physically di�erent computers,
and each will see the same output as if they had run the program on a single-user machine.

As depicted in Figure 1.2, UNIX ensures, in a remarkably elegant manner, that each user's processes
have a logical connection to their keyboard and their display. (The process concept will be explained

4In C and C++, stderr is the variable associated with the standard error device.
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Figure 1.2: Connecting multiple users to a UNIX system.

shortly.) Programs that use the model of I/O described above do not have to be concerned with
the complexities of connecting to monitors and keyboards, because the operating system hides that
complexity, presenting a simpli�ed interface for dealing with I/O. To understand how the operating
system achieves this, one must �rst understand several cornerstone concepts of the UNIX operating
system: �les, processes, users and groups, privileges and protections, and environments.

1.3 Cornerstones of UNIX

From its beginning, UNIX was designed around a small set of clever ideas, as Ritchie and Thompson
[2] put it:

�The success of UNIX lies not so much in new inventions but rather in the full exploita-
tion of a carefully selected set of fertile ideas, and especially in showing that they can
be keys to the implementation of a small yet powerful operating system.�

Those �fertile ideas� included the design of its �le system, its process concept, the concept of
privileged and unprivileged programs, the concepts of user and groups, a programmable shell,
environments, and device independent input and output. In this section we describe each of these
brie�y.
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1.3.1 Files and the File Hierarchy

Most people who have used computers know what a �le is, but as an exercise, try explaining what
a �le is to your oldest living relative. You may know what it is, but knowing how to de�ne it
is another matter. In UNIX, the traditional de�nition of a �le was that �it is the smallest unit
of external storage.� "External storage" has always meant non-volatile storage, not in primary
memory, but on media such as magnetic, optical, and electronic disks, tapes and so on. (Internal
storage is on memory chips.) The contemporary de�nition of a �le in UNIX is that it is an object
that can be written to, or read from, or both. There is no requirement that it must reside on
external storage. We will use this de�nition of a �le in the remainder of these notes.

UNIX organizes �les into a tree-like hierarchy that most people erroneously call the �le system.
It is more accurately called the �le hierarchy, because a �le system is something slightly di�erent.
The internal nodes of the hierarchy are called directories. Directories are special types of �les that,
from the user perspective, appear to contain other �les, although they do not contain �les any more
than a table of contents in a book contains the chapters of the book themselves. To be precise, a
directory is a �le that contains directory entries. A directory entry is an object that associates a
�lename to a �le5. Filenames are not the same things as �les. The root of the UNIX �le system
is a directory known in the UNIX world as the root directory, however it is not named "root" in
the �le system; it is named "/". When you need to refer to this directory, you call it "root", not
"slash". More will be said about �les, �lenames, and the �le hierarchy in Section 1.8.

1.3.2 Processes

A program is an executable �le, and a process is an instance of a running program. When a program
is run on a computer, it is given various resources such as a primary memory space, both physical
and logical, secondary storage space, mappings of various kinds6, and privileges, such as the right
to read or write certain �les or devices. As a result, at any instant of time, associated to a process
is the collection of all resources allocated to the running program, as well as any other properties
and settings that characterize that process, such as the values of the processor's registers. Thus,
although the idea of a process sounds like an abstract idea, it is, in fact, a very concrete thing.

UNIX assigns to each process a unique number called its process-id or pid. For example, at a
given instant of time, several people might all be running the Gnu C compiler, gcc. Each separate
execution instance of gcc is a process with its own unique pid. The ps command can be used to
display which processes are running, and various options to it control what it outputs.

At the programming level, the function getpid() returns the process-id of the process that invokes
it. The program in Listing 1.3 does nothing other than printing its own process-id, but it illustrates
how to use it. Shortly we will see that getpid() is an example of a system call.

Listing 1.3: A program using getpid().

#inc lude <s td i o . h>
#inc lude <uni s td . h>
in t main ( )

5In practice a directory entry is an object with two components: the name of a �le and a pointer to a structure
that contains the attributes of that �le.

6For example, a map of how its logical addresses map to physical addresses, and a map of where the pieces of its
logical address space reside on secondary storage.
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{
p r i n t f (" I am the proce s s with process−id %d\n" ,

getp id ( ) ) ;

r e turn 0 ;
}

1.3.3 Users and Groups

Part of the security of UNIX rests on the principle that every user of the system must be authen-
ticated. Authentication is a form of security clearance, like passing through a metal detector at an
airport.

In UNIX, a user is a person7 who is authorized to use the system. The only way to use a UNIX
system is to log into it8. UNIX maintains a list of names of users who are allowed to login9. These
names are called user-names. Associated with each user-name is a unique non-negative number
called the user-id, or uid for short. Each user also has an associated password. UNIX uses the
user-name/password pair to authenticate a user attempting to login. If that pair is not in its list,
the user is rejected. Passwords are stored in an encrypted form in the system's �les.

A group is a set of users. Just as each user has a user-id, each group has unique integer group-id, or
gid for short. UNIX uses groups to provide a form of resource sharing. For example, a �le can be
associated with a group, and all users in that group would have the same access rights to that �le.
Since a program is just an executable �le, the same is true of programs; an executable program can
be associated with a group so that all members of that group will have the same right to run that
program. Every user belongs to at least one group, called the primary group of that user. The id

command can be used to print the user's user-id and user-name, and the group-id and group-name
of all groups to which the user belongs. The groups command prints the list of groups to which the
user belongs.

In UNIX, there is a distinguished user called the superuser, whose user-name is root, one of a
few prede�ned user-names in all UNIX systems. The superuser has the ability to do things that
ordinary users cannot do, such as changing a person's user-name or modifying the operating system's
con�guration. Being able to login as root in UNIX confers absolute power to a person over that
system. For this reason, all UNIX systems record every attempt to login as root, so that the system
administrator can monitor and catch break-in attempts.

Every process has an associated (real) user-id and, as we will see later, an e�ective user-id that
might be di�erent from the real user-id. In simplest case, when a user starts up a program, the
resulting process has that user's uid as both its real and e�ective uid. The privileges of the process
are the same as those of the user10. When the superuser (root) runs a process, that process runs

7A user may not be an actual person. It can also be an abstraction of a person. For example, mail, lp, and ftp

are each users in a UNIX system, but they are actually programs.
8To "login" to a system is to "log into" it. Remember that logging means recording something in a logbook, as

a sea captain does. The term "login" conveys the idea that the act is being recorded in a logbook. In UNIX, logins
are recorded in a special �le that acts like a logbook.

9We take this word for granted. We use "login" as a single word only because it has become a single word on
millions of "login screens" around the world. To login, as a verb, really means "to log into" something; it requires
an indirect object.

10To be precise, the privileges are those of user with the process's e�ective user-id.
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with the superuser's privileges. Processes running with user privileges are called user processes. At
the programming level, the function getuid() returns the real user-id of the process that calls it,
and the getgid() function returns the real group-id of the process that calls it.

1.3.4 Privileged and Non-Privileged Instructions

In order to prevent ordinary user processes from accessing hardware and performing other operations
that may corrupt the state of the computer system, UNIX requires that the processor support two
modes of operation, known as privileged and unprivileged mode11. Privileged instructions are those
that can alter system resources, directly or indirectly. Examples of privileged instructions include:

� acquiring more memory;

� changing the system time;

� raising the priority of the running process;

� reading from or writing to the disk;

� entering privileged mode.

Only the operating system is allowed to execute privileged instructions. User processes can execute
only the unprivileged instructions. The security and reliability of the operating system depend upon
this separation of powers.

1.3.5 Environments

When a program is run in UNIX, one of the steps that the operating system takes prior to running the
program is to make available to that program an array of name-value pairs called the environment.
Each name-value pair is a string of the form

name=value

where value is a NULL-terminated C string. The name is called an environment variable and the pair
name=value is called an environment string. The variables by convention contain only uppercase
letters, digits, and underscores, but this is not required12. The only requirement is that the name
does not contain the �=� character. For example, LOGNAME is an environment variable that stores
the user-name of the current user, and COLUMNS is a variable that stores the number of columns in
the current console window13. Even though it is a number, it is stored as a string.

When a user logs into a UNIX system, the operating system creates the environment for the user,
based on various �les in the system. From that point forward, whenever a new program runs, it is
given a copy of that environment. This will be explained in greater depth later.

11These modes are also known as supervisor mode and user mode.
12Environment variable names used by the utilities in the Shell and Utilities volume of POSIX.1-2008 consist solely

of uppercase letters, digits, and the underscore ( '_' ) and do not begin with a digit.
13If the user de�nes a value for COLUMNS in a start-up script, then terminal windows will have that many columns.

If the user does not de�ne it, or sets it to the NULL string, the size of terminal windows is determined by the operating
system software.
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The printenv command displays the values of all environment variables as does the env command.
Within a program the getenv() function can be used to retrieve a particular environment string,
as in

char* username = getenv("LOGNAME");

printf("The user's user-name is %s\n, username);

The operating system also makes available to every running program an external global variable

extern char **environ;

which is a pointer to the start of the array of the name-value pairs in the running program's
environment. Programs can read and modify these variables if they choose. For example, a program
that needs to know how many columns are in the current terminal window will query the COLUMNS
variable, whereas other programs may just ignore it.

1.3.6 Shells

The kernel provides services to processes, not to users; users interact with UNIX through a command-
line interface called a shell. The word "shell" is the UNIX term for a particular type of command-
line-interpreter. Command-line interpreters have been in operating systems since they were �rst
created. DOS uses a command-line-interpreter, as is the Command window of Microsoft Windows,
which is simply a DOS emulator. The way that DOS and the Command window are used is similar
to the way that UNIX is used14: you type a command and press the Enter key, and the com-
mand is executed, after which the prompt reappears. The program that displays the prompt, reads
the input you type, runs the appropriate programs in response and re-displays the prompt is the
command-line-interpreter, which in UNIX is called a shell.

In UNIX, a shell is much more than a command-line-interpreter. It can do more than just read
simple commands and execute them. A shell is also programming language interpreter; it allows
the user to de�ne variables, evaluate expressions, use conditional control-of-�ow statements such as
while- and if-statements, and make calls to other programs. A sequence of shell commands can
be saved into a �le and executed as a program by typing the name of the �le. Such a sequence of
shell commands is called a shell script. When a shell script is run, the operating system starts up
a shell process to read the instructions and execute them.

1.3.7 Online Documentation: The Man Pages

Shortly after Ritchie and Thompson wrote the �rst version of UNIX, at the insistence of their
manager, Doug McIlroy, in 1971, they wrote the UNIX Programmer's Manual. This manual was
initially a single volume, but in short course it was extended into a set of seven volumes, organized
by topic. It existed in both printed form and as formatted �les for display on an ordinary character
display device. Over time it grew in size. Every UNIX distribution comes with this set of manual
pages, called �manpages� for short. Appendix B.4 contains a brief description of the structure of
the manpages, and Chapter 2 provides more detail about how to use them.

14This is not a coincidence. Long before Microsoft wrote MS-DOS, they wrote a version of UNIX for the PC called
Xenix, whose rights they sold to Santa Cruz Operations in 1987
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1.4 The UNIX Kernel API

A multi-user operating system such as UNIX must manage and protect all of the system's resources
and provide an operating environment that allows all users to work e�ciently, safely, and happily.
It must prevent users and the processes that they invoke from accessing any hardware resources
directly. In other words, if a user's process wants to read from or write to a disk, it must ask the
operating system to do this on its behalf, rather than doing it on its own. The operating system will
perform the task and transfer any data to or from the user's process. To see why this is necessary,
consider what would happen if a user's process could access the hard disk directly. A user could
write a program that tried to acquire all disk space, or even worse, tried to erase the disk.

A program such as the ones in Listings 1.1 and 1.2, may look like it does not ask the operating
system to read or write any data, but that is not true. Both getchar() and putchar(), are library
functions in the C Standard I/O Library (whose header �le is <stdio.h>), and they do, in fact,
"ask" the operating system to do the work for the calling program. The details will be explained
later, but take it on faith that one way or another, the operating system has intervened in this task.

The operating system must protect users from each other and protect itself from users. However,
while providing an operating environment for all users, a multi-user operating system gives each
user the impression that he or she has the computer entirely to him or herself. This is precisely the
illusion underlying the execution of the program in Figure 1.1. Somehow everyone is able to write
programs that look like they have the computer all to themselves, and run them as if no one else is
using the machine. The operating system creates this illusion by creating data paths between user
processes and devices and �les. The data paths connect user processes and devices in the part of
memory reserved for the operating system itself. And that is the �rst clue � physical memory is
divided into two regions, one in which ordinary user programs are loaded, called user space, and
one where the operating system itself is stored, called system space.

How does UNIX create this illusion? We begin with a super�cial answer, and gradually add details
in later chapters.

The UNIX operating system is called the kernel. The kernel de�nes the application programming
interface and provides all of UNIX's services, whether directly or indirectly. The kernel is a program,
or a collection of interacting programs, depending on the particular implementation of UNIX, with
many entry points15. Each of these entry points provides a service that the kernel performs. If you
are used to thinking of programs as always starting at their �rst line, this may be disconcerting.
The UNIX kernel, like many other programs, can be entered at other points. You can think of these
entry points as functions that can be called by other programs. These functions do things such as
opening, reading, and writing �les, creating new processes, allocating memory, and so on. Each of
these functions expects a certain number of arguments of certain types, and produces well-de�ned
results. The collection of kernel entry points makes up a large part of UNIX's API. You can think
of the kernel as a collection of separate functions, bundled together into a large package, and its
API as the collection of signatures or prototypes of these functions.

When UNIX boots, the kernel is loaded into the portion of memory called system space and stays
there until the machine is shut down. User processes are not allowed to access system space. If they
do, they are terminated by the kernel.

15An entry point is an instruction in a program at which execution can begin. In the programs that you have
probably written, there has been a single entry point � main() �, but in other programs, you can specify that the
code can be entered at any of several entry points. Software libraries are code modules with multiple entries points.
In the Windows world, dynamically linked libraries (DLLs) are examples of code modules with multiple entry points.
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The kernel has full access to all of the hardware attached to the computer. User programs do not;
they interact with the hardware indirectly through the kernel. The kernel maintains various system
resources in order to provide these services to user programs. These system resources include many
di�erent data structures that keep track of I/O, memory, and device usage for example. In Section
1.4.1 this is explained in more detail.

Summarizing, if a user process needs data from the disk for example, it has to "ask" the kernel to
get it. If a user process needs to write to the display, it has to "ask" the kernel to do this too. All
processes gain access to devices and resources through the kernel. The kernel uses its resources to
provide these services to user processes.

1.4.1 System Resources

The kernel provides many services to user programs, including

� process scheduling and management,

� I/O handling,

� physical and virtual memory management,

� device management,

� �le management,

� signaling and inter-process communication,

� multi-threading,

� multi-tasking,

� real-time signaling and scheduling, and

� networking services.

Network services include protocols such as HTTP, NIS, NFS, X.25, SSH, SFTP, TCP/IP, and Java.
Exactly which protocols are supported is not important; what is important is for you to understand
that the kernel provides the means by which a user program can make requests for these services.

There are two di�erent methods by which a program can make requests for services from the kernel:

� by making a system call to a function (i.e., entry point) built directly into the kernel, or

� by calling a higher-level library routine that makes use of this call.

Do not confuse either of these with a system program. The term "system program" refers to a
separate program that is bundled with the kernel, that interfaces to it to achieve its functionality,
and that provides higher level services to users. We can browse through the /bin or /usr/bin

directories of a UNIX installation to �nd many di�erent system programs. Many UNIX commands
are implemented by system programs.
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1.4.2 System Calls

An ordinary function call is a jump to and return from a subroutine that is part of the code linked
into the program making the call, regardless of whether the subroutine is statically or dynamically
linked into the code. A system call is like a conventional function call in that it causes a jump to a
subroutine followed by a return to the caller. But it is signi�cantly di�erent because it is a call to
a function that is a part of the UNIX kernel.

The code that is executed during the call is actually kernel code. Since the kernel code accesses
hardware and contains privileged instructions, kernel code must be run in privileged mode. Because
the kernel alone runs in privileged mode, it is also commonly called kernel mode or superuser mode.
Therefore, during a system call, the process that made the call is run in kernel mode. Unlike an
ordinary function call, a system call requires a change in the execution mode of the processor; this
is usually implemented by a trap instruction. The trap is typically invoked with special parameters
that specify which system call to run. The method of implementing this is system dependent. In
all cases, the point at which a user process begins to execute kernel code is a perilous point, and
great care must be taken by operating system designers and the programmers who code the system
call interfaces to make sure that it cannot be booby-trapped by malicious programmers trying to
get their programs to run in kernel mode.

Programs do not usually invoke system calls directly. The C library provides wrappers for almost all
system calls, and these usually have the same name as the call itself. A wrapper for a function f is a
function that does little more than invoking f, usually rearranging or pre-processing its arguments,
checking error conditions, and collecting its return value and possibly supplying it in a di�erent
form to the caller. Wrappers for system calls also have to trap into kernel mode before the call
and restore user mode after the call. A wrapper is thin if it does almost nothing but pass through
the arguments and the return values. Often, for example, the GNU C library wrapper function is
very thin, doing little work other than copying arguments to the right registers before invoking the
system call, and then setting the value of a global error variable16 appropriately after the system
call has returned.

Sometimes a wrapper is not so thin, as when the library function has to decide which of several
alternative functions to invoke, depending upon what is available in the kernel. For example. there
is a system call named truncate(), which can �crop� a �le to a speci�ed length, discarding the
data after that length. The original truncate() function could only handle lengths that could �t
into a 32-bit integer, and when �le systems were able to support very large �les, a newer version
named truncate64() was developed. The latter function can handle lengths representable in 64
bits in size. The wrapper for truncate() decides which one is provided by the kernel and calls it
appropriately.

There may be system calls that do not have wrappers in the library, and for these, the programmer
has no other choice but to invoke the system call with a special function named syscall(), passing
the system call's identi�cation number and arguments. Every system call has a unique number
associated to it. Generally speaking, for a system call named foo, its number is de�ned by a macro
named either __NR_foo or SYS_foo. The macro de�nitions are included by including the header �le
<sys/syscall.h> in the code. They may not be in that �le itself; they may be another �le, such
as <asm/unistd_32.h> or <asm/unistd_64.h>. An example of a system call without a wrapper is

16To be precise, the variable is named errno and it has thread local storage, which means each thread has its own
unique copy and the lifetime of this variable is the entire lifetime of the thread.
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Figure 1.3: System calls versus system libraries.

gettid(), which returns the calling thread's thread id. It is the same as getpid() for a process
with a single thread. The following program calls gettid() and prints the returned id on the screen:

#de f i n e _GNU_SOURCE
#inc lude <uni s td . h>
#inc lude <sys / s y s c a l l . h>
#inc lude <sys / types . h>
#inc lude <s td i o . h>

in t main ( i n t argc , char *argv [ ] )
{

p r i n t f ("Thread id %ld \n" , s y s c a l l ( SYS_gettid ) ) ;
/* could a l s o pass __NR_gettid */
return 0 ;

}

Because the function has no arguments, it is not necessary to pass anything other than the system
call number to syscall().

The complete set of system calls is usually available in the syscalls manpage in Section 2.

1.4.3 System Libraries

Many system calls are very low-level primitives; they do very simple tasks. This is because the UNIX
operating system was designed to keep the kernel as small as possible. Also for this reason, the
kernel typically does not provide many di�erent kinds of routines to do similar things. For example,
there is only a single kernel function to perform a read operation, and it reads large blocks of data
from a speci�ed device to speci�ed system bu�ers. There is no system call to read a character at
a time, which is a useful function to have. In short, there is a single kernel function that performs
input operations!

To compensate for the austerity of the kernel, UNIX designers augmented the programming interface
with an extensive set of higher-level routines that are kept in system libraries. These routines provide
a much richer set of primitives for programming the kernel. Of course, they ultimately make calls to
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the kernel, as depicted in Figure 1.3. UNIX also contains libraries for various specialized tasks, such
as asynchronous input and output, shared memory, terminal control, login and logout management,
and so on. Using any of these libraries requires that the library's header �le be included in the code
with the appropriate #include directive (e.g. #include <termios.h>), and sometimes, that the
library be linked explicitly because it is not in a standard place. Manpages for functions that are
part of system libraries are contained in Volume 3 of the UNIX Manual Pages.

1.5 UNIX and Related Standards

1.5.1 The Problem

The very �rst version of UNIX was written by Ken Thompson and Dennis Ritchie in 1969 while
they were working for AT&T Bell Labs. Their �edgling operating system turned out to be full of
very novel ideas, and they presented these ideas in a seminal paper at the ACM Symposium on
Operating Systems at IBM Yorktown Heights in 1973. In January 1974, the University of California
at Berkeley (UCB) acquired Version 4 from Bell Labs and embarked on a mission to add modern
features to UNIX. Later that year, AT&T began licensing UNIX to universities. From 1974 to 1979,
UCB and AT&T worked on independent copies of UNIX. By 1978, the various versions of UNIX
had most of the features that are found in it today, but not all in one system. But in 1979, AT&T
did something that changed the playing �eld; they staked proprietary rights to their own brand of
UNIX, selling it commercially. In essence, they trademarked UNIX and made it expensive to own
it.

BSD code was released under a much more generous license than AT&T's source and did not require
a license fee or a requirement to be distributed with source unlike the GPL that the GNU Project
and Linux use today. The result was that much BSD source code was incorporated into various
commercial UNIX variants. By the time that 4.3BSD was written, almost none of the original
AT&T source code was left in it. FreeBSD/NetBSD/OpenBSD were all forks of 4.3BSD having
none of the original AT&T source code, and no right to the UNIX trademark, but much of their
code found its way into commercial UNIX operating systems. In short, two major versions of UNIX
came into existence � those based on BSD and those based on the AT&T version.

In 1991, the picture was further complicated by the creation of Linux. Linux was developed from
scratch unlike BSD and it used the existing GNU Project which was a clean-room implementation
of much of the UNIX user-space. It is a lot less like the AT&T UNIX than BSD is. In 1993, AT&T
divested itself of UNIX, selling it to Novell, which one year later sold the trademark to an industry
consortium known as X/Open.

There are now dozens of di�erent UNIX distributions, each with its own di�erent behavior. There
are systems such as Solaris and UnixWare that are based on SVR4, the AT&T version released in
1989, and FreeBSD and OpenBSD based on the UC Berkeley distributions. Systems such as Linux
are hybrids, as are AIX, IRIX, and HP-UX. It is natural to ask what makes a system UNIX. The
answer is that over the course of the past thirty years or so, standards have been developed in order
to de�ne UNIX. Operating systems can be branded as conforming to one standard or another.

1.5.2 The Solution: Standards

One widely accepted UNIX standard is the POSIX standard. Technically, POSIX does not de�ne
UNIX in particular; it is more general than that. POSIX, which stands for Portable Operating
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System Interface, is a family of standards known formally as IEEE 1003. It is also published by the
International Standards Organization (ISO) as ISO/IEC 9945:2003 ; these are one and the same doc-
ument. The most recent version of POSIX is IEEE Std 1003.1-2008, also known as POSIX.1-2008.
The POSIX.1-2008 standard consolidates the major standards preceding it, including POSIX.1, and
the Single UNIX Speci�cation (SUS ). The spirit of POSIX is to de�ne a UNIX system, as is stated
in the Introduction to the speci�cation (http://pubs.opengroup.org/onlinepubs/9699919799/):

The intended audience for POSIX.1-2008 is all persons concerned with an industry-wide
standard operating system based on the UNIX system. This includes at least four groups
of people:

Persons buying hardware and software systems

Persons managing companies that are deciding on future corporate computing
directions

Persons implementing operating systems, and especially

Persons developing applications where portability is an objective

The Single UNIX Speci�cation was derived from an earlier standard written in 1994 known as the
X/Open System Interface which itself was developed around a UNIX portability guide called the
Spec 1170 Initiative, so called because it contained a description of exactly 1,170 distinct system
calls, headers, commands, and utilities covered in the spec. The number of standardized elements
has grown since then, as UNIX has grown.

The Single UNIX Speci�cation was revised in 1997, 2001, and 2003 by The Open Group, which was
formed in 1996 as a merger of X/Open and the Open Software Foundation (OSF ), both industry
consortia. The Open Group owns the UNIX trademark. It uses the Single UNIX Speci�cation to
de�ne the interfaces an implementation must support to call itself a UNIX system.

What, then, does this standard standardize? It standardizes a number of things, including the
collection of all system calls, the system libraries, and those utility programs such as grep, awk,
and sed that make UNIX feel like UNIX. The collection of system calls is what de�nes the UNIX
kernel. The system calls and system libraries together constitute the UNIX application programming
interface. They are the programmer's view of the kernel. The utility programs are the part of the
interface that the UNIX user sees.

From the Introduction again:

POSIX.1-2008 is simultaneously IEEE Std 1003.1�-2008 and The Open Group Technical
Standard Base Speci�cations, Issue 7.

POSIX.1-2008 de�nes a standard operating system interface and environment, including
a command interpreter (or �shell�), and common utility programs to support applications
portability at the source code level. POSIX.1-2008 is intended to be used by both appli-
cation developers and system implementers [sic] and comprises four major components
(each in an associated volume):

� General terms, concepts, and interfaces common to all volumes of this standard,
including utility conventions and C-language header de�nitions, are included in the
Base De�nitions volume.
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� De�nitions for system service functions and subroutines, language-speci�c system
services for the C programming language, function issues, including portability,
error handling, and error recovery, are included in the System Interfaces volume.

� De�nitions for a standard source code-level interface to command interpretation
services (a �shell�) and common utility programs for application programs are in-
cluded in the Shell and Utilities volume.

� Extended rationale that did not �t well into the rest of the document structure,
which contains historical information concerning the contents of POSIX.1-2008 and
why features were included or discarded by the standard developers, is included in
the Rationale (Informative) volume.

POSIX.1-2008 speci�cally de�nes certain areas as being outside of its scope:

� Graphics interfaces

� Database management system interfaces

� Record I/O considerations

� Object or binary code portability

� System con�guration and resource availability

In summary, the Single UNIX Speci�cation, Version 4, known as SUSv4, also known as The Open
Group Speci�cation Issue 7, consists of four parts: a base de�nition, detailed system interfaces, shell
and utilities, and rationale, which describes reasons for everything else.

The fact that there are standards does not imply that all UNIX implementations adhere to them.
Although there are systems such as AIX, Solaris, and Mac OS X that are fully POSIX-compliant,
most are "mostly" compliant. Systems such as FreeBSD and various versions of Linux fall into this
category.

Any single UNIX system may have features and interfaces that do not comply with a standard.
The challenge in system programming is being able to write programs that will run across a broad
range of systems in spite of this. Later we will see how the use of feature test macros in programs
provides a means to compile a single program on a variety of di�erent UNIX systems.

1.6 The C Library and C Standards

The interfaces described in the POSIX standard are written in C17, mostly because C is the major
language in which most systems programs are written, and because much of UNIX was originally
developed in C. Because of this, POSIX depends upon a standard de�nition of C, and it uses the ISO
standard, the most recent version of which is o�cially known as ISO/IEC 9899:2011, and informally
known as C11. C11 incorporated the earlier ANSI C and augmented it. This version of C is known
as ISO C, but people also continue to call it ANSI C, even though it is not the same thing. You
can download the last free draft of this standard from C11 Standard (pdf)

In short, POSIX speci�es not just what UNIX must do, but what the various parts of the C Standard
Library must do as well. It speci�es, in e�ect, a superset of the C language, including additional

17There are language bindings of the kernel API in Fortran, Java, Python, Pascal, C++, and other languages.
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functions to those introduced in standard C. Therefore, a UNIX system that is POSIX compliant
contains all of the library functions of the ISO C language. For example, every UNIX distribution
includes libraries such as the C Standard I/O Library, the C math library, and the C string library.

The C Standard Library provided for Linux as well as several other UNIX distributions is the GNU
C library, called GNU libc, or glibc. GNU often extends the C library, and not everything in it
conforms to the ISO standard, nor to POSIX. What all of this amounts to is that the version of the
C library on one system is not necessarily the same as that found on another system.

This is one reason why it is important to know the standard and know what it de�nes and what
it does not de�ne. In general, the C standard describes what is required, what is prohibited, and
what is allowed within certain limits. Speci�cally, it describes

� the representation of C programs

� the syntax and constraints of the C language

� the semantic rules for interpreting C programs

� the representation of input data to be processed by C programs

� the representation of output data produced by C programs

� the restrictions and limits imposed by a conforming implementation of C

Not all compilers and C runtime libraries comply with the standard, and this complicates program-
ming in C. The GNU compiler has command line options that let you compile according to various
standards. For example, if you want your program to be compiled against the ANSI standard, you
would use the command

$ gcc -ansi

or

$ gcc -std=c90

To use the current ISO C11 standard, either of these works:

$ gcc -std=c11

$ gcc -std=iso9899:2011

Understanding how to write programs for UNIX requires knowing which features are part of C and
which are there because they are part of UNIX. In other words, you will need to understand what
the C libraries do and what the underlying UNIX system de�nes. Having a good grasp of the C
standard will make this easier.
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1.7 Learning System Programming by Example

The number of system calls and library functions is so large that mere mortals cannot remember
them all. Trying to learn all of the intricacies and details of the UNIX API by reading through
reference manuals and user documentation would be a painstaking task. Fortunately, people often
learn well by example. Rather than studying the reference manuals and documentation, we can
learn the API little by little by writing programs that use it. One starts out simple, and over time
adds complexity.

Bruce Molay [1] uses an excellent strategy for learning how to write system programs and discover
the UNIX API:

1. Pick an existing program that uses the API, such as a shell command;

2. Using the system man pages and other information available online, investigate the system calls
and kernel data structures that this program most likely uses in its implementation; and

3. Write a new version of the program, iteratively improving it until it behaves just like the actual
command.

By repeating this procedure over and over, one can familiarize oneself with the relevant portions of
the API as well as the resources needed to learn about it. When it is time to write a full-�edged
application, the portions of it that must communicate with the kernel should be relatively easy to
write. We will partly follow this same paradigm in this sequence of notes on UNIX.

1.8 The UNIX File Hierarchy

The typical UNIX �le hierarchy has several directories just under the root. Figure 1.4 shows part
of a typical, but hypothetical, �le hierarchy. The following directories should be present in most
UNIX systems, but they are not all required. The only required directories are /dev and /tmp.

Directory Purpose
bin The repository for all essential binary executables including those shell

commands that must be available when the computer is running in
"single-user mode" (something like safe mode in Windows.)

boot Static �les of the boot loader
dev The directory containing essential device �les, which will be explained later.
etc Where almost all host con�guration �les are stored. It is something like the

registry �le of Windows.
home The directory where all user home directories are located, but not always.
lib Essential shared libraries and kernel modules
media Mount point for removable media
mnt Mount point for mounting a �le system temporarily
opt Add-on application software packages
sbin Essential system binaries
srv Data for services provided by this system
tmp Temporary �les
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Figure 1.4: The top of a typical UNIX directory hierarchy.

Directory Purpose
usr Originally, /usr was the top of the hierarchy of user "data" �les, but now it

serves as the top of a hierarchy in which non-essential binaries, libraries,
and sources are stored. Below /usr are directories such as /usr/bin and
/usr/sbin, containing binaries, /usr/lib, containing library �les, and
/usr/local, the top of a third level of "local" programs and data.

var Variable �les (�les containing data that can change)

Files have two independent binary properties: shareable vs. unshareable and variable vs. static. In
general, modern UNIX systems are encouraged to put �les that di�er in either of these respects into
di�erent directories. This makes it easy to store �les with di�erent usage characteristics on di�erent
�le systems.

Shareable �les are those that can be stored on one host and used on others. Unshareable �les are
those that are not shareable. For example, the �les in user home directories are shareable whereas
boot loader �les are not.

Static �les include binaries, libraries, documentation �les and other �les that do not change without
system administrator intervention. "Variable" �les are �les that are not static. The /etc directory
should be unshareable and static. The /var directory is variable but parts of it, such as /var/mail
may be shareable while others such as /var/log may be unshareable. /usr is shareable and static.

1.8.1 About Pathnames and Directories

A pathname is a character string that is used to identify a �le. POSIX.1-2008, puts a system-
dependent limit on the number of bytes in a pathname, including the terminating null byte18.

There are two types of pathnames: absolute and relative. An absolute pathname is a pathname
that starts at the root. It begins with a "/" and is followed by zero or more �lenames sepa-
rated by "/" characters. All �lenames except the last must be directory names19. For exam-

18The variable PATH_MAX contains the maximum length of a string representing a pathname. The library function
pathconf() can be used to obtain its value. On many Linux systems it is 4096 bytes.

19This is not exactly true. Filenames that are not the last in the pathname may be symbolic links to directories.
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ple, /home/fac/sweiss is the absolute pathname to the directory sweiss in Figure 1.4, as is
/home//fac///sweiss. The extra slashes are ignored. Observe that UNIX (actually POSIX) uses
slashes, not backslashes, in pathnames: /usr/local, not \usr\local.

If a pathname does not begin with "/" it is called a relative pathname. When a process must resolve
a relative pathname so that it can access the �le, the pathname is assumed to start in the current
working directory. In fact, the de�nition of the current working directory, also called the present
working directory, is that it is the directory that a process uses to resolve pathnames that do not
begin with a "/". For example, if the current working directory is /home/fac, then the pathname
sweiss/testdata refers to a �le whose absolute pathname is /home/fac/sweiss/testdata. The
convention is to use pwd as a shorthand for the current working directory.

The environment variable PWD contains the absolute pathname of the current working directory.
The command pwd prints the value of the PWD.

1.8.1.1 Working with Directories

This section may be skipped if you have experience working with directories at the user level. You
do not need to know many commands in order to do most directory-related tasks in UNIX. This is
a list of the basic commands. The principal tasks are navigation and displaying and altering their
contents. The tables that follow give the command name and the simplest usage of it. They do not
describe the various options or details of the command's usage.

Command Explanation
pwd print the path of the current working directory (pwd)
ls [<dir1>] [<dir2>] ... list the contents of the pwd, or <dir1>, <dir2> ... if supplied
cd [<dir>] change pwd to HOME directory, or <dir> if it is supplied
mkdir <dir> [<dir2>] ... create new directories <dir> (and <dir2> ...) in the pwd;
rmdir <dir> [<dir2>] ... remove the EMPTY directory <dir> (and <dir2> ...)
rm -r <dir> remove all contents of <dir> and <dir> itself. Dangerous!!
mv see the explanation in Section 1.8.2

Notes

1. The "p" in "pwd" stands for print, but it does not print on a printer. In UNIX, "printing"
means displaying on the screen20.

2. mkdir is the only way to create a directory

3. You cannot use rmdir to delete a directory if it is not empty.

4. You can delete multiple directories and their contents with rm -r, but this is not reversible,
so be careful.

5. Commands that create and delete �les are technically modifying directories, but these will be
covered separately.

20That is why the C instruction printf sends output to the display device, not the printer. In FORTRAN, by
contrast, the print instruction sent output to the printer.
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"Changing directories" and "being in a directory" are imprecise phrases. When you cd to a directory
named dir, you may think of yourself as being �in dir�, but this is not true. What is true is that the
dir directory is now your current working directory and that every process that you run from the
shell process in which you changed directory, including the shell process, will use this dir directory
by default when it is trying to resolve relative pathnames.

There are two special entries that are de�ned in every directory

. The directory itself

.. The parent directory of the directory, or itself if it is /

Thus, "cd .." changes the pwd to the parent of the current pwd, "cd ../.." changes it to the
grandparent and "cd ." has no e�ect. Before reading further, you should experiment with these
commands and make sure that you understand how they work.

1.8.2 Files and Filenames

Unlike other operating systems, UNIX distinguishes between only �ve types of non-directory �les:

� regular �les

� device �les (character or block)

� FIFOs

� sockets

� symbolic links

Device �les and FIFOs will be described in depth in Chapter 4, sockets in Chapter 9, and symbolic
links below. That leaves regular �les, which are de�ned quite simply: a regular �le is a sequence of
bytes with no particular structure.

1.8.2.1 Filenames

Files and �lenames, as noted earlier, are di�erent things. A �lename, which is technically called
a �le link, or just a link, is just a string that names a �le21. A �le may have many �lenames.
Filenames are practically unlimited in size, unless you think 255 characters is not big enough. The
maximum number of bytes in a �lename is contained in the system-dependent constant NAME_MAX.
Filenames can contain any characters except "/" and the null character. They can have spaces
and new lines, but if they do, you will usually need to put quotes around the name to use it as an
argument to commands. UNIX is case-sensitive, so "References" and "references" are two di�erent
�lenames.

Unlike DOS, Windows, and Apple operating systems, �lename extensions are not used by the op-
erating system for any purpose, although application-level software such as compilers and word

21 A �lename is sometimes referred to as a "pathname component".
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processors use them as guides, and desktop environments such as Gnome and KDE create associa-
tions based on �lename extensions in much the same way that Windows and Apple do. But again,
UNIX itself does not have a notion of �le type based on content, and it provides the same set of
operations for all �les, regardless of their type.

Remember that a directory entry consists of two parts. One part is a �lename and the other part
is a means by which a �le is associated with this name. You may think of this second part as an
index into a table of pointers to the actual �les22.

One �le can have many links, like a spy traveling with several forged passports. In one directory,
the �le may be known by one link, and in a di�erent directory, it may have another link. It is still
the same �le though. In Figure 1.5, the �le is known by three names, each a link in a di�erent
directory. There is two restrictions concerning multiple links. One is that directories cannot have
multiple names. Another is that two names for the same �le cannot exist on di�erent �le systems.
The simplest way to understand this last point, without going into a discussion of mounting and
mount points, is that di�erent parts of the �le hierarchy can reside on di�erent physical devices,
e.g., di�erent partitions of a disk or di�erent disks, and that a �le on one physical device cannot
have a name on a di�erent physical device. This will be clari�ed in a later chapter.

1.8.2.2 What is a File?

All �les, regardless of their type, have attributes. Almost all have data, or content.

� Attributes include properties such as the time the �le was created, the time it was last modi�ed,
the �le size expressed as a number of bytes, the number of disk blocks allocated to the �le,
and so on. The attributes that describe restrictions on access to the �le are called the �le
mode. The attributes of a �le collectively are called the �le status in UNIX. The word "status"
may sound misleading, but it is the word that was used by the original designers of UNIX.

� The data are the actual �le contents. In fact, UNIX uses the term content to identify this
part of a �le. Some �les do not have any content because they are merely interfaces that the
operating system uses. That will be discussed further in Chapter 4.

These two items, the status and the content, are not stored together23.

1.8.2.3 Working with Files

This section may be skipped if you have user level experience in UNIX. Commands for working
with �les can be classi�ed as those that view �le contents but do not modify them, those that view
�le attributes, and editors � those that modify the �les in one way or another. Listed below are
the basic commands for viewing the contents of �les, not editing or modifying them. Editors are
a separate topic. In all cases, if the �le arguments are omitted, the command reads from standard
input. There is also a separate class of programs called �lters that provide sophisticated �ltering of
ordinary text �les.

22Traditional UNIX system used an index number, called an inumber, to associate the �le to the �lename. This
number was used to access a pointer to a structure called an inode, to be discussed later. The inode contains members
that point to the �le contents. Conceptually, the inode is like a proxy for the �le.

23The status is stored in the inode.

This work is copyrighted by Stewart Weiss and licensed under the Creative Commons Attribution-
ShareAlike 4.0 International License.

21

http://creativecommons.org/licenses/by-sa/4.0/ 
http://creativecommons.org/licenses/by-sa/4.0/ 


UNIX Lecture Notes
Chapter 1 Introduction to System Programming

Prof. Stewart Weiss

Figure 1.5: Example of multiple links to a �le.

Viewing File Contents

Command Explanation
cat [<files>] display �le contents
more [<files>] display �le contents a screen at a time
less [<files>] display �le contents a screen at a time with more options
pg [<files>] display �le contents a screen at a time.
head [-<n>] [<file>] display the �rst <n> lines of a �le, default n = 10
tail [-<n>] [<file>] display the last <n> lines of a �le, default n = 10

Note that the pg command is not POSIX and may not be available on all UNIX systems.

A note about more and less: the more command existed long before there was a less com-
mand. more was created to allow you to read a page at a time, and also to jump ahead in the �le
with regular expression searches, using the same "/" operator from vi. However, it was not easy
to go backwards in the �le with more. You could use the single quote operator ( ' ) to go back to
the beginning of the �le, but that was about it. less was created to do more than more, naturally,
which is why it is called less. Maybe the person who wrote it knew the famous quotation from
Ludwig Mies Van der Rohe, the German-born architect, whose famous adage, "Less is more," is
immortalized. Maybe not. But for whatever reason that they named less, "less", less does
more than more. And this is not an Abbott and Costello skit. The less command is the most
versatile means of viewing �les, and my recommendation is that you learn how to use it �rst.

Creating, Removing, and Copying Files and Links Remember that a link is just a name
pointing to a �le.

Command Explanation
ln <f1> <f2> create a new link for �le <f1> named <f2>

rm <files> delete a link or name for a �le
mv <file1> <file2> rename <file1> with the new name <file2>
mv <files> <dir> move all �les into the destination directory <dir>

cp <file1> <file2> copy <file1> to the new name <file2>
cp <files> <dir> copy all �les into the destination directory <dir>
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Notes.

� The ln command can only be used on �les, not directories. There is a simpli�ed version of
this command named link.

� The rm command is irreversible; once a link is removed, it cannot be recovered.

� The mv command has two forms. If there are more than two arguments, the last must be
an existing directory name, and all �les named before the last are moved into that directory.
Conversely, if the last argument is an existing directory name, then all arguments preceding it
will be moved into it. The preceding arguments can be existing directories, as long as it does
not create a circularity, such as trying to make a child into a parent. If the last argument is
not an existing directory, the meaning of mv is simply to rename the �rst �le with the new
name. If the new name is an existing �le, mv will silently overwrite it. For this reason, you
should use "mv -i", which prompts you before overwriting �les.

� The way you use the cp command is almost the same as how you use the mv command except
that it replicates �les instead of moving them. The main di�erence is that cp does not accept
directories as arguments, except as the last argument, unless you give it the option "-r", i.e.,
cp -r, in which case it recursively copies the directories. Note that cp makes copies of �les,
not just their names, so changes to one �le are not re�ected in the other.

Examples

$ ls

hwk1_6.c

$ mv hwk1_6.c hwk1_finalversion.c

$ ls

hwk1_finalversion.c

This command changed the link hwk1_6.c to hwk1_finalversion.c.

$ rm hwk1.o hwk1.old.o main.o

This removes these three �le links from the current working directory. If these �les have no other
links in other directories, the attributes and contents are also removed from the disk. I will explain
more about this in a later chapter.

$ ln hwk1.1.c ../mysourcefiles/proj1.c

creates a new link proj1.c in the directory ../mysourcefiles for the �le whose name is hwk1.1.c
in the current working directory.

$ cp -r main.c utils.c utils.h images ../version2

copies the three �les main.c, utils.c, and utils.h, and the directory images, into the directory
../version2.
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1.8.2.4 File Attributes

In this section, the word "�le" refers to all �le types, including directories. UNIX has a very simple,
but useful, �le protection method. To provide a way for users to control access to their �les, the
inventors of UNIX devised a rather elegant and simple access control system. Every �le has an
owner, called its user. The �le is also associated with one of the groups to which the owner belongs,
called its group. The owner of a �le can make the �le's group any of the groups to which the owner
belongs. Lastly, everyone who is neither the user nor a member of the �le's group is in the class
known as others. Thus, the set of all users is partitioned into three disjoint subsets: user, group,
others, which you can remember with the acronym ugo.

There are three modes of access to any �le: read, write, and execute. Read access is the ability to
view �le contents. For directories, this is the ability to view the contents using the ls command.
Write access is the ability to change �le contents or certain �le attributes. For directories, this
implies the ability to create new links in the directory, to rename �les in the directory, or remove
links in the directory. This will be counterintuitive � the ability to delete a �le from a directory does
not depend on whether one has write privileges for the �le, but on whether one has write privileges
for the directory. Execute access is the ability to run the �le. For a directory, execute access is
the ability to cd into the directory and as a result, the ability to run programs contained in the
the directory and run programs that need to access the attributes or contents of �les within that
directory. In short, without execute access on a directory, there is little you can do with it.

For each of the three classes of users, there are three protection bits that de�ne the read, write, and
execute privileges a�orded to members of the class. For each class, if a speci�c protection bit is set,
then for anyone in that class, the particular type of access is permitted. Thus, there are three bits
called the read, write, and execute bits for the user (u), for the group (g), and for others (o), or
nine in total. These bits, which are called mode or permission bits, are usually expressed in one of
two forms: as an octal number, or as a string of nine characters.

The nine-character permission bit string is:

r w x r w x r w x

user bits group bits others bits

Various commands use a dash is used to indicate that the bit is turned o�.

Examples

� The string rwxrw-r--, gives the user (owner) read, write, and execute permission, the group,
read and write but no execute, and others, only read permission.

� The string r-xr-xr-x gives everyone only read and execute permission.

� The string rwxr-xr-- gives the user read, write, and execute permission, the group, read and
execute permission, and others, only read access.

The mode string can be represented as a 3-digit octal number, by treating each group of three bits
as a single octal digit. Using the C ternary operator, ?:, I would write this as
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value = r?4:0 + w?2:0 + x?1:0

which results in the following table of values for each group of three bits.

rwx rw- r-x r-- -wx -w- --x ---

7 6 5 4 3 2 1 0

For example, the octal number for rwxrw-r-- is 764 because the user digit is 7, the group is 6 and
the others is 4.

In addition to the mode bits, a �le's permission string is usually displayed with a single character
�le attribute that characterizes the �le type. The character, which appears to the left of the mode
bits, can be one of - (regular �le), d (directory), b (bu�ered special �le), c (character special �le),
l (symbolic link), p (pipe), or s (socket).

1.8.2.5 Viewing and Modifying File Attributes

To see the attributes of a �le, use the �l option to the ls command: The "-l" means "long listing"
and it prints the permission string, the number of links to the �le, the user-name of the owner,
the group name of the group, the number of bytes in the �le, the last modi�cation time, and the
�le link. For example, to look at the attributes of the �le named .bashrc in the current working
directory, I would type

$ ls -l ~/.bashrc

-rw-r--r-- 1 sweiss faculty 3304 Sep 22 13:05 .bashrc

This �le is a regular �le and can be read and modi�ed by me, its owner (-rw-). It can be read by
anyone in the faculty group (r--), and it can be read by anyone else (r--). ls has many other
options, for displaying additional information. Read its man page for details. You can also use the
stat command, which will provide additional information:

$ stat .bashrc

File: `.bashrc'

Size: 3304 Blocks: 8 IO Block: 4096 regular file

Device: 18h/24d Inode: 1318 Links: 1

Access:(0644/-rw-r--r--)Uid:(1220/ sweiss)Gid:(400/ faculty)

Access: 2010-12-20 13:20:04.582733000 -0500

Modify: 2010-09-22 13:05:11.271251000 -0400

Change: 2010-09-22 13:05:11.278893000 -0400

You can get the count of bytes, words, and lines with wc:

$ wc .bashrc

156 387 3304 .bashrc
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There are 156 lines, 387 words, and 3304 bytes in the �le. Other options provide di�erent informa-
tion.

Commands that alter the attributes of a �le are:

Command Explanation
chmod <mode> <files> change the �le permissions
chown <owner> <files> change the �le ownership
chgrp <group> <files> change the group ownership
touch <files> update timestamps of �les; create empty �les (a �le of size 0)

1.8.2.6 Symbolic Links

A symbolic link, also called a soft link, is a �le that stores a string containing the pathname of
another �le. The stored string has a length of SYMLINK_MAX bytes or fewer. This string is not
part of the content of the �le, but can be used by programs to access the �le whose pathname it
contains. Symbolic links are like shortcuts in the Windows operating system; they have no data in
themselves, but instead point to �les. They are useful for overcoming the limitations of hard links
that they cannot link to directories and cannot cross �le systems. For example, suppose that one
frequently accesses a directory whose absolute path is

/data/research/biochem/proteins

He or she could create a link in his or her home directory for easier access to this directory, as
follows:

$ ln -s /data/research/biochem/proteins ~/proteins

The ln command, with the -s option, creates symbolic links. The pathname /data/research/biochem/proteins
would be stored in the �le ~/proteins in such a way that the commands that use the �lename pro-
teins would replace it by the pathname stored there.

Symbolic links pose hazards for the operating system because of the possibility of circular references
and in�nite loops. More will be said about them in Chapter 3.

1.9 Under the Hood: How Logging In Works

When you log in to a UNIX system, what actually happens? What does it mean to be logged in?

There is no single answer to this question, as it depends upon (1) which version of UNIX is running
and (2) whether the login is at the console, or within a terminal window, or across a network using
a protocol such as SSH. Fortunately, the way that logging in works at the console or in a terminal
window in the predominant UNIX systems � Linux, Mac OS, Solaris, and BSD24 variants � is pretty
much the same, with minor variations, and the way that it works over a network, while very di�erent
from how it works at a console or terminal window, is similar across the major UNIX systems.

24BSD stands for Berkeley Software Distribution. See the historical notes at the end of this chapter.
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Terminal or console logins in the predominant UNIX systems are usually based upon the method
used by the early BSD UNIX system. We will examine how the BSD method worked. Modern
UNIX systems have the option to use a very di�erent method known as PAM, discussed below.

When a UNIX system is started, after the kernel initializes the data structures that it needs and
enables interrupts, it creates a new process with process-id 1, named init. init is the �rst process
created at start-up, and it is also the ancestor of all user-level processes in a UNIX system, even
though it runs with root's privileges. init monitors the activities of all processes in the outer layers
of the operating system, and also manages what takes place when the computer is shutdown.

The init process does a number of interesting things, but of interest to us now is that init uses
information about available terminal devices on the system (i.e., consoles, modems, etc.) to create,
for each available terminal, a process to listen for activity on that terminal. These processes are
the getty processes25. The name getty stands for "get tty". The getty process con�gures the
terminal device, displays a prompt such as "login:" in the terminal, and waits for the user to enter
a user-name.

The "tty" in "getty" is short for Teletype. For those who do not know the history, a Teletype
is the precursor to the modern computer terminal. Teletype machines came into existence as
early as 1906, but it was not until around 1930 that their design stabilized. Teletype machines
were essentially typewriters that converted the typed characters into electronic codes that could be
transmitted across electrical wires. Modern computer terminals inherit many of their characteristics
from Teletype machines.

When the user enters a user-name on the terminal, the getty process runs the login program26,
passing it the entered user-name. login performs a number of tasks and prompts the user for the
password and tries to validate it. If it is valid, login sets the current working directory (PWD27)
to the user's home directory, sets the process's user-id to that of the user, initializes the user's
environment, adjusts permissions and ownership of various �les, and then starts up the user's login
shell. If the password is invalid, the login program will exit, and init will notice this and start up
a new getty for that terminal, which will repeat the above procedure.

Systems that use PAM do not work this way. PAM, which is short for Pluggable Authentication
Modules, is a library of dynamically con�gurable authentication routines that can be selected at
runtime to do various authentication tasks, not just logins. We will not cover PAM here.

Network logins, which are usually based upon the BSD network login mechanism, must work di�er-
ently. For one, there are no physical terminals, and so there is no way to know in advance how many
terminals must be initialized. For another, the connection between the terminal and the computer
is not point-to-point, but is a network service, such as SSH or SFTP.

BSD took the approach of trying to make the login code independent of the source of the login.
The result is that it uses the idea of a pseudo-terminal. These will be covered in depth later. With
network logins, rather than creating a getty process for each terminal, init creates the process

25This is not quite accurate but it is good enough for now. If you want to know the actual steps, it is best to wait
until you understand how processes are created and what the di�erence is between creating a process and running a
program.

26Actually, the getty process replaces itself with the login program using a system call named execve(). This
topic is covered in a later chapter.

27In bash, the environment variable PWD stores the absolute pathname of the current working directory. Bash

inherits this name from the Bourne shell, in which it stood for "present working directory." In the C-shell, it is still
cwd. Even though it is PWD in bash, no one calls it the present working directory anymore; it is the current working
directory.

This work is copyrighted by Stewart Weiss and licensed under the Creative Commons Attribution-
ShareAlike 4.0 International License.

27

http://creativecommons.org/licenses/by-sa/4.0/ 
http://creativecommons.org/licenses/by-sa/4.0/ 


UNIX Lecture Notes
Chapter 1 Introduction to System Programming

Prof. Stewart Weiss

that will listen for the incoming network requests for logins. For example, if the system supports
logging in through SSH, then init will create a process named sshd, the SSH daemon, which will
in turn create a new process for each remote login. These new processes will, in turn, create what
is called a pseudo-terminal driver (pts driver), which will then spawn the login program, which
does everything described above. The picture is quite di�erent and much more complicated than
a simple terminal login, because the management of the pseudo-terminal is complex. This will be
covered in depth later.

1.10 UNIX From The System Programmer's Perspective

The way that a systems programmer sees UNIX is very di�erent from the way that a user sees it.
Whereas the user perceives UNIX by the functionality of the shell, the systems programmer looks
�beneath� the shell at the functionality of the kernel inside, as suggested by Figure 1.6.

However, not only does the systems programmer need to understand the kernel API, he or she also
has to understand how programs interact with users, how they interact with the operating system,
and how they interact with other programs. Interaction encompasses three distinct actions:

� Acquiring data

� Delivering data

� Coordinating execution in time

Simple programs acquire data from an external source such as a �le or the keyboard, and deliver
data to external sources such as �les or the console. But real applications may also have to acquire
data from other programs, and the operating system in particular, or acquire it from a system
resource or a shared resource such as a �le already opened by a di�erent process. They may also
have to write to a shared resource, such as a window into which other processes are writing, or a
�le that may be shared by other processes.

Figure 1.6: The system programmer's view of UNIX.

Even more complex is the possibility that data may be delivered to the process asynchronously,
meaning, not when the process asked for it, but at some later, unpredictable time. And if that
is not enough, consider the possibility that the process should not continue execution until some
other process has performed some other task. For example, consider a program that is playing chess
against another program. Neither program is allowed to make a move until the other has �nished
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its turn. Similarly, imagine multiple processes that are cooperating to compute the structure of a
complex protein. Certain parts of the structure cannot be constructed until other parts have been
calculated, so the processes must coordinate their activities with respect to the work accomplished
by the others. Both of these situations require the use of process synchronization. The challenge is
to master these concepts.

1.11 A First System Program

We will begin by writing a stripped down version of the more program, which displays a �le one
"screen28" at a time. When more runs, it displays one screen's many lines of a �le and then displays
information and a prompt on the very bottom line of the screen:

�More�(0%)

It then waits for the user to press a key such as the space-bar to advance to the next screen, or
the Enter key to advance one line, or the "q" key to exit. The prompt is in reverse video, meaning
the foreground and background terminal colors are reversed. While there are other more advanced
options, we will limit our version to these alone. Run more and observe that when you press the
space-bar, it responds immediately; you do not have to press the Enter key after space-bar.

1.11.1 A First Attempt at the more Program

The more command can be run in several ways:

$ more file1 file2 ... fileN

$ ls -l | more

$ more < myfile

The �rst line causes more to display the �les named file1, file2, and so on until fileN, one after
the other. This proves that the more program has to look at the command line arguments and
use them as its input if they exist. In the second example, the output of the command "ls -l"
becomes the input of the more program, and the result is that more displays the directory listing
a screen at a time. This implies that more also has to work when its input comes from standard
input through a pipe. In the last line, the �le myfile is used as input to the more command, but
the more command is simply getting input from the standard input stream.

These three examples show that more has to be able to read from a �le speci�ed on the command
line as well as read from standard input, and in either case it has to output a screen at a time.
Suppose that we let P represent the number of lines in a terminal window (P stands for �page�, which
is what a screenful of data is called.) A crude outline of the more program, ignoring the issue of
where it gets its input, is:

28The standard screen has 24 lines, but this is user-adjustable and also dependent on both hardware and system
settings. Until we know how to �nd the actual number, we will assume a screen has 24 lines, and we write 23 new
lines at a time.
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1 Show P−1 l i n e s from standard input ( save the l a s t l i n e f o r the prompt )
2 Show the [ more ? ] message a f t e r the l i n e s .
3 Wait f o r an input o f Enter , Space , or ' q '
4 I f input i s Enter , advance one l i n e ; go to 2
5 I f input i s Space , go to 1
6 I f input i s ' q ' , e x i t .

We have to add to this the ability to extract the �lenames, if they exist, from the command line.
Listing 1.4 contains a C main program for a version of more using the above logic, that also checks
if there are one or more command line arguments, and if there are, uses the arguments as the names
of �les to open instead of standard input. If there are no command line arguments, it uses standard
input. We will assume for now that P=24.

Listing 1.4: A �rst version of the main program for more.

#inc lude <s td i o . h>
#de f i n e SCREEN_ROWS 23 /* assume 24 l i n e s per s c r e en */
#de f i n e LINELEN 512
#de f i n e SPACEBAR 1
#de f i n e RETURN 2
#de f i n e QUIT 3
#de f i n e INVALID 4

/** do_more_of ( )
* Given a FILE* argument fp , d i sp l ay up to a page o f the
* f i l e fp , and then d i sp l ay a prompt and wait f o r user input .
* I f use r inputs SPACEBAR, d i sp l ay next page .
* I f use r inputs RETURN, d i sp l ay one more l i n e .
* I f use r inputs QUIT, terminate program .
*/
void do_more_of (FILE * f i l e p ) ;

/** get_user_input ( )
* Disp lays more ' s s t a tu s and prompt and waits f o r user response ,
* Requires that user p r e s s re turn key to r e c e i v e input
* Returns one o f SPACEBAR, RETURN, or QUIT on va l i d keypre s s e s
* and INVALID f o r i n v a l i d keypre s s e s .
*/
i n t get_user_input ( ) ;

i n t main ( i n t argc , char *argv [ ] )
{

FILE * fp ;
i n t i = 0 ;
i f ( 1 == argc )

do_more_of ( s td in ) ; // no args , read from standard input
e l s e

whi l e ( ++i < argc ) {
fp = fopen ( argv [ i ] , " r " ) ;
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i f ( NULL != fp ) {
do_more_of ( fp ) ;
f c l o s e ( fp ) ;

}
e l s e

p r i n t f ( " Skipping %s\n" , argv [ i ] ) ;
}

re turn 0 ;
}

If you are not familiar with some of the C functions (also in C++) used in this program, then read
about them, either in the man pages, or in any introductory C/C++ textbook. In particular you
need to know about the following functions and types, all part of ANSI standard C29 and de�ned
in <stdio.h>:

FILE a �le stream

fopen opens a �le and returns a FILE*

fclose closes a FILE stream

fgets reads a string from a FILE stream

fputs writes a string to a FILE stream

One thing to observe in the code above is that it checks whether or not the return value of the
fopen() function is NULL. Every time a program makes a call to a library function or a system
function, it should check the possible error conditions. A program that fails to do this is a program
that will have frustrated users.

If the argument list in the main program signature is also new to you, here is a brief explanation.
In the signature

int main( int argc , char *argv[] )

argc is an integer parameter that speci�es the number of words on the command line. Since the
program name itself is one word, argc is always at least 1. If it is exactly 1, there are no command
line arguments. The second parameter, argv, is an array of char pointers. In C, a char pointer is
a pointer to a NULL-terminated string, i.e., a string whose last character is '\0'. The array argv is
an array whose strings are the words on the command line. argv[0] is the program name itself,
argv[1], the �rst command argument, and so on. The name of the parameter is arbitrary. It
will work whether argc is named rosebud, numargs, or ac. The shell is responsible for putting the
command arguments into the memory locations where the �rst and second parameters are expected
(which it does by making a system call and passing these arguments to the call).

Listing 1.4 does not include the de�nitions of the two functions used by main(): do_more_of()

and get_user_input(), which are contained in Listing 1.5. The �rst of these is easy to �gure out,
except that you might not have used fgets() and fputs() before. The function keeps track of
how many lines can be written to the screen before the screen is full in the variable num_of_lines,
which is initially 23. The second function is also pretty straightforward. The only part that might
require explanation is the printf() instruction.

29These are in all versions of C.
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1.11.2 A Bit About Terminals

Our program requires that we display the prompt in reverse video. The question is how we can
display text in reverse video on a terminal. Terminals are a complex subject, about which we devote
almost an entire chapter later on (Chapter 4). Now we o�er just a brief introduction to them.

A terminal normally performs two roles: it is an input device and an output device. As an output
device, there are special codes that can be delivered to it that it will treat, not as actual text to
be displayed, but as control sequences, i.e., sequences of bytes that tell it where to position the
cursor, how to display text, how to scroll, how to wrap or not, what colors to use, and so on. When
terminals were �rst developed, there were many di�erent types of them and many vendors. Each
di�erent type had a di�erent set of control sequences. In 1976, the set of sequences that can be
delivered to a terminal was standardized by the European Computer Manufacturers Association
(ECMA). The standard was updated several times and ultimately adopted by the International
Organization for Standardization (ISO) and the International Electrotechnical Commission (IEC)
and was named ISO/IEC 6429. It was also adopted by the American National Standards Institute
(ANSI ) and known as ANSI X3.64. The set of these sequences are now commonly called the ANSI
escape sequences even though ANSI withdrew the standard in 1997.

An ANSI escape sequence is a sequence of ASCII characters, the �rst two of which are normally the
ASCII Escape character, whose decimal code is 27, and the left-bracket character " [ ". The Escape
character can be written as '\033' using octal notation. The string �\033[� is known as the Control
Sequence Introducer, or CSI. The character or characters following the CSI specify an alphanumeric
code that controls a keyboard or display function. For example, the sequence "\033[7m" is the CSI
followed by the control code "7m". The code �7m� is a code that reverses the video display. The
escape sequence "\033[m" turns o� all preceding character codes.

If we want to display a portion of text, such as a prompt, in reverse video, we need to send the escape
sequences and text to the terminal device. Any output function that can write to the terminal will
su�ce. We use the printf() function because it is the easiest. To write the prompt � more? � in
reverse video, we send the �rst escape sequence, then the prompt, then the sequence to restore the
terminal:

printf("\033[7m more? \033[m");

Although the preceding discussion centered on terminals, it is not likely that you are using an
actual terminal when you are working in a shell. Most likely, you are using a terminal emulation
package, such as Gnome Terminal or Konsole on Linux, or if connecting remotely, a package such
as PuTTY. Almost all terminal emulators running on Unix systems interpret some subset of the
ANSI escape sequences. They use software to emulate the behavior of hardware terminals. One of
the �rst terminals to support ANSI escape sequences was the VT100. To this day, most terminal
emulators support the VT100. Some also support more advanced terminals such as the VT102 or
the VT220. In principle, if the terminal emulator supports the full set of ANSI escape sequences, a
program that uses these sequences should work regardless of which terminal is being emulated.

This preceding code to reverse the video is just one of many escape sequences that can control the
terminal. We will explore a few more of them a little later.

Listing 1.5: The supporting functions for Version 1 of more.

void do_more_of ( FILE * fp )
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{
char l i n e [LINELEN ] ; // bu f f e r to s t o r e l i n e o f input
i n t num_of_lines = SCREEN_ROWS; // # of l i n e s l e f t on sc r e en
i n t getmore = 1 ; // boolean to s i g n a l when to stop
i n t r ep ly ; // input from user

whi l e ( getmore && f g e t s ( l i n e , LINELEN, fp ) ){
// f g e t s ( ) r e tu rn s po in t e r to s t r i n g read or NULL
i f ( num_of_lines == 0 ) {

// reached sc r e en capac i ty so d i sp l ay prompt
r ep ly = get_user_input ( ) ;
switch ( r ep ly ) {

case SPACEBAR:
// a l low f u l l s c r e en
num_of_lines = SCREEN_ROWS;
break ;

case RETURN:
// a l low one more l i n e
num_of_lines++;
break ;

case QUIT:
getmore = 0 ;
break ;

d e f au l t : // in case o f i n v a l i d input
break ;

}
}
i f ( f pu t s ( l i n e , s tdout ) == EOF )

ex i t ( 1 ) ;
num_of_lines−−;

}
}

i n t get_user_input ( )
/*
* d i sp l ay message , wait f o r response , r e turn key entered as i n t
* Returns SPACEBAR, RETURN, QUIT, or INVALID
*/

{
i n t c ;

p r i n t f ("\033 [7m more? \033 [m" ) ; /* r e v e r s e on a VT100 */
whi l e ( ( c = getchar ( ) ) != EOF ) /* wait f o r re sponse */

switch ( c ) {
case 'q ' : /* ' q ' p re s s ed */

return QUIT;
case ' ' : /* ' ' p r e s s ed */

return SPACEBAR;
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case '\n ' : /* Enter key pre s sed */
return RETURN;

d e f au l t : /* i n v a l i d i f anything e l s e */
return INVALID ;

}
}

Compile and run this program. To compile and run, if all of the code is in the single �le named
more_v1.c, use the commands

$ gcc more_v1.c �o more_v1

$ more_v1 more_v1.c

My code is in three �les, more_v1.c, more_utils_v1.c, and more_utils_v1.h. I compile using

$ gcc -o more_v1 more_utils_v1.c more_v1.c

When you run it you will �nd that

� more_v1 does display the �rst 23 lines, and

� It does produce reverse video over the more? prompt.

� But pressing space-bar or 'q' has no e�ect until you press the Enter key.

� If you press Enter, the more? prompt is replicated and the old one scrolls up with the displayed
text. In other words, the more? prompt is not erased.

Next, run the command

$ ls /bin | more_v1

and observe what happens. It is not what you expected. Why not? The function get_user_input()

calls getchar() to get the user's response to determine what more_v1 should do next. If you recall
the discussion in the beginning of this chapter, getchar() reads from the standard input stream.
Since standard input is the output end of the pipeline from the ls �l command, getchar() gets
characters from the ls listing instead of from the user's typing at the keyboard. As soon as the
output of ls -l contains a space character or a q or a newline, the program will treat that as what
the user typed. This �rst version of more fails to work correctly because it uses getchar() to get the
user's input in the get_user_input() function. Somehow, we have to get the user's input from the
keyboard regardless of the source of the standard input stream. In other words, get_user_input()
has to read from the actual keyboard device. Well, not exactly. It has to read from the terminal
that the user was given when the user logged into the UNIX system.

A process can read directly from a terminal in UNIX by reading from the �le /dev/tty. /dev/tty
is an example of a device special �le.
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1.11.3 Device Special Files

The UNIX system deviated from the design of all other operating systems of the time by simplifying
the way in which programs handled I/O. Every I/O device (disk, printer, modem, etc.) is associated
with a device special �le, which is one kind of special �le. Special �les can be accessed using the
same system calls as regular �les, but the way the kernel handles the system call is di�erent when
the �le argument is a device special �le; the system call activates the device driver for that device
rather than causing the direct transfer of data. This frees the programmer from having to write
di�erent code for di�erent types of devices: he or she can write a program that performs output
without having to know whether the output will go to a disk �le, a display device, a printer, or any
other device. The program just connects to a �le variable, which may be associated at run time
with any of these �les or devices. This is the essence of device-independent I/O.

To illustrate, suppose a portion of C++ code writes to an output stream as follows:

ofstream outfile;

cout <�< "Where should output be sent? ";

cin >�> filename;

outfile.open(filename);

On a UNIX system, the user can enter the �lename "/dev/console" at the prompt, and the output
will go to the display device. If the user enters "myfile" the output will go to myfile. The kernel
will take care of the details of transferring the data from the program to the device or the �le.

There is another type of special �le called a named pipe, also called a FIFO special �le, or a FIFO
for short. Named pipes are used for inter-process communication on a single host; they will be
covered in Chapter 8.

The last type30 of special �le is a socket. Sockets were introduced into UNIX in 4.2BSD, and provide
inter-process communication across networks. Sockets are special �les in the sense that they are part
of the special �le system, but they are di�erent than other special �les because there are di�erent
system calls needed to manipulate them. Sockets will be covered in Chapter 9.

An entry for each device �le resides in the directory /dev, although system administrators often
create soft links to them in other parts of the �le system. The advantages of device �les are that

� Device I/O is treated uniformly, making it easier to write programs that are device indepen-
dent;

� Changes to the hardware result only in changes to the drivers and not to the programs that
access them;

� Programs can treat �les and devices the same, using the same naming conventions, so that a
change to a program to write to a device instead of a �le is trivial;

� Devices are accorded the same protections as �les.

Device �les are described in greater depth in Chapter 4 of these notes.

30This is not completely true, since certain versions of UNIX have other special �les, such as the door in Sun
Solaris. The ones listed here are part of most standards.
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1.11.3.1 Examples

The names of device �les vary from one version of UNIX to another. The following are examples of
device �les that with very high certainty will be found on any system you use.

� /dev/tty is the name of the terminal that the process is using. Any characters sent to it are
written to the screen.

� /dev/mem is a special �le that is a character interface to memory, allowing a process to write
individual characters to portions of memory to which it has access.

� /dev/null is a special �le that acts like a black hole. All data sent to it is discarded. On
Linux, /dev/zero is also used for this purpose, and will return null characters ('\0') when
read.

� The names of hard disk drive partitions vary from one system to another. Sometimes they
have names like /dev/rd0a or /dev/hda. The cd-rom drive is almost always mapped to
/dev/cdrom. You should browse the /dev directory on your machine to see which �les exist.

Now try an experiment. Login to the UNIX system and enter the command below and observe the
system response.

$ echo "hello" > /dev/tty

Now do the following. Type "tty" and use the output in the echo command as below.

$ tty

/dev/pts/4

$ echo "hello" > /dev/pts/4

hello

Now open a second window. If you are connected remotely, you can either login a second time, or
use the SSH client to open a second terminal window. If you are logged in directly, just create a
second terminal window. Type the tty command in the new window and record the name of the
device �le. Suppose it is /dev/pts/2. Now in the �rst window, type

$ echo "hello" > /dev/pts/2

and observe what happens. You have just discovered that you can write to a terminal by writing
to a device �le. You will only be able to write to terminals that you own, not those of other people.
Later we will see how you can write to other terminals, provided that the owner of that terminal
has granted this type of access.
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1.11.4 A Second Attempt at the more Program

We can use the device �le idea to modify the more program to overcome the problem of redirected
standard input. All that is necessary is to supply the get_user_input() function with a parameter
that speci�es the source of user input. This requires

1. That do_more_of() declare a FILE* variable and assign to it the result of a call to fopen(/dev/tty).

2. That do_more_of() call get_user_input() with the FILE* variable assigned by fopen().

3. That get_user_input() have a parameter fp of type FILE*.

4. That we replace the call in the while loop condition (c = getchar()) by (c=fgetc(fp)).

The getchar() function always reads from the standard input stream. It does not take an argument.
It may be, in fact, a macro. It is better to use fgetc(), which takes a FILE* argument. The modi�ed
functions are in Listing 1.6.

Listing 1.6: Corrected versions of do_more_of() and get_user_input().

void do_more_of ( FILE * fp )
{

char l i n e [LINELEN ] ; // bu f f e r to s t o r e l i n e o f input
i n t num_of_lines = SCREEN_ROWS; // number o f l i n e s l e f t on sc r e en
i n t getmore = 1 ; // boolean to s i g n a l when to stop
i n t r ep ly ; // input from user
FILE * fp_tty ;

fp_tty = fopen ( "/dev/ tty " , " r " ) ; // NEW: FILE stream argument
i f ( fp_tty == NULL ) // i f open f a i l s

e x i t ( 1 ) ; // e x i t

whi l e ( getmore && f g e t s ( l i n e , LINELEN, fp ) ){
// f g e t s ( ) r e tu rn s po in t e r to s t r i n g read
i f ( num_of_lines == 0 ) { // reached sc r e en capac i ty

r ep ly = get_user_input ( fp_tty ) ; // NEW
switch ( r ep ly ) {

case SPACEBAR:
// a l low f u l l s c r e en
num_of_lines = SCREEN_ROWS;
break ;

case RETURN:
// a l low one more l i n e
num_of_lines++;
break ;

case QUIT:
getmore = 0 ;
break ;

d e f au l t : // in case o f i n v a l i d input
break ;

}
}
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i f ( f pu t s ( l i n e , s tdout ) == EOF )
ex i t ( 1 ) ;

num_of_lines−−;
}

}

i n t get_user_input ( FILE * fp )
// Display message , wait f o r response , r e turn key entered as i n t
// Read user input from stream fp
// Returns SPACEBAR, RETURN, QUIT, or INVALID
{

in t c ;

p r i n t f ("\033 [7m more? \033 [m" ) ; // r e v e r s e on a VT100
// Now we use getc in s t ead o f getchar . I t i s the same except
// that i t r e qu i r e s a FILE* argument

whi l e ( ( c = getc ( fp ) ) != EOF ) // wait f o r re sponse
switch ( c ) {

case 'q ' : // 'q ' p re s s ed
re turn QUIT;

case ' ' : // ' ' p re s s ed
re turn SPACEBAR;

case '\n ' : // Enter key pre s sed
re turn RETURN;

d e f au l t : // i n v a l i d i f anything e l s e
re turn INVALID ;

}
}

1.11.5 What Is Still Wrong?

The second version does not display the percentage of the �le displayed. It still requires the user to
press the Enter key after the space-bar and the 'q', and the space characters and 'q' are echoed on
the screen, which the real more prevents. It still keeps displaying the old more? prompt instead of
erasing it. It has hard-coded the number of lines in the terminal, so it will not work if the terminal
has a di�erent number of lines. So how do we get our version of more to behave like the real thing?
There is something we have yet to understand, which is how the kernel communicates with the
terminal.

Displaying the percentage is mostly a matter of logic. The real more prints the percentage of bytes
of the �le displayed so far, not the number of lines displayed. If you know the size of the �le, you
can calculate the percentage of bytes printed. That problem is easy to solve once we know how to
obtain the size of a �le programmatically.

Remember that /dev/tty is not really a �le; it is an interface that allows the device driver for the
particular terminal to run. That device driver allows us to con�gure the terminal, to control how
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it behaves. We will see that we can use this interface to do things such as suppressing echoing of
characters and transmitting characters without waiting for the Enter key to be pressed.

The problem of the more? prompt not disappearing is harder to solve, and also requires understand-
ing how to control the terminal. One alternative is to learn more of the VT100 escape sequences
and use them to erase the more? prompt. Another alternative is to write copies of all lines to an
o�-screen bu�er and clear the screen and then replace the screen contents whenever the user presses
the Enter key. This is an easier solution than the �rst, but it is not how the real more command
behaves.

1.11.6 A Third Attempt at the more Program

Our �nal version, not a correct version, will address some of the above problems.

The �rst problem is how we can determine the actual size of the terminal window. There are two
solutions to this problem. If the user's environment contains the environment variables COLUMNS

and LINES, then the program can use their values to determine the number of columns and lines in
the terminal window, as suggested in the following code snippet that stores the LINES value in the
variable num_lines.

int num_lines;

char *endptr;

char *linestr = getenv("LINES");

if ( NULL != linestr ) {

num_lines = strtol(linestr, &endptr, 0);

if ( errno != 0) {

/* handle error and exit */

}

if ( endptr == linestr ) {

/* not a number so handle error and exit */

}

}

The code is incomplete � one should �ll in the error handling portions with the appropriate code.
We will discuss error handling later. But the preceding code will not work if the LINES variable has
not been put into the user's environment, and it will not work in the case that the user resizes the
window after the program starts.

The better solution is to use a more advanced function, which will be covered in more depth in
Chapter 4, named ioctl(). The function ioctl() is short for I/O Control. It is designed to do a
great many things with peripheral devices, not just terminals. Its prototype is

#include <sys/ioctl.h>

int ioctl(int d, int request, ...);

Notice the �...� in the parameter list. This is C's notation for a variable number of parameters. The
�rst parameter is a �le descriptor. File descriptors are covered in Chapter 2. The second parameter,
of integer type, is a command. The following parameters are arguments to the command, and they
depend on the given command. The ioctl() call to get the number of rows and columns of the
current terminal window has three arguments:
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ioctl(tty_file_descriptor, TIOCGWINSZ, &window_structure))

where tty_file_descriptor is a �le descriptor for our terminal, TIOCGWINSZ is a command that
means �get the terminal window size structure� and window_size_structure is a variable of type
struct winsize. The structure winsize is de�ned in a header �le that is automatically included
when you include the <sys/ioctl.h> header �le in the code. The code that would use this ioctl
is

struct winsize window_arg;

int num_rows, num_cols;

fp_tty = fopen( "/dev/tty", "r" );

if ( fp_tty == NULL )

exit(1);

if (-1 == ioctl(fileno(fp_tty), TIOCGWINSZ, &window_arg))

exit(1);

num_rows = window_arg.ws_row;

num_cols = window_arg.ws_col;

The function fileno() used inside the ioctl is covered in Chapter 2; it converts a FILE* to a �le de-
scriptor. File descriptors are also explained in Chapter 2. We will use the following get_tty_size()
function in our last version of the do_more_of() and get_user_input() functions:

void get_tty_size(FILE *tty_fp, int* numrows, int* numcols)

{

struct winsize window_arg;

if (-1 == ioctl(fileno(tty_fp), TIOCGWINSZ, &window_arg))

exit(1);

*numrows = window_arg.ws_row;

*numcols = window_arg.ws_col;

}

Although the ioctl() function is standard and should be available on any UNIX system, the par-
ticular commands that it implements may not be. In particular, it is possible that the TIOCGWINSZ
command is not available. When you write code that depends on features that are not guaranteed
to be present, it is best to conditionally compile it by enclosing it within preprocessor directives to
conditionally compile. The preceding function is better written using

void get_tty_size(FILE *tty_fp, int* numrows, int* numcols)

{

#ifdef TIOCGWINSZ

struct winsize window_arg;

if (-1 == ioctl(fileno(tty_fp), TIOCGWINSZ, &window_arg))

exit(1);

*numrows = window_arg.ws_row;

*numcols = window_arg.ws_col;
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#else

/* some fallback code here */

#endif

}

We will omit the fallback code for now, since it requires knowing more about terminals.

The second problem is how to remove the old more? prompt so that it does not scroll up the screen.
In short we need a way to clear portions of the screen. We also need a way to move the cursor to
various places on the screen. There are various ANSI escape sequences that do these things. The
table below lists a small fraction of the set of ANSI escape sequences. The ones in the table are the
easiest to learn and use. In the table, the symbol �ESC� is short for '\033'. In almost all cases, the
default value of n in the table is 1.

Key Sequence Meaning
ESC[M Move the cursor up in scrolling region.
ESC[n A Move the cursor up n lines.
ESC[n B Move the cursor down n lines
ESC[n C Move the cursor right n columns
ESC[n D Move the cursor left n columns
ESC[n G Move the cursor to column n
ESCE Move cursor to start of next line
ESC[r ;c H Move the cursor to row r, column c.
ESC[0K Erase from the cursor to the end of the line
ESC[1K Erase from the beginning of the line to the cursor.
ESC[2K Erase the line
ESC[0J Erase from the cursor to the end of the screen.
ESC[1J Erase from the bottom of the screen to the cursor
ESC[2J Erase the screen
ESC[0m Normal characters
ESC[1m Bold characters
ESC[4m Underline characters.
ESC[5m Blinking characters
ESC[7m Reverse video characters
ESC[g Clear tab stop at current column.
ESC[3g Clear all tab stops.

Examples

Following are a few examples of sequences of commands. The last two are compound control
sequences, and they are of sign�cance because we can use them in our program.
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Sequence Meaning
\033[2A Move the cursor up two lines.
\033[2J Clear the entire screen.
\033[24;80H Move the cursor to row 24, column 80.
\033[1A\033[2K\033[1G Move up one line, erase that line, and move the

cursor to the leftmost column.
\033[1A\033[2K\033[1B\033[7D Move the cursor up one line; erase that line; move

the cursor back down one line, and move it to the
left 7 positions.

We can combine the formatting features of the printf() function with our get_tty_size() function
and these escape sequences to park the cursor in the lower left hand corner of the screen, regardless
of how large the screen is, and display the prompt in reverse video:

int tty_rows;

int tty_cols;

get_tty_size(fp, &tty_rows, &tty_cols);

printf("\033[%d;1H", tty_rows);

printf("\033[7m more? \033[m");

The �rst printf() moves the cursor to the last row of the screen in the �rst column. The second
displays the prompt in reverse video and then reverts the terminal back to normal character display.
The third version of more, in Listing 1.7 below, includes these two improvements. The main program
does not change, so it is not listed.

Listing 1.7: A third version of the more program.

#inc lude "more_uti ls . h"
#inc lude <sys / i o c t l . h>

#de f i n e LINELEN 512

void get_tty_size (FILE * tty_fp , i n t * numrows , i n t * numcols )
{

s t r u c t w in s i z e window_arg ;

i f (−1 == i o c t l ( f i l e n o ( tty_fp ) , TIOCGWINSZ, &window_arg ) )
e x i t ( 1 ) ;

*numrows = window_arg . ws_row ;
*numcols = window_arg . ws_col ;

}

/** get_user_input (FILE * fp )
* Disp lays more ' s s t a tu s and prompt and wait s f o r user response ,
* Requires that user p r e s s re turn key to r e c e i v e input
* Returns one o f SPACEBAR, RETURN, or QUIT on va l i d keypre s s e s
* and INVALID f o r i n v a l i d keypre s s e s .
* Reads from fp in s t ead o f from standard input .
*/
i n t get_user_input ( FILE * fp )
{

i n t c ;
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i n t tty_rows ;
i n t t ty_co l s ;

/*
* Get the s i z e o f the te rmina l window dynamical ly , in case i t changed .
* Then use i t to put the cur so r in the bottom row , l e f tmos t column
* and pr in t the prompt in " standout mode" i . e . r e v e r s e v ideo .
*/
get_tty_size ( fp , &tty_rows , &tty_co l s ) ;
p r i n t f ("\033[%d ; 1H" , tty_rows ) ;
p r i n t f ("\033 [7m more? \033 [m" ) ;

/* Use f g e t c ( ) i n s t ead o f getc ( ) . I t i s the same except
* that i t i s always a func t i on c a l l , not a macro , and i t i s in gene ra l
* s a f e r to use .
*/
whi l e ( ( c = f g e t c ( fp ) ) != EOF ) {

/* There i s no need to use a loop here , s i n c e a l l p o s s i b l e paths
* l ead to a re turn statement . I t remains s i n c e the re i s no downside
* to us ing i t .
*/
switch ( c ) {

case 'q ' : /* ' q ' p re s sed */
return QUIT;

case ' ' : /* ' ' p re s s ed */
return SPACEBAR;

case '\n ' : /* Enter key pre s sed */
return RETURN;

de f au l t : /* i n v a l i d i f anything e l s e */
return INVALID ;

}
}
return INVALID ;

}

/** do_more_of ( FILE * fp )
* Given a FILE* argument fp , d i sp l ay up to a page o f the
* f i l e fp , and then d i sp l ay a prompt and wait f o r user input .
* I f user inputs SPACEBAR, d i sp l ay next page .
* I f user inputs RETURN, d i sp l ay one more l i n e .
* I f user inputs QUIT, terminate program .
*/
void do_more_of ( FILE * fp )
{

char l i n e [LINELEN ] ; // bu f f e r to s t o r e l i n e o f input
i n t num_of_lines ; // number o f l i n e s l e f t on sc r e en
i n t r ep ly ; // input from user
i n t tty_rows ; // number o f rows in te rmina l
i n t t ty_co l s ; // number o f columns in te rmina l
FILE * fp_tty ; // dev i ce f i l e po in t e r

fp_tty = fopen ( "/dev/ tty " , " r " ) ; // NEW: FILE stream argument
i f ( fp_tty == NULL ) // i f open f a i l s
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e x i t ( 1 ) ; // e x i t

/* Get the s i z e o f the te rmina l window */
get_tty_size ( fp_tty , &tty_rows , &tty_co l s ) ;
num_of_lines = tty_rows ;

whi l e ( f g e t s ( l i n e , LINELEN, fp ) ){
i f ( num_of_lines == 0 ) {

// reached sc r e en capac i ty so d i sp l ay prompt
r ep ly = get_user_input ( fp_tty ) ; // note c a l l here
switch ( r ep ly ) {

case SPACEBAR:
// a l low f u l l s c r e en
num_of_lines = tty_rows ;
p r i n t f ("\033 [1A\033[2K\033[1G" ) ;
break ;

case RETURN:
// a l low one more l i n e
p r i n t f ("\033 [1A\033[2K\033[1G" ) ;
num_of_lines++;
break ;

case QUIT:
p r i n t f ("\033 [1A\033[2K\033[1B\033[7D" ) ;
r e turn ;

d e f au l t : // in case o f i n v a l i d input
break ;

}
}
i f ( fput s ( l i n e , s tdout ) == EOF )

ex i t ( 1 ) ;
num_of_lines−−;

}
}

This version still has a few de�ciencies. One is that it checks whether the terminal has been resized
in each iteration of the loop, whenever it retrieves the user input. Although this works, it wastes
cycles. Later we will learn how to do this asynchronously, �nding the size of the terminal only when
it has actually been resized.

Another de�ciency is that it still requires the user to press the Enter key. Remedying this requires
further understanding of terminals, again in Chapter 4. One feature we can easily integrate into
the program is calculating the percentage of the �le displayed so far. This is left as an exercise.

1.12 Where We Go from Here

The real purpose of trying to write the more program is to show that, using only the usual high-
level I/O libraries, we cannot write a program that does the kind of things that more does, such as
ignoring keyboard input and suppressing display of typed characters. The objective of these notes
is to give you the tools for solving this kind of problem, and to expose you to the major components
of the kernel's API, while also explaining how the kernel looks "under the hood." We are going to
look at each important component of the kernel. You will learn how to rummage around the �le
system and man pages for the resources that you need.
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Appendix A Brief History of UNIX

In 1957, Bill Norris started Control Data Corporation (CDC). In 1959 Ken Olsen started DEC
with $70,000 in venture capital money. The �rst PDP-1 (manufactured by DEC) was shipped in
1960. In 1963, Project MAC (Multiple Access Computers) was organized at MIT to do research
on interactive computing and time-sharing systems. In 1965, AT&T, GE, and Project MAC at
IBM joined together to develop the time-sharing system MULTICS (Multiplexed Information and
Computing Service).

In 1966, Ken Thompson �nished studies at University of California at Berkeley (UCB) and joined the
technical sta� at AT&T Bell Telephone Laboratories to work on MULTICS. Two years later, Dennis
Ritchie completed work on his doctorate at Harvard and joined Bell Labs to work on MULTICS
project.

Thompson developed the interpretive language B based upon BCPL. Ritchie improved on "B" and
called it "C".

In 1969 while working for AT&T Bell Labs, Ken Thompson and Dennis Ritchie wrote the �rst
version of UNICS for a PDP-7, manufactured by DEC. It ran on a machine with 4K of 18-bit words.
UNICS is a pun on MULTICS and stood for Uniplexed Information and Computing Services. Three
years later, it was rewritten in C so that they could port it to other architectures. By 1973, the �rst
UNIX support group was formed within Bell Labs, and some fundamental UNIX design philosophies
emerged. Ritchie and Thompson gave a presentation about the new operating system at the ACM
Symposium on Operating Systems at IBM that year. This was the catalyst that sparked the spread
of the UNIX system. The University of California at Berkeley (UC Berkeley) soon acquired Version
4 from Bell Labs and embarked on a mission to add modern features to UNIX.

Over the next four years, a number of events shaped the future of UNIX. AT&T started licensing it
to universities. Boggs and Metcalfe invented the Ethernet at Xerox in Palo Alto. Bill Joy joined UC
Berkeley and developed BSD Version 1. UNIX was ported to a non-DEC machine. (DEC had been
unwilling to support UNIX.) P.J. Plauger wrote the �rst commercial C compiler, and Doug and
Larry Michel formed a company called Santa Cruz Operations (SCO) to start selling a commercial
version of UNIX for the PC.

In 1974, "The UNIX Time-Sharing System" was published in CACM by Ken Thompson and Dennis
Ritchie. That same year, the University of California at Berkeley (UCB) got Version 4 of UNIX,
and Keith Standiford converted UNIX to a PDP 11/45. The Elements of Programming Style by
Kernighan and Plauger was published, and AT&T o�cially began licensing UNIX to universities.

In 1976, Software Tools by Kernighan and Plauger was published, and Boggs and Metcalfe invented
the Ethernet at Xerox in Palo Alto.

By 1978, UNIX had essentially all of the major features that are found in it today. One year later,
Microsoft licensed UNIX from AT&T and announced XENIX (even before producing MS-DOS).

UNIX spread rapidly because:

� It was easily ported from one architecture to another because it was written in a high level
language (C), unlike other operating systems.
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� It was distributed to universities and research laboratories for free by AT&T, and early com-
mercial versions were sold at very low cost to academic institutions.

� The source code was freely available, making it easy for people to add new features and
programs to their systems.

� It had several features (e.g., pipes) that had not been part of other operating systems.

In 1979, Bell Labs released UNIX� Version 7, attempting to stake proprietary rights to UNIX, and
Microsoft licensed UNIX from AT&T and announced XENIX (even before producing MS-DOS). In
the early 1980s, a number of developments occurred that shaped the future of the UNIX evolutionary
tree:

� AT&T and Berkeley (the Computer Systems Research Group, or CSRG) each started to
develop their own independent versions of UNIX.

� Bill Joy left Berkeley to co-found a new company, SUN Microsystems, to produce UNIX
workstations. Sun got its name from the Stanford University Network (SUN) board. The
workstation was based on the Motorola 68000 chip running SunOS based on 4.2BSD. It in-
cluded an optional local area network based on Ethernet. The commercial UNIX industry
was in full gear.

� Microsoft shifted its focus on the development of MS-DOS, shelving marketing of XENIX.

� The X/Open standards group was formed.

Over the next �fteen years, many di�erent versions of UNIX evolved. Although the di�erences
between these versions are not major, care must be taken when trying to treat "UNIX" as a single
operating system. Through the 1980s and early 1990s, the two major UNIX distributions were the
Berkeley series known by names such as 4.2BSD and 4.3BSD and the AT&T series known by names
such as System III and System V. SUN's UNIX was called SunOS, and later Solaris, and was a
hybrid of the two strains.

Since its creation in 1969, UNIX has grown from a single, small operating system to a collection of
distinct operating systems of varying complexity, produced by vendors all around the world. The
essential features of most UNIX systems have remained the same, partly because of standardization
e�orts that began in the late 1980's and continued through the 1990's. Modern UNIX is a slippery
concept. Several standards have been written, and they have a large common core. What is
generally called UNIX is the common core of these standards, which include POSIX, and UNIX 98
from the Open Group. UNIX 98 is also called the Single UNIX Speci�cation and it alone is UNIX
as far as property rights are concerned, since the Open Group owns the UNIX trademark now. The
Open Group is an international consortium of more than 200 members from government, academia,
worldwide �nance, health care, commerce and telecommunications. Of course, there is also Linux,
which has overtaken BSD and System V on the desktop.
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Appendix B UNIX at the User Level

This section is designed for people with little, if any, experience with UNIX. It covers:

� Logging in and out

� Shells

� The environment

B.1 Notation

In the description of a command, square brackets [ ] enclose optional arguments to the command,
and angle brackets < > enclose placeholders. The brackets are not part of the command. A vertical
bar "|" is a logical-or. An ellipsis ... means more than one copy of the preceding token. For
example

ls [<option>] ... [<directory_name>] ...

indicates that both the option speci�ers and the argument to the ls command are optional, but
that any options should precede any directory names, and that both option speci�ers and directory
names can occur multiple times, as in

ls -l -t mydir yourdir

Commands will be preceded by a dollar sign to indicate that they are typed after the shell prompt.
When the input and output of a command are shown, the user's typing will be in bold, and output
will be in regular text.

$ ls -l -t mydir yourdir

B.2 Logging In

A user uses a UNIX system by logging in, running programs, and logging out. There are two
di�erent ways to login to a UNIX system:

� When sitting at the console of the computer, i.e., the computer keyboard and monitor are
physically in front of you, and no one is presently logged in to the machine, or

� Remotely, by using a remote login utility like SSH.
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At the Console

If you login to the computer at its own console, the appearance of the screen will depend upon which
version of UNIX you use. In all cases, there will be an option to enter a user or login name followed
by a password. For RedHat 9 with the Gnome 2 desktop environment, the screen will appear as
in Figure B.1. After logging in, you will see a desktop with a graphical user interface, and a menu
somewhere on the screen with an option somewhere to open a terminal window. It is within that
terminal window that the rest of the notes pertain.

Figure B.1: RedHat 9 login screen.

Remotely via SSH

SSH is a protocol that provides encrypted communication to prevent passwords and other secure
information from being captured in transit over insecure networks. SSH stands for Secure SHell.
SSH is a client/server application. The server runs on the remote host, the one into which you
want to login, and the client is on your local host. Once you have established a connection to the
UNIX system from your local machine using SSH, everything that you type is encrypted by the
SSH client on your local machine and decrypted by the remote host. The encryption algorithms are
very strong and the keys are very secure.

These notes do not describe how to use any particular SSH client. All such clients will need from
you the IP address of the remote host, the login or user name, and your password. Assuming that
you have provided these, the SSH client will log you in and display a terminal window on your local
machine.
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You will see some messages, followed by the prompt displayed by your login shell. A login shell is
the shell that runs when you log-in. It depends on the particular version of UNIX you are using
and how the initial messages were con�gured by the system administrator. On the Hunter College
Computer Science Department's network gateway machine, named eniac, which was running Solaris
9, a version of UNIX from SunSoft, it looked like:

Last login: Mon Aug 30 2004 19:51:19 -0500 from pool-68-161-100-

Sun Microsystems Inc. SunOS 5.9 Generic October 1998

This workstation is running SunOS 5.x

eniac{sweiss} [42] $

When eniac was later converted to a Linux host, the login messages became:

Last login: Fri Jan 20 17:21:53 2006

from pool-68-161-21-160.ny325.east.verizon.net

eniac{sweiss} [339] $

In both cases, the last line begins with a prompt string, which is a sequence of characters followed
by a waiting cursor. In each of these the prompt string looks like

eniac{sweiss} [n] $

where n is some number. The prompt is sometimes "$" alone. It depends on how it has been
con�gured, which partly depends upon the shell. Some shells let you do more con�guring than
others. This prompt displays the name of the host computer, the user-name on that host, and the
history number (42 or 339) of the current command. The history number is the ordinal number
that indicates how many commands you have entered so far. It gets reset to 1 when it reaches the
maximum number of saved commands. One can retrieve old commands using their numbers.

Your login shell is the special shell that is started up each time you login. On UNIX systems with a
windowing environment, each window will have a separate instance of a running shell. Even UNIX
systems with a GUI follow the shell paradigm � instead of typing commands, you use a pointing
device and click on icons and controls, but the e�ect is still to construct calls to system programs,
to a shell, or to shell scripts.

When you have logged-in, you will be "in" your home directory. You might feel comfortable with
the idea of "being in a directory" but it makes no sense to say this. You are in your seat. You are
not in the computer. Nonetheless, this language has taken hold. You probably know that "being
in the home directory" means that when you view the contents of the current directory, you will
see the �les in your home directory. But this is an inadequate explanation. I will have more to say
about the concept of "being in a directory" shortly. What you do need to understand now is that
the home directory is the directory that you "are in" each time you log-in. It is the starting place
for your current session. The HOME environment variable stores the "name" of your home directory.
This will also be clari�ed shortly.
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B.3 Logging Out

When you are �nished using the system, you log out. There are usually a few ways to log out.
POSIX speci�es that a shell provide a built-in exit command, which can be used to exit any shell.
There is also the logout command, which may or may not be built-into the shell:

eniac{sweiss} [342]$ logout

The di�erence is that logout can only be used to log out, not to terminate a shell that is not a login
shell, such as a sub-shell of some other shell, whereas exit terminates all shells and logs you out if
the shell is a login shell.

B.4 Online Help: The man Pages

Before going any further, you should understand how to get help online. Traditional UNIX provides
only one source of online help � the manual pages. The single most important command to remember
is the man command. The word "man" is short for "manual"; if you type man following by the
name of a command, UNIX will display the manual page, called the man page for short, for that
command. For example, to learn more about a command named echo, type

$ man echo

and you will see several screens of output, beginning with:

echo(1) User Commands echo(1)

NAME

echo - display a line of text

SYNOPSIS

echo [SHORT-OPTION]... [STRING]...

echo LONG-OPTION

DESCRIPTION

Echo the STRING(s) to standard output.

-n do not output the trailing newline

-e enable interpretation of backslash escapes

-E disable interpretation of backslash escapes (default)

(remaining lines omitted )

:

Every man page is in the same format, which may vary from one UNIX system to another. The �rst
line shows the name of the section of the manual in which the page was found (User Commands)
and the name of the man page followed by the section number (echo, section 1 ). Sometimes the
name of the man page will be di�erent from the name of the command. The sections of the man
page, which may not all be present, are:
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NAME name of the command
SYNOPSIS syntax for using the command
DESCRIPTION brief textual summary of what the command does
OPTIONS precise descriptions of command-line options
OPERANDS precise descriptions of command-line arguments
USAGE a more thorough description of the use of the command
ENVIRONMENT VARIABLES list of environment variables that a�ect the command

execution
EXIT STATUS list of exit values returned by the command
FILES list of �les that a�ect the command execution
ATTRIBUTES architectures on which it runs, availability, code

independence, etc.
SEE ALSO list of commands related to this command
NOTES general comments that do not �t elsewhere
BUGS known bugs

In man pages, the square bracket notation [ ] as in [SHORT-OPTION] above de�nes an optional
command-line option or argument. The �:� is followed by your cursor because many UNIX systems
now pipe the output of the man command through the less command for viewing, and the �:�
is the less prompt to the user to type something on the keyboard. More accurately, the less

command is the viewer for the man command itself1.

For learning how to use a command, the man page by itself is usually su�cient. For learning how a
command interacts with the operating system or how it might be implemented, one must do more
research. In the next chapter, I will explain how to use the man pages in more detail for the latter
purpose. In the meanwhile, you should look at the man pages of the various commands mentioned
in this chapter as you read on.

It should also be mentioned that modern UNIX systems also provide other sources of help, such as
the help and info commands. If the system you are using has these commands, typing help or info
followed by a command or a topic will display information about that topic.

B.5 Shells

Your view and appreciation of UNIX is pretty much determined by the interface that the shell creates
for you, as suggested in Figure B.2. The shell hides the inner workings of the kernel, presenting a
set of high level functions that can make the system easy to use. Although you may have used a
UNIX system with a graphical user interface, you must be aware that this GUI is an application
separate and distinct from UNIX. The GUI provides an alternative to a shell for interacting with
UNIX, but experienced users usually rely on using a shell for many tasks because it is much faster
to type than it is to move a mouse around pointing and clicking.

There are many di�erent shells, including the Bourne shell (sh), the C shell (csh), the Korn shell
(ksh), the Bourne-again shell (bash), the Z shell (zsh), and the TC shell (tcsh). Although a few
shells may be bundled with the operating system, they are not actually a part of it.

Unlike most operating systems, UNIX allows the user to replace the original login shell with one
of his or her own choosing. The particular shell that will be invoked for a given user upon login is

1You can change which viewer the man command uses by changing the value of the PAGER environment variable.
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Figure B.2: The shell: A user's view of UNIX.

speci�ed in the user's entry in a �le called the password �le. The system administrator can change
this entry, but very often the chsh command available on some systems can also be used by the
user to change shells. In some versions of UNIX, the user can also use the command passwd -s to
change the login shell.

B.5.0.1 Shell Features

In all shells, a simple command is of the form

$ commandname command-options arg1 arg2 ... argn

The shell waits for a newline character to be typed before it attempts to interpret (parse) a command.
A newline signals the end of the command. Once it receives the entered line, it checks to see if
commandname is a built-in shell command (A built-in command is one that is hard-coded into the
shell itself.) If it is, it executes the command. If not, it searches for a �le whose name, either
relative or absolute, is commandname. (How that search takes place is explained in a later chapter.)
If it �nds one, this �le is loaded into memory and the shell creates a child process to execute the
command, using the arguments from the command line. When the command is �nished, the child
process terminates and the shell resumes its execution.

In addition to command interpretation, all shells provide

� redirection of the input and output of commands

� pipes � a method of channeling the output of one command to the input of another

� scripting � a method of writing shell programs that can be executed as �les

� �le name substitution using metacharacters

� control �ow constructs such as loops and conditional execution

Shells written after the Bourne shell also provide

� history mechanism � a method of saving and reissuing commands in whole or in part
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� backgrounding and job control � a method of controlling the sequencing and timing of com-
mands

� aliases for frequently used commands

The tcsh shell added a number of features to the C shell, such as interactive editing of the com-
mand line and interactive �le and command name completion, but the Korn shell introduced many
signi�cant additions, including:

� general interactive command-line editing

� coprocesses

� more general redirection of input and output of commands

� array variables within the shell

� autoloading of function de�nitions from �les

� restricted shells

� menu selection

bash borrowed many of the features of its predecessors and has almost all of the above capabilities.

B.5.0.2 Standard I/O and Redirection

UNIX uses a clever method of handling I/O. Every program is automatically given three open �les
when it begins execution, called standard input, standard output, and standard error. (POSIX does
not require standard error, but it is present in all systems that I know.) Standard input is by default
the keyboard and standard output and error are to the terminal window.

Commands usually read from standard input and write to standard output. The shell, however,
can "trick" a command into reading from a di�erent source or writing to a di�erent source. This is
called I/O redirection. For example, the command

$ ls mydir

ordinarily will list the �les in the given directory on the terminal. The command

$ ls mydir > myfiles

creates a �le called myfiles and redirects the output of the ls command to myfiles provided
myfiles did not already exist, in which case it will display a message such as

bash: myfiles: cannot overwrite existing file
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The notation "> outfile" means "put the output of the command in a �le named outfile instead
of on the terminal." The output redirection operator, ">", replaces the standard output of a program
by the the �le whose name follows the operator.

Analogously, the notation "< infile" means read the input from the �le infile instead of from
the keyboard. Technically, the "<", known as the input redirection operator, replaces the standard
input of a program by the �le whose name follows the operator.

A command can have both input and output redirected:

$ command < infile > outfile

which causes the command to read its input from infile and send its output to outfile. Th order
of the command, and the input and output redirection does not matter. One can also write any of
the following semantically equivalent lines:

$ command > outfile < infile

$ > outfile command < infile

$ < infile > outfile command

The concept of redirection is carried one step further to allow the output of one command to be the
input of another. This is known as a pipe or pipeline, and the operator is a vertical bar "|" :

$ ls mydir | sort | lpr

means list the contents of the given directory, and instead of writing them on the terminal or in a
�le, pass them as input to the sort command, which then sorts them, and sends the sorted list to
the lpr command, which is a command to send �les to the default printer attached to the system.
It could have been done using temporary �les as follows:

$ ls mydir > temp1

$ sort < temp1 > temp2

$ lpr < temp2

$ rm temp1 temp2

but in fact this is not semantically equivalent because when a pipeline is established, the commands
run simultaneously. In the above example, the ls, sort, and lpr commands will be started up
together. The shell uses a kernel mechanism called pipes to implement this communication. There
are other kinds of I/O redirection, including appending to a �le and redirecting the system error
messages; for details consult the shell's man page.

There are two other I/O redirection operators: <�< and >�>. If you are curious and unfamiliar with
these, read about them in the bash man page.
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B.5.0.3 Command Separators and Multitasking

Commands can be combined on single lines by using command separators. The semicolon ";" acts
like a newline character to the shell � it terminates the preceding command, as in:

$ ls mydir ; date

which lists the contents of the given directory and then displays the current time and date. The
date command displays the date and time in various formats, but by default its output is in the
form

Mon Aug 15 22:53:54 EDT 2011

The semicolon ";" is used to sequentially execute the commands. In contrast,

$ ls mydir > outfile &

causes the ls command to work "in the background." The ampersand "&" at the end of the line
tells the shell not to wait for the command to terminate but to instead resume immediately; it is
a backgrounding operator. The ls command runs in the background, sending its output to the �le
outfile while the shell does other things. This is a form of multitasking. The "&" can be used to
run separate commands as well:

$ ls mydir > outfile1 & date > outfile2 &

tells the shell to run the ls and date commands concurrently and in the background, putting their
respective outputs in �les outfile1 and outfile2 respectively. Note that the ">" binds more
closely, i.e., has higher priority, than "&". Lastly, parentheses can be used for grouping:

$ (ls mydir; date) > outfile &

means "execute ls mydir, then date, and direct their combined output to outfile," all in the
background.

B.5.0.4 The Shell as a Command

Shells can be run as commands. You can type the name of a shell, e.g., bash, sh, csh, etc., at the
command prompt within any other shell, to start another shell:

$ sh

in this case the Bourne shell. If you do this, you will have two instances of the bash shell running,
but the �rst will be dormant, waiting for the second to exit. When one shell is created as a result
of a command given in another shell, the created shell is called the sub-shell of the original shell,
which is called the parent shell.

If you need to know what shell you are currently running (because you forgot, for example), there
are two simple commands that can tell you:
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$ echo $0

and

$ ps -p $$

The �rst uses the echo command. The echo command may sound at �rst rather useless, but it is
very convenient. All it does is evaluate its arguments and display them. So writing

$ echo hello out there

hello out there

But the key is that echo evaluates its arguments. If you give it the name of a variable preceded by
a dollar sign "$", it displays the value of the variable, not the name. As an example, you can use
it to see the value of a particular environment variable, such as

$ echo $SHELL

/bin/bash

This does not print your current shell however. It prints the name of your login shell, which may
not be the current shell. The value of $0 is the name of the currently running program, which is
the shell you are using, so echo $0 is one way to see its name. The value of $$ is the process-id
of the currently running process, and ps -p is a command that will display information about the
process whose process-id is given to it.

B.5.0.5 Scripts

Suppose the �le named myscript contains the following lines:

ls mydir

date | lpr

Then the command

$ bash < myscript

causes the commands in the �le to be executed as if they were typed directly to the bash shell, and
when they have terminated, the bash shell exits. The �le myscript is an example of a shell script.
A script is nothing more than a program written in an interpreted language. It is not compiled,
but executed line by line. Shell scripts can have command line arguments just like ordinary shell
commands, making them very general. For example, the above script can be rewritten as

#!/bin/bash

ls $1

date | lpr
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and executed by typing a command such as

$ myscript ~/bin

whereupon the "$1" will be replaced by ~/bin before the ls command is executed. The very �rst
line indicates that the bash shell must be run to execute the remaining lines of the �le. For more
details of speci�c shell languages, consult the shell's man page (or read any of a multitude of on-line
tutorials.)

Each shell has properties that determine how it behaves, which are stored in the shell's environment.
As noted in Section 1.3.5, the operating system passes a pointer to a copy of the user's environment
when it starts up a new process. Since a running shell is a process, each time a new shell is started
from within another, it is given a copy of the previous shell's environment.

More generally, when any process is created from within a shell, that process inherits a copy of the
values of the environment variables of the shell. When you run a program from the command line,
the program inherits the environment of the shell. This is how programs "know" what their current
working directories are, for example, or which users are their owners. The environment is a key
element in making things work.

You are free to customize the environment of a shell by de�ning new variables, or rede�ning the
values of existing variables. The syntax is shell-dependent. In the Bourne shell and bash, variables
that you de�ne, called locals, are not automatically placed into the environment; to place then in
the environment, you have to export them. For example,

$ export MYVAR=12

will put MYVAR into the environment with the value 12, so that it can be inherited by future com-
mands and processes, or equivalently:

$ MYVAR=12; export MYVAR

The convention is to use uppercase names for environment variables and lowercase names for locals.

B.5.0.6 Some Historical Remarks About Shells

The C shell was written by Bill Joy at UC Berkeley and made its appearance in Sixth Edition UNIX
(1975), the �rst widely distributed release from UC Berkeley. It was an enhancement of the original
Thompson shell with C-like syntax. It is part of all BSD distributions.

The Bourne shell, written by Stephen Bourne, was introduced into UNIX in System 7 (1979), which
was the last release of UNIX by AT&T Bell Labs prior to the commercialization of UNIX by AT&T.
Its syntax derives in part from the programming language Algol 68 and is a part of all UNIX releases.

The Korn shell was developed by David Korn at Bell Labs and introduced into the SVR4 commercial
release of UNIX by AT&T. Its syntax is based on the Bourne shell but it had many more features.

The TENEX C shell, or TC shell, extended the C shell with command line editing and completion,
as well as other features which were found in the TENEX operating system. It was written by Ken
Greer and others in 1983.

The Bourne-again shell (Bash) is an extension of the Bourne shell with many of the sophisticated
features of the Korn shell and the TC shell. It is the default user shell in Linux and has become
popular because of this.
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2.1 Introduction

This chapter introduces the two primary methods of I/O possible in a UNIX: bu�ered and unbu�ered.
By trying to write the who and cp commands, we will learn explore how to create, open, read, write,
and close arbitrary �les. "Arbitrary" in this context means that they are not necessarily text �les.
We will write several di�erent versions of the who command, simply to illustrate di�erent approaches
to the problem of reading from a �le. They will di�er in their performance characteristics and their
portability. The chapter uses this exercise to introduce the UNIX concept of time, and the �rst
of several important databases provided by the kernel, as well as the kernel's interface to those
databases. We also write two di�erent versions of a simpli�ed cp command, one using read() and
write(), and the other using memory-mapped I/O.

2.2 Commands Are (Usually) Programs

In UNIX, most commands are programs, almost always written in C. Some commands are not pro-
grams; they are built into the shell and therefore are called shell builtins. Exactly which commands
are builtins varies from one shell to another1, but there are some that are common to almost all
shells, such as cd and exit. When you type cd, for example, the shell does not run the cd program;
it jumps to the internal code that implements the cd command itself. You can think of the shell
as containing a C switch statement inside a loop. When it sees that the command is a built in, it
jumps to the code to execute it. Some commands, such as pwd, are both shell builtins and programs.
By default the shell built in will be executed if the user types pwd; to get the program version, one
can either precede the command with a backslash "\", as in \pwd, or type the full path name,
/bin/pwd.

1The list of built-in commands is usually provided in the shell's man page. For example, the command man

builtins will display the bash_builtins man page, and at the very top of that page is the complete list of bash
builtins.
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Command programs are located in one of several directories, the most common being /bin, /usr/bin,
and /usr/local/bin. The /usr/local/bin directory is traditionally used as a repository for com-
mands that do not come with the UNIX distribution and have been added as local extras. Many
packages that are installed after the operating system installation are placed in subdirectories of
/usr/local. Administrative commands, such as those for creating and modifying user accounts,
are found in /usr/sbin. Many UNIX systems still retain the old /usr/ucb directory. (The "ucb"
in /usr/ucb stands for the University of California at Berkeley. The /usr/ucb directory, if it exists,
contains commands that are part of the BSD distributions. Some of the commands in /usr/ucb

are also in /usr/bin and have di�erent semantics. If the same command exists in both /usr/bin

and in some other directory such as /usr/ucb, the PATH environment variable just like the one used
in Windows and DOS, determines which command will be run. The PATH variable contains a list of
the directories to search when the command is typed without a leading path. Whichever directory
is earliest in the list is the one whose version of the command is used. Thus, if more exists in both
/usr/ucb and /usr/bin, as well as in your working directory, and /usr/bin precedes /usr/ucb

which precedes �.� in your PATH variable, and if you type

$ more myfile

then /usr/bin/more will run. If instead you type

$ ./more myfile

then your PATH is not searched and your private more program will run. If you type

$ /usr/ucb/more myfile

then your PATH is not searched and /usr/ucb/more will run.

2.3 The who Command

There are a few di�erent commands for checking which users are currently using the system. The
simplest of these is conveniently named who2. Other commands that perform similar tasks are w,
users, and whodo3. The who and w commands are required by the POSIX standard, so they are
more likely to be on a UNIX installation.

The who command displays information about who is currently using the system. Running who

without command-line options produces a listing such as

dsutton pts/1 Jul 23 20:22 (66-108-62-189.nyc.rr.com)

ioannis pts/2 Jul 24 16:53 (freshwin.geo.hunter.cuny.edu)

dplumer pts/3 Jul 26 11:34 (66-65-53-41.nyc.rr.com)

rnoorzad pts/4 Jul 23 09:25 (death-valley.geo.hunter.cuny.edu)

rnoorzad pts/5 Jul 23 09:25 (death-valley.geo.hunter.cuny.edu)

sweiss pts/6 Jul 26 13:08 (70.ny325.east.verizon.net)

2This is unusual. Most UNIX commands have names that are so cryptic that you have to be a wizard to guess
their names. Would you have guessed, for example, that to view the contents of a directory, you have to type "ls"
or that to view the contents of a �le you can type "cat"?

3whodo is not available in Linux. It is found in Solaris, AIX, and other UNIX variants.
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Each line represents a single login session. The -H option will print column headings, in case the
data is not obvious. The �rst column is the username, the second is the terminal line on which the
user is logged in, the third is the time of the login on that terminal, and the last is the source of
the login, either the host name or an X display. For example, sweiss was logged in on terminal
line pts/6, the session started at 13:08 on July 26th of the then current year, and the login was
initiated from a computer identi�ed as 70.ny325.east.verizon.net. Notice that there may be
multiple logins with the same username.

The output of who may vary from one system to another. Some of the reasons have to do with
how systems treat users who have multiple terminal windows open in a single login or are running
terminal multiplexers such as Gnu's screen program. The w command, by the way, is approximately
equivalent to the command sequence �uptime; who�; it shows more information than who does.

2.4 Researching Commands In UNIX

UNIX is a self-documented operating system. You can use UNIX itself to learn how it works if
you do a thorough exploration of the online documentation. In particular, the man pages can be
a source of information about how a command might be implemented. This information is not
explicit, but can be obtained by using clues within the page. The man page for a command may
not have enough content, and will instead have a message such as the following in the SEE ALSO

section at the bottom:

The full documentation for who is maintained as a Texinfo manual.

If the info and who programs are properly installed at your site,

the command

info coreutils 'who invocation'

should give you access to the complete manual.

In this case, one should use the info command instead. The info command brings up the Texinfo
pages. The Texinfo system is an alternative system for providing on-line documentation. To learn
how to use the Texinfo viewer, type

info info

which will bring up a tutorial on using the Texinfo documentation system. The general idea is that
the information is stored in a tree-like structure, in which an internal node represents a topic area,
and its child nodes are speci�c to that topic. The space bar will advance within the entire tree using
breadth-�rst search. To descend into a node's children, d (for down) works. To go back up, u (for
up) works. To traverse the siblings from left to right, n (for next) does the trick, and to go back, p
(for previous) works. Just picture the tree.

Note. On some systems, when you type "info coreutils who" , you will see the page for the
whoami command. If you move ahead a few pages, you will �nd the page for who. On other systems
you may have to type �info who� or "info coreutils 'who invocation'" to bring up the proper
pages.

The man page for who tells us that the command may be called with zero or more of the command-
line options abdHlmpqrstTu. It can also be called as follows:
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$ who am i

sweiss pts/6 Jul 26 13:08 (70.ny325.east.verizon.net)

and, in Linux, if you supply any two words after �who�, it behaves the same way:

$ who you think

sweiss pts/6 Jul 26 13:08 (70.ny325.east.verizon.net)

In general, the way to research a UNIX command is to use a combination of these methods:

1. Read the relevant man page.

2. Follow the SEE ALSO links on the page.

3. Read the Texinfo page if the man page refers to it.

4. Search the manual.

5. Find and read the header (.h) �les relevant to the command.

2.4.1 Reading Man Pages

There is no standard that de�nes what must be contained in most man pages; it is implementation-
dependent. However, most systems follow a time-honored convention for man pages in general,
which is what we describe in these notes. For the purpose of understanding how a command works,
the relevant sections of the man page for that command are the DESCRIPTION, SEE ALSO, and FILES

sections.

The DESCRIPTION section gives the details of how the command is used. For example, reading
about who in the man page reveals that who has an optional �le name argument, and that if it is not
supplied, who reads the �le /var/run/utmp to get the information about current logins. The optional
argument can be /var/log/wtmp. We can infer that the �le /var/run/utmp contains information
about who is currently logged in. What about /var/log/wtmp? If you were to try typing

$ man wtmp

you would be pleasantly surprised to discover that, although wtmp is not a command, there is a
man page that describes it. This is because there is a section of the man pages strictly devoted to
the description of system �le formats. /var/log/wtmp is a system �le, as is /var/run/utmp, and
they are both described on the same man page in section 5 of the manual. There we can learn that
/var/log/wtmp contains information about who has logged in previously4.

Before we dig deeper into the man page for the utmp and wtmp �les, you should also know that it
is required of all POSIX-compliant UNIX systems that they also contain man pages for all of the
header �les that might be included by a function in the kernel's API. To put it more precisely, each
function in the System Interfaces volume of POSIX.1-2008 speci�es the headers that an application
must include to use that function, and a POSIX-compliant system must have a man page for each
of those headers. They may not be installed on the system you are using, but they are available.
They will only be installed if the system administrator installed the application development �les.

The man pages for the header �les have a �xed format. From the POSIX.1-2008 standard:

4If we consult the who Texinfo page, we could learn that as well.
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NAME

This section gives the name or names of the entry and brie�y states its purpose.

SYNOPSIS

This section summarizes the use of the entry being described.

DESCRIPTION

This section describes the functionality of the header.

APPLICATION USAGE

This section is informative. This section gives warnings and advice to application de-
velopers about the entry. In the event of con�ict between warnings and advice and a
normative part of this volume of POSIX.1-2008, the normative material is to be taken
as correct.

RATIONALE

This section is informative. This section contains historical information concerning the
contents of this volume of POSIX.1-2008 and why features were included or discarded
by the standard developers.

FUTURE DIRECTIONS

This section is informative. This section provides comments which should be used as a
guide to current thinking; there is not necessarily a commitment to adopt these future
directions.

SEE ALSO

This section is informative. This section gives references to related information.

The important sections are NAME, SYNOPSIS, DESCRIPTION, and SEE ALSO.

For example

$ man stdlib.h

will display the man page for the header �le <stdlib.h>. This is a useful feature. But if you do not
know the name of the command that you need, nor the names of any �les that might be useful or
relevant, then you do not know which man page to read. UNIX systems provide various methods
of overcoming this problem.

2.4.2 Man Page Searching

The most basic solution, guaranteed to work on all systems, is to use the search feature of the man
command. To search for all man pages that contain a particular keyword in their one-line summaries
in the NAME Section, you can type

$ man �k keyword

This will only work if the whatis database has been built when the man pages were installed
however, so you are at the mercy of the system administrator5. For example, typing

5If you are the administrator, issue the command /usr/sbin/makewhatis to build the database.
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$ man �k utmp

will list all man pages that contain the string utmp in their summaries. The command

$ apropos utmp

has the exact same meaning: apropos is equivalent to "man �k". Unfortunately, the implemen-
tation of apropos varies from system to system. On some systems, such as Fedora 15, the most
current stable version, apropos has features that allow multiple keyword searches as well as regular
expression searches. To search for man pages whose page names and/or NAME sections contain all
keywords provided, one can use the -a option, as in

$ apropos -a convert case

toupper (3) - convert letter to upper or lower case

FcToLower (3) - convert upper case ASCII to lower case

tolower (3) - convert letter to upper or lower case

towlower (3) - convert a wide character to lowercase

towupper (3) - convert a wide character to uppercase

XConvertCase (3) - convert keysyms

The number in parentheses is the section number. Section 3 contains man pages for library functions.
Notice that we have output in which the string �case� is a substring of other words. If we wanted
to limit it to those descriptions in which �case� is a word on its own, we could use the regular
expression matching feature of apropos:

$ apropos -ar convert '\<case\>'

toupper (3) - convert letter to upper or lower case

FcToLower (3) - convert upper case ASCII to lower case

tolower (3) - convert letter to upper or lower case

Unfortunately, this powerful apropos is not available on all systems. In particular, it is absent on
the RHEL 6 system installed on our server. This version has no options, so one cannot do such
searches. In this case, to get the same e�ect, one can use a simple search and pipe the output
through a grep �lter. If you are not familiar with grep or regular expressions, see the Appendix.
The equivalent command would be

$ apropos convert | grep '\<case\>'

FcToLower (3) - convert upper case ASCII to lower case

tolower (3) - convert letter to upper or lower case

toupper (3) - convert letter to upper or lower case

If the output list is still too long to be useful, you can �lter it further with another instance of grep:

$ apropos convert | grep '\<case\>' | grep '\<ASCII\>'

FcToLower (3) - convert upper case ASCII to lower case
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2.5 Digging Deeper into the who Command

The output of the manual search on the utmp �le will look something like:

endutent [getutent] (3) - access utmp file entries

getutent (3) - access utmp file entries

getutid [getutent] (3) - access utmp file entries

getutline [getutent] (3) - access utmp file entries

login (3) - write utmp and wtmp entries

logout [login] (3) - write utmp and wtmp entries

pututline [getutent] (3) - access utmp file entries

sessreg (1x) - manage utmp/wtmp entries for non-init clients

setutent [getutent] (3) - access utmp file entries

utmp (5) - login records

utmpname [getutent] (3) - access utmp file entries

utmpx.h [utmpx] (0p) - user accounting database definitions

wtmp [utmp] (5) - login records

The �rst word is the topic of the man page, the next, the man page title, the third is the section
number of the manual, and the last is a brief description of the topic.

Every UNIX system has a manual volume that deals with the �les used by the commands. The
number may vary. From the above output, it appears that the utmp �le is described in Section 5 of
the man pages:

utmp [utmp] (5) - login records

Also, the line

wtmp [utmp] (5) - login records

shows that the man page describing the wtmp �le is the same page as the one describing utmp.
Obviously, there is a man page for utmp in Section 5 of the manual. To specify the speci�c section
to display, you need to specify it as an option. The syntax varies; in RedHat Linux either of these
will work:

$ man 5 utmp

$ man �S5 utmp

There was also a line of output

utmpx.h [utmpx] (0p) - user accounting database definitions
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The <utmpx.h> header �le describes a POSIX-compliant interface to the utmp �le. This interface
is di�erent from that of the <utmp.h> �le. We will use the (outdated) <utmp.h> interface for our
initial attempts, exploring the utmp �le in greater depth, starting with the man page that our
system delivers when we type either of the above man commands. After that we will consider using
two other interfaces, the POSIX utmpx interface and a GNU extension, the thread-safe functions
getutent_r() and its cousins.

The beginning of the man page for utmp from RedHat Enterprise Linux Release 4 is displayed below.

NAME

utmp, wtmp - login records

SYNOPSIS

#include <utmp.h>

DESCRIPTION

The utmp file allows one to discover information about who is currently

using the system. There may be more users currently using the system,

because not all programs use utmp logging.

Warning: utmp must not be writable, because many system programs

(foolishly) depend on its integrity. You risk faked system logfiles and

modifications of system files if you leave utmp writable to any user.

The file is a sequence of entries with the following structure declared

in the include file (note that this is only one of several definitions

around; details depend on the version of libc):

( lines omitted here )

First note that it tells us which header �le is relevant: <utmp.h> This is the header �le that the
compiler will use when the include directive #include <utmp.h> is in your program6. Next, it issues
a warning to system administrators not to leave this �le writable by anyone other than its owner,
the superuser. Then it warns the rest of us, before showing us the contents of the include �le, that
the contents may di�er from one installation to another.

Since UNIX is a free, community supported operating system, it has been evolving over time. You
may �nd that what is described in a book, or in these notes, is di�erent from what you observe
on your system. It is not that anything is correct or incorrect, but that UNIX is a moving target,
and that systems can di�er in minor ways. For example, the man page for utmp in an older version
of Linux will be very di�erent from the one shown here. Even the location of the utmp �le itself
is di�erent. Later versions of UNIX added system functions to provide a data abstraction layer so
that the programmer would not need to know the actual structure of the �le. The problem was
that di�erent versions of UNIX had di�erent de�nitions of the utmp structure, and programs that
accessed the structure directly were failing on di�erent systems.

6There may be many �les named utmp.h in the �le system. Each compiler will have its own method of deciding
which one to use. The GNU compiler collection (gcc) installs its own header �les in speci�c places, and it uses these
by default. The default search path used by gcc is typically
/usr/local/include

target-installdir/include
/usr/include

where target-installdir is the directory in which gcc was installed on the machine. This is explained in more detailed
shortly.
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The structures displayed in the man page may not be the same as those found on our machine. If
you write code that depends critically on the structure de�nition, it may work on one machine but
not another. In spite of this, it is valuable to study these structures. Afterward we will write more
portable code. The key to that is to use preprocessor directives to conditionally compile the code
based on the values of macros. The man page continues:

#define UT_UNKNOWN 0

#define RUN_LVL 1

#define BOOT_TIME 2

#define NEW_TIME 3

#define OLD_TIME 4

#define INIT_PROCESS 5

#define LOGIN_PROCESS 6

#define USER_PROCESS 7

#define DEAD_PROCESS 8

#define ACCOUNTING 9

#define UT_LINESIZE 12

#define UT_NAMESIZE 32

#define UT_HOSTSIZE 256

struct exit_status {

short int e_termination; /* process termination status. */

short int e_exit; /* process exit status. */

};

struct utmp {

short ut_type; /* type of login */

pid_t ut_pid; /* pid of login process */

char ut_line[UT_LINESIZE]; /* device name of tty - "/dev/" */

char ut_id[4]; /* init id or abbrev. ttyname */

char ut_user[UT_NAMESIZE]; /* user name */

char ut_host[UT_HOSTSIZE]; /* hostname for remote login */

struct exit_status ut_exit; /* The exit status of a process marked as DEAD_PROCESS. */

#if __WORDSIZE == 64 && defined __WORDSIZE_COMPAT32

int32_t ut_session; /* Session ID (getsid(2)),

used for windowing */

struct {

int32_t tv_sec; /* Seconds */

int32_t tv_usec; /* Microseconds */

} ut_tv; /* Time entry was made */

#else

long ut_session; /* Session ID */

struct timeval ut_tv; /* Time entry was made */

#endif

int32_t ut_addr_v6[4]; /* IP address of remote host. */

char __unused[20]; /* Reserved for future use. */

};

The page then contains a brief description of the purpose of the structure:
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This structure gives the name of the special file associated with the user's

terminal, the user's login name, and the time of login in the form of time(2).

String fields are terminated by '\0' if they are shorter than the size of the

field.

More information about the speci�c members of the structure is contained in the comments in the
struct de�nition. The man page does not describe the members in detail beyond that. The rest
of the man page, which is not included here, goes on to describe how the various entries in the
utmp �le are created and modi�ed by the di�erent processes involved in logging in and out. We will
return to that topic shortly. It reiterates the warning:

The file format is machine dependent, so it is recommended that it

be processed only on the machine architecture where it was created.

You should have noticed the following line in the man page:

#if __WORDSIZE == 64 && defined __WORDSIZE_COMPAT32

This causes conditional compilation of the code. It means, if the machine's word size is 64 bits and
it is in 32-bit compatibility mode, then use one de�nition of the ut_session and ut_tv members,
otherwise use a di�erent one. The macros __WORDSIZE and __WORDSIZE_COMPAT32 are de�ned in
the header �le /usr/include/bit/wordsize.h7. We will ignore this subtlety for now, and rather
than relying on the man page, we will examine the <utmp.h> header �le itself.

2.5.1 Reading the Correct Header Files

Which header �le to read depends upon the particular installation. For example, on my home
o�ce workstation, which is running Fedora 14, gcc will use /usr/include/utmp.h, whereas on the
cs82010 server in the Graduate Center, which is running RedHat Enterprise Linux Release 6, gcc
will �rst look for /usr/lib/gcc/x86_64-redhat-linux/4.4.5/include/utmp.h. One method of
determining which �le gcc will actually use in a particular installation is the following:

1. Create a trivial C program such as

int main() { return 0; }

and suppose it is named empty.c.

echo �int main() {return 0;}� > empty.c

is an easy way to do this.

2. Run the command

7The macro __WORDSIZE_COMPAT32 is only de�ned on 64 bit machines. One can discover this �le by doing a
recursive grep on the /usr/include directory hierarchy of the form �grep -R WORDSIZE /usr/include/* | grep

define�, which will list the �les in which these macros are de�ned.
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$ gcc -v empty.c

3. In the output produced by gcc, look for lines of the form

#include "..." search starts here:

#include <...> search starts here:

your_current_working_dir/include

/usr/local/include

/usr/lib/gcc/x86_64-redhat-linux/4.4.5/include

/usr/include

End of search list.

These lines will show you which directories and in which order gcc searches for included header
�les. The above output shows that gcc will search �rst in /usr/include/local, then in the install
directory, and then in /usr/include. Since there is no <utmp.h> �le in the �rst two directories, it
will use /usr/include/utmp.h.

Returning to the task at hand, if you look at either of the <utmp.h> �les mentioned above, you will
see that they are mostly wrappers for a �le which is in the corresponding bits subdirectory:

/usr/include/bits/utmp.h,

or

/usr/lib/i386-redhat-linux3E/include/bits/utmp.h.

Taking the liberty of eliminating the 64-bit conditional macros, and the macro names, the important
elements of the header �le are as follows:

/* The structure describing an entry in the database of

previous logins. */

struct lastlog

{

__time_t ll_time;

char ll_line[UT_LINESIZE ];

char ll_host[UT_HOSTSIZE ];

};

/* The structure describing the status of a terminated

process. This type is used in `struct utmp' below. */

struct exit_status

{

short int e_termination; /* Process termination status.*/

short int e_exit; /* Process exit status. */

};

/* The structure describing an entry in the user accounting

database. */

struct utmp
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{

short int ut_type; // Type of login.

pid_t ut_pid; // Process ID of login process.

char ut_line[UT_LINESIZE ]; // Devicename.

char ut_id [4]; // Inittab ID.

char ut_user[UT_NAMESIZE ]; // Username.

char ut_host[UT_HOSTSIZE ]; // Hostname for remote login.

struct exit_status ut_exit; /* Exit status of a process

marked as DEAD_PROCESS.*/

long int ut_session; // Session ID, used for windowing.

struct timeval ut_tv; // Time entry was made.

int32_t ut_addr_v6 [4]; // Internet address of remote host.

char __unused [20]; // Reserved for future use.

};

The point is that login records have ten signi�cant members, and we can write code to extract
their data in order to mimic the who command. In particular, the ut_user char array stores the
username, the ut_line char array stores the name of the terminal device of the login, ut_time
stores the login time, and ut_host stores the name of the remote host from which the connection
was made. Unfortunately, we will not be able to ignore inde�nitely the way that time is de�ned on
di�erent architectures, but for the moment, we will continue to ignore it.

2.5.2 What Next?

It seems likely that who opens the utmp �le and reads the utmp structures from that �le in sequence,
displaying the appropriate data for each login. We will write use this as the basis for our own
implementation of the command.

2.6 Writing who

The program that implements the who command has two key tasks:

• to read the utmp structures from a �le, and

• to display the information from a single utmp structure on the display device in a user-friendly
format.

We begin by discussing solutions to the �rst task.

2.6.1 Reading Structures From a File

A binary �le consists of a sequence of bytes, not to be interpreted as characters. It is the most
general form of a �le. A �le consisting of a sequence of structures, such as the utmp �le, is a binary
�le and cannot be read using the C I/O functions with which most programmers are familiar, such as
get(), getc(), fgets(), and scanf(), nor the istream methods in C++, because all of these read
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textual input. They are speci�cally designed for that purpose. Although you could read structures
by reading one char at a time and then reconstructing the structure from the sequence of chars with
a lot of type casts, that would be grossly ine�cient and error-prone. Clearly there must be a better
way.

Let us suppose that you do not know the methods of reading from a binary �le. You could use a
man page search such as

$ man �k binary file | grep read

Remember though that when you use multiple words with the -k option, they are OR-ed together,
so the output includes lines with either word (or both). If you do this search, you will see a list
of perhaps several dozen man pages. If you get a long list you can �lter it further by limiting the
output to only sections 2 or 3 of the man pages with a third stage in the pipeline:

$ man -k binary file | grep read | grep '([23])'

In this list will be the page for two prospective functions to use:

fread (3) - binary stream input/output

pread (2) - read from or write to a file descriptor at a given offset

read (2) - read from file descriptor

The �rst, fread(), in Section 3, is part of the C Standard I/O Library; it is C's function for reading
binary �les. The second, pread(), in Section 2, is the prototype of a system call. The third, read(),
in Section 2, is also the prototype of a system call. As we are primarily interested in what Unix
in particular has to o�er us, we will look at the system calls. We begin with read() and return to
pread() later. In Chapters 5 and 7, we will revisit the C Standard I/O Library.

We want to see what the man page for read() has to say. If you do not specify the section number
when you type �man read�, you will get the man page from the �rst section, and you will discover
that there is also a UNIX command, /usr/bin/read:

$ man read

which will output the man page for the read command in Section 1. You must type

$ man 2 read

to get the man page for the read() system call. I have included the important parts of the man
page below.

NAME

read - read from a file descriptor

SYNOPSIS

#include <unistd.h>
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ssize_t read(int fildes, void *buf, size_t nbyte);

DESCRIPTION

read() attempts to read up to count bytes from file descriptor fd into

the buffer starting at buf.

If count is zero, read() returns zero and has no other results.

If count is greater than SSIZE_MAX, the result is unspecified.

RETURN VALUE

On success, the number of bytes read is returned (zero indicates end

of file), and the file position is advanced by this number. It is not

an error if this number is smaller than the number of bytes requested;

this may happen for example because fewer bytes are actually available

right now (maybe because we were close to end-of-file, or because we

are reading from a pipe, or from a terminal), or because read() was

interrupted by a signal. On error, -1 is returned, and errno is set

appropriately. In this case it is left unspecified whether the

file position (if any) changes.

To use the read() function, the program must include the header �le <unistd.h>. This header �le
serves various purposes, the most relevant for our purposes being that it contains the prototypes of
the (POSIX compliant) system calls.

The di�erence between <stdio.h> and <unistd.h>.

The functions that begin with "f": fopen(), fread(), fwrite(), fclose(), and so on,
which operate on �le stream pointers (FILE pointers) are all part of the ANSI Standard
C I/O Library, whose header �le is <stdio.h>. They are C functions that you can use
on any operating system. We used fopen() and fclose() in Chapter 1 to implement
our version of the more command.

The functions open(), read(), write(), and close() are UNIX system calls and their
prototypes are de�ned in <unistd.h>, which is a POSIX header �le. The <unistd.h>

header de�nes miscellaneous symbolic constants and types, and declares miscellaneous
functions, among which are these calls. These functions exist only in UNIX systems
and they exist no matter what language you use, as long as the system you are using
is POSIX-compliant. POSIX does not specify whether they should be system calls or
library functions, but only that they exist as one or the other. These system calls
operate on �le descriptors, not �le streams. The UNIX system calls operate on the
kernel directly; the ANSI Standard C I/O Library calls are at a higher level.

The read() function has three arguments. The man page says that the read() function reads from
a �le associated with a �le descriptor. A �le descriptor is a small, non-negative integer. We will
study �le descriptors in greater detail in a later chapter. The second parameter is a pointer to a
place in memory into which the bytes that are read are to be stored. The third parameter is the
number of bytes to read. The return value is the number of bytes actually read, which can never
be larger, but might be smaller, or is �1, if something went wrong.

To illustrate, suppose that filedesc is a valid �le descriptor that we can use for reading, buffer is
a char array of size 100, and num_bytes_read is an integer variable. The following code fragment
shows how to read 100 bytes of data at a time from this �le stream until the end of data is found
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while ( !done ) {

num_bytes_read = read(filedesc, buffer, 100);

if ( 0 > num_bytes_read )

// an error code was returned during reading - bail out

if ( 0 == num_bytes_read )

// the end of file was reached - stop reading

done = 1;

else

// do whatever has to be done to the data

}

This is a typical read-loop structure. The read() call does not fail when there is no data; it just
returns 0. This is how to detect the end of the input data.

How can a program associate a �le descriptor with a �le? Look in the SEE ALSO section of the man
page and you will �nd references to fnctl(), creat(), open()8 and many other system calls. Most
of these work with �le descriptors. The open() system call is the one we need now, because the
open() call opens a �le and assigns a �le descriptor to it.

2.6.2 The open() and close() System Calls

To read from a binary �le, a process must

• open the �le for reading,

• read the bytes, and

• close the �le.

The open() system call creates a connection between the process and the �le. Think of a connection
as an object that manages the I/O operations on the �le from the process. This object contains
things such as the o�set in the �le for the next operation, various status �ags, and pointers to
kernel functions that the process can invoke. It is represented by a �le descriptor. A process can
open several �les and each will have its own �le descriptor. In fact, it can open the same �le twice
and each connection will have a di�erent �le descriptor9. UNIX does not prevent you or anyone
else from opening the same �le many times. It is up to the users and their programs to coordinate
accesses to �les.

If you look at the man page you will see the following synopsis of the open() call.

#include <sys/types.h>

#include <sys/stat.h>

#include <fcntl.h>

int open(const char *path, int oflag, /* mode_t mode */...);

8All of these are in Section 2 of the man pages.
9You might have guessed. The �le descriptor is the index into an array of structs. Each of these structs contains,

among other things, a pointer to the next character in the �le to be read. A process can read from two di�erent parts
of the same �le at the same time in this way.
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The �rst argument is a character string containing the path to the �le to be opened. The second
argument is an integer specifying how the �le is to be opened: for reading, for writing, for reading
and writing, for appending, and so on. If the call is successful, it returns a �le descriptor. More
accurately, it returns the lowest numbered �le descriptor not already in use by the process. If the
call is not successful, it returns �1. There are methods of detecting the type of error; these will be
examined later.

The value of oflag is one of the following constants de�ned in <fcntl.h>:

O_RDONLY Open for reading only.

O_WRONLY Open for writing only.

O_RDWR Open for reading and writing.

It is more complex than this, but this is enough for now. Other values can be bit-wise-OR-ed to
these values.

Example. Consider the following code:

int fd;

if (fd = open("/var/adm/messages.0", O_RDONLY) < 0 )

exit (-1);

This attempts to open the �le /var/adm/messages.0 for reading. If it fails, it exits. If it is successful,
the �le is ready for reading. The �le descriptor stored in fd is the one the program must use in the
read() call. Notice that the call is made within a conditional expression and that the return value
of the call is compared to 0 in that condition. This is a common method of error handling in C
programs.

Unlike other operating systems, UNIX does not prevent a �le that is already open by one process
from being opened by another. This is a very important feature to remember about UNIX. It is
why it is possible for multiple users to run the same command or change their passwords at the
same time10.

After your process is �nished reading a �le, it should close the connection to the �le. The close()
system call

int close( int filedes)

has a single argument which is the �le descriptor of the connection to be closed. If a �le has been
opened by a process via multiple calls to open(), then the other connections will remain open and
only the one corresponding to filedes will be closed. If the kernel cannot close the connection, it
will return �1.

Now you might wonder what could possibly go wrong when closing a �le, especially when it has
been opened for reading. Well, �rst of all, it is possible you passed it a bad �le descriptor when

10Of course UNIX does provide the means for a process to open a �le and lock it so that no other process can read
or write it while it is in use, but this requires actions on the part of the process to make it happen. UNIX does not
do this automatically.
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you closed it. Secondly, the kernel, in the middle of the system call, may be given an urgent task to
complete, so urgent that it has to drop the close() call in the middle to deal with it. In this case it
will also return a �1. Also, the �le may not have been on the local machine or the local drive, and
a network connection might have gone down, in which case the �le cannot be closed. Furthermore,
if this �le had been opened for writing, there are more reasons why close() might fail, the most
important of which is that it is only when close() is called that the actual write takes place and
at which point the kernel will discover it cannot complete the write for any number of reasons.

2.6.3 A First Attempt at Writing who

The main program must open the �le and then enter a loop in which it repeatedly reads a single
utmp record and displays it on the screen, until all records have been read. A rough sketch of this
is in the listing below, which we call who1.c.

1 L i s t i n g 1 . who1 . c
2 #include <s td i o . h>
3 #include <s t d l i b . h>
4 #include <f c n t l . h>
5 #include <utmp . h>
6
7 int main ( )
8 {
9 int fd ;
10 struct utmp current_record ;
11 int r e c l e n = s izeof ( struct utmp ) ;
12
13 fd = open (UTMP_FILE, O_RDONLY) ;
14 i f ( fd == −1 ) {
15 pe r ro r ( UTMP_FILE ) ;
16 e x i t ( 1 ) ;
17 }
18
19 while ( read ( fd , &current_record , r e c l e n ) == r e c l e n )
20 show_info ( &current_record ) ;
21
22 c l o s e ( fd ) ;
23 return 0 ;
24 }

First observe that the �rst argument to the open() call is UTMP_FILE. This is a macro whose
de�nition is included in the <utmp.h> header �le. Its value is system-dependent; it is the path to
the actual utmp �le. It is usually "/var/run/utmp". We would not know about it if we did not read
the header �le.

Notice which header �les are included, notice that reclen contains the number of bytes in a utmp

struct. The sizeof() function returns the number of bytes in its argument type. reclen will be
used in the read() call to read exactly one utmp structure at a time. The call to read() is given the
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�le descriptor returned by open(), a pointer to a memory location large enough to hold one utmp

record, and reclen, the number of bytes to be read. If the return value equals reclen then a full
record was read. If it does not, then an incomplete record was read or the end-of-�le was reached.
In either case we stop reading. The show_info() function remains to be written. It should display
the contents of the current record. The perror() function is described below.

2.6.4 What to Do with System Call Errors

In UNIX, most system calls simply return the value �1 when something goes wrong. This would be
rather useless if that is all it did because the calling program would not know what actually went
wrong. In addition to returning a �1, the kernel stores an error code in the global variable errno

that all processes can access if they include <errno.h>. When you build a program in UNIX, the
variable errno is in the namespace of the program if the header �le is included.

The <errno.h> �le de�nes a number of mnemonic constants for error values, such as

#define EPERM 1 /* Operation not permitted */

#define ENOENT 2 /* No such file or directory */

Your program can use these symbols directly with code such as

if ( fd = open("myfile", O_RDONLY) == -1 ) {

printf(Cannot open file: ");

if ( errno == ENOENT )

printf("No such file or directory\n");

else if

...

}

This would be very tedious, since every program you write would have long switch statements or
cascading if-statements. It is much easier to use the UNIX library function perror() to do this for
you. The perror() function, which conforms to POSIX-1.2001, has a single string as a parameter,
and looks up the value of errno and displays the string followed by an appropriate message based
on the value of errno. It is declared in <stdio.h>, so you do not need to include <errno.h> if you
use it. The code snippet above is simpli�ed by using perror():

if ( fd = open("myfile", O_RDONLY) == -1 ) {

perror("Cannot open file: ");

return;

}

and it would print

Cannot open file: No such file or directory
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In short, the perror() function prints the string you pass it followed by the message from the
<errno.h> �le. It is a good idea to create a function to handle errors, so that you do not have
to type these lines all of the time. Very often, the error is a fatal one, meaning that the program
cannot proceed if the error occurred. In this case, you would want to exit the program, calling
exit() to do so, as in

if ( fd = open("myfile", O_RDONLY) == -1 ) {

perror("Cannot open file: ");

exit(1);

}

The exit() function is declared in <stdlib.h>; its man page is in Section 3. A simple function for
handling fatal errors would be

#include <stdio.h>

#include <stdlib.h>

void fatal_error(char *string1, char *string2)

{

fprintf(stderr,"Error: %s ", string1);

perror(string2);

exit(1);

}

You might also bene�t from writing a second function to call when you do not want to terminate
the program, or you could combine the two into a single, general-purpose function that does either,
by passing a parameter to indicate the error's severity.

2.6.5 Displaying login Records

This is the �rst attempt at show_info():

1 void show_info ( s t r u c t utmp ∗utbufp )
2 {
3 p r i n t f ("%−8.8 s " , utbufp−>ut_name ) ; /∗ the logname ∗/
4 p r i n t f (" " ) ;
5 p r i n t f ("%−8.8 s " , utbufp−>ut_l ine ) ; /∗ the t ty ∗/
6 p r i n t f (" " ) ;
7 p r i n t f ("%10 ld " , utbufp−>ut_time ) ; /∗ l o g i n time ∗/
8 p r i n t f (" " ) ;
9 p r i n t f ("(% s )" , utbufp−>ut_host ) ; /∗ the host ∗/
10 p r i n t f ("\n " ) ; /∗ newl ine ∗/
11 }

If this were compiled and run on a system that supported this API, the output would look something
like
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$ who1

system b 952601411 ()

952601423 ()

LOGIN console 952601566 ()

acotton ttyp3 964319088 (math-guest04.williams.edu)

ttypc 964319645 ()

This output di�ers from the output of who in two signi�cant ways. First, there are records in the
output of who1 that do not correspond to user logins, and second, the login times are in some
strange format. Both of these problems are easily �xed.

2.6.6 A Second Attempt at Writing who

2.6.6.1 Suppressing Records That Are Not Active Logins

The �le /usr/include/utmp.h contains de�nitions of integer constants used for the ut_type mem-
ber. They are

#define EMPTY 0

#define RUN_LVL 1

#define BOOT_TIME 2

#define OLD_TIME 3

#define NEW_TIME 4

#define INIT_PROCESS 5 /* Process spawned by "init" */

#define LOGIN_PROCESS 6 /* A "getty" process waiting for login */

#define USER_PROCESS 7 /* A user process */

#define DEAD_PROCESS 8

New entries in the utmp �le are created by the init process and are initialized with a ut_type of
INIT_PROCESS. Recall from Chapter 1 that what happens when a user logs in depends upon whether
it is a console login, a login on an xterm window, or a login over a network using a protocol such
as SSH. In all cases, the ut_type of the entry is changed from INIT_PROCESS to LOGIN_PROCESS,
either by a getty process or a similar process, depending on the source of the login. The getty

(or similar) process prints the login prompt, collects the user's input to the prompt (which should
be a username) and creates a login process, handing the user's username to the login process. The
login process prompts for the password and authenticates it. If it is valid, it changes the ut_type

to USER_PROCESS. When a user logs out, the ut_type is changed to DEAD_PROCESS.

This implies that the ut_type member of a currently logged-in user record will have the value
USER_PROCESS. No other utmp record will be of type USER_PROCESS and so all we need to do to
suppress non-user records is to print only those records whose ut_type member is USER_PROCESS.
The show_info() function will be modi�ed by the inclusion of this check:

show_info( struct utmp *utbufp)

{

if ( utbufp->ut_type != USER_PROCESS )

return;

...

}
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This solves the �rst problem.

2.6.6.2 Displaying Login Time in Human-Readable Form

Solving the second problem requires an understanding of how calendar, or universal, time is repre-
sented in UNIX systems and what functions are provided in the API for manipulating time values.

UNIX represents time as the number of seconds elapsed since 12:00 A.M., January 1, 1970, Coordi-
nated Universal Time (UTC )11, known as the �Epoch�. UTC is essentially like Greenwich Meridian
Time except that it includes occasional �leap seconds� to synchronize with the earth's rotation12.
UNIX stores time in objects of type time_t, the implementation of which is not standardized. On
many systems time_t is a typedef for a 32-bit integer. Such implementations will fail in the year
2038, when it over�ows. Representing time as an integer number of seconds since the Epoch makes
it easy for the kernel to update times, but not very easy for a human to determine the time.

How can we learn more about UNIX time and the various parts of the API related to it? The
answer again is to do a man page search. If you search on the keyword "time" you will �nd too
many man pages that refer to time. A second keyword will be needed to re�ne the search. Perhaps
�convert� or �transform� or something similar, to capture functions that transform time from one
form to another. Trying

$ man �k time | grep transform

we will see several functions related to time, including ctime() and localtime(). The man page
will also include reference to the header �le, <time.h>, which must be included for most of these
functions. These functions share a single man page. Reading this page reveals that ctime() converts
a time_t time into a human readable string of the form

"Mon Aug 11 23:12:06 2003\n"

To be precise, the ctime() function is declared as

char *ctime(const time_t *clock);

Observe that the argument is the address of a time_t value, not the value itself. The return value
is a pointer to a string consisting of a 3-letter day abbreviation, a 3-letter month abbreviation, the
day of the month, the 24-hour time in hours, minutes, and seconds, and the 4-digit year. The string
is allocated statically by ctime(), so it might be overwritten by other calls, so it is best to copy it
into a local variable if it needs to be available at a later time.

Note 1. ctime() is one of many functions that return a pointer to a string that is allocated statically.
Make sure that you understand what this means. The string itself is allocated by ctime() and a
pointer to that memory is returned to the caller. Subsequent calls to ctime() will overwrite the
previously allocated memory. The caller will be unable to retrieve the old value unless it was copied

11The abbreviation UTC is a compromise between the English and French abbreviations. In English, it would be
CUT and in French, TUC.

12The earth's rotation can vary due to astronomical conditions. UNIX systems are not required by POSIX to
represent exact UTC; they are allowed to ignore the leap seconds.
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to a local. Also, the caller is not responsible for freeing the memory allocated to the string; that
is handled by the library. This is just one of many functions that are not thread-safe, a topic we
discuss below.

The localtime() function takes a time_t argument but returns a pointer to a struct tm, which
is a structure whose members are the various components of time, such as the day-of-week, the
month, day, and year, and so on.

If you read through the man page carefully, which you should, you will �nd near the end the
conformance section. It states:

CONFORMING TO

POSIX.1-2001. C89 and C99 specify asctime(), ctime(), gmtime(), localtime(),

and mktime(). POSIX.1-2008 marks asctime(), asctime_r(), ctime(), and ctime_r()

as obsolete, recommending the use of strftime(3) instead.

The ctime() function is disparaged at this point. One should instead use strftime(), whose
prototype is

#include <time.h>

size_t strftime(char *s, size_t max, const char *format, const struct tm *tm);

This function, unlike ctime(), allows the calling program to specify the format of the character
string to be created. It is also safer to use in that the string is passed as an argument to the function,
allocated by the caller, instead of allocated statically and returned as the function value. The �rst
argument is a pointer to the string to be �lled, the second, the size of the array of chars to �ll, the
third is a format for the string, and the last is the tm structure containing the broken down time
representation.

The format speci�cation is described in great detail in the man page for the function. It is similar
to the format for the printf() function in that it is a string literal enclosed in double-quotes,
with conversion speci�cations of the form %x , where x is a character to be replaced. For example,
%M represents minutes as a decimal number in the range 00 to 59. and %b is the abbreviation of
the month name in the current locale. This phrase, �in the current locale� means that the locale
settings of the user are used in deciding the exact string that %b will produce. Every user has a
locale in UNIX. The topic of locales will be covered in a later section. The important point now
is that strftime(), unlike ctime(), can use locale information in determining the format of the
output string. In chapter 3 we will use this function to display time with more control. For our
implementation of the who command, we will use ctime().

The who program only displays the date, hours and minutes. For the above example, it would
display only "Aug 11 23:12". Our implementation of who must extract this substring from the
larger string. In other words, given

"Mon Aug 11 23:12:06 2003\n"

it needs to print

"Aug 11 23:12"
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A simple way to achieve this, perhaps not obvious, is to use pointer arithmetic to print only those
characters of the source string in which we are interested. The �rst character is 4 characters after
the start of the string, and the length of the string is exactly 12 characters. Assuming that t is a
time_t variable containing the required time to be printed, the following printf()13 call will do
the trick:

printf("%12.12s", ctime(&t) + 4 );

which prints the 12 chars starting at position 4 in the full string. The format �%12.12s� forces the
string to use 12 characters on the output. The complete program is shown below. You should study
it carefully.

1 L i s t i n g who2 . c
2 // This s o l v e s the time d i s p l a y problem and i t f i l t e r s records
3
4 #include <s td i o . h>
5 #include <s t d l i b . h>
6 #include <unis td . h>
7 #include <utmp . h>
8 #include <f c n t l . h>
9 #include <time . h>
10
11 void show_time ( long ) ;
12 void show_info ( struct utmp ∗ ) ;
13
14 int main ( int argc , char∗ argv [ ] )
15 {
16 struct utmp utbuf ; // read in f o in t o here
17 int utmpfd ; // read from t h i s d e s c r i p t o r
18 int r e c l e n = s izeof ( utbuf ) ;
19
20 i f ( ( utmpfd = open (UTMP_FILE, O_RDONLY)) == −1 ){
21 pe r ro r (UTMP_FILE) ;
22 e x i t ( 1 ) ;
23 }
24
25 while ( read ( utmpfd , &utbuf , r e c l e n ) == r e c l e n )
26 show_info ( &utbuf ) ;
27 c l o s e ( utmpfd ) ;
28 return 0 ;
29 }
30

13If you are not familiar with the following C functions, you should take the time to familiarize yourself with them:
printf, fprintf, sprintf, scanf, fscanf, and sscanf. These are all part of C and hence C++ and any C or C++
book should contain adequate descriptions of them. You can also look at the manpages for them. Once you know
printf and scanf, the others are trivial to understand. The best way to learn them is to write a few very simple
programs of course.
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31 void show_info ( struct utmp ∗utbufp )
32 // d i s p l a y s the con ten t s o f the utmp s t r u c t on ly i f a user
33 // log in , wi th time in human readab l e form , and hos t i f
34 // not n u l l
35 {
36 i f ( utbufp−>ut_type != USER_PROCESS )
37 return ;
38
39 p r i n t f ( "%−8.8 s " , utbufp−>ut_name ) ; /∗ the logname ∗/
40 p r i n t f ( "  " ) ;
41 p r i n t f ( "%−8.8 s " , utbufp−>ut_l ine ) ; /∗ the t t y ∗/
42 p r i n t f ( "  " ) ;
43 show_time ( utbufp−>ut_time ) ; /∗ l o g i n time ∗/
44 p r i n t f ( "  " ) ;
45 i f ( utbufp−>ut_host [ 0 ] != ' \0 ' ) /∗ the hos t ∗/
46 p r i n t f ( "  (% s ) " , utbufp−>ut_host ) ;
47 p r i n t f ( " \n" ) ;
48
49 }
50
51 void show_time ( long t imeva l )
52 // d i s p l a y s time in a format f i t f o r human consumption
53 // uses ct ime to b u i l d a s t r i n g then p i c k s pa r t s out o f i t
54 // Note : %12.12 s p r i n t s a s t r i n g 12 chars wide and LIMITS
55 // i t to 12 chars .
56 {
57 char∗ t imes t r = ctime(&t imeval ) ;
58 // s t r i n g l o o k s l i k e "Sat Sep 3 16 :43 :29 EDT 2011"
59
60 // p r i n t 12 chars s t a r t i n g at char 4
61 p r i n t f ( "%12.12 s " , t imes t r + 4 ) ;
62 }

2.6.7 A Third Version of who

The preceding versions of who read the data from the utmp �le using the read() system call, reading
one utmp struct at a time. An alternative method of accessing the data in the �le is to take advantage
of a data abstraction layer that the API makes available. When we did the man page search for
man pages related to the utmp �le, we ignored the functions found on the page named getutent:

endutent [getutent] (3) - access utmp file entries

getutent (3) - access utmp file entries

getutid [getutent] (3) - access utmp file entries

getutline [getutent] (3) - access utmp file entries

pututline [getutent] (3) - access utmp file entries

setutent [getutent] (3) - access utmp file entries

utmpname [getutent] (3) - access utmp file entries
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We now take a look at what that page has to o�er. The beginning of the page contains the following
(depending on what system you have):

SYNOPSIS

#include <utmp.h>

struct utmp *getutent(void);

struct utmp *getutid(struct utmp *ut);

struct utmp *getutline(struct utmp *ut);

struct utmp *pututline(struct utmp *ut);

void setutent(void);

void endutent(void);

int utmpname(const char *file);

DESCRIPTION

New applications should use the POSIX.1-specified "utmpx"

versions of these functions; see CONFORMING TO.

The very �rst sentence in this man page tells us that these functions are not POSIX.1-compliant,
and that there are utmpx versions of these functions. We will ignore this warning for the moment
and see how to use these non-POSIX functions, simply because there is something that needs to be
explained about the POSIX.-1-compliant interface, to which we will return afterward.

The man page basically tells us that there is a simple way of reading the records in a utmp �le,
requiring just four steps:

1. Use utmpname() to select the �le that should be accessed by the other functions.

2. Call setutent() to rewind the �le pointer to the beginning of the �le.

3. Repeatedly call getutent() to get the next utmp record from the �le; getutent() will return
a NULL pointer after it has read the last record from the �le.

4. Call endutent() when we have read all of the records.

In other words, this interface provides a hidden iterator to the utmp �le: setutent() initializes it,
getutent() advances it successively, and endutent() sends a signal that it is no longer needed. In
addition, the utmpname() function simply needs to be told the pathname to the �le, and it will take
care of opening it.

The man page also mentions that _PATH_UTMP is a macro whose value is the path to the utmp �le.
We already knew that UTMP_FILE contained that path, but if we dig a little deeper by actually
reading the header �les, we will discover that the <paths.h> header �le de�nes _PATH_UTMP and
_PATH_WTMP and that <utmp.h> de�nes UTMP_FILE as another name for _PATH_UTMP.

We can put all of this together to create a simpler version of who, named who3. In this version we
add the extra feature that the user can optionally supply the word �wtmp� on the command line if
she wants to see records in the wtmp �le instead. The show_info() and show_time() functions are
the same, so we just display the main program in the listing.
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1 L i s t i n g who3 . c
2 #include <s td i o . h>
3 #include <s t d l i b . h>
4 #include <unis td . h>
5 #include <utmp . h>
6 #include <f c n t l . h>
7 #include <time . h>
8
9 int main ( int argc , char∗ argv [ ] )
10 {
11 struct utmp ∗utbufp ;
12
13 i f ( ( argc > 1) && ( strcmp ( argv [ 1 ] , "wtmp" ) == 0) )
14 utmpname(_PATH_WTMP) ;
15 else
16 utmpname(_PATH_UTMP) ;
17
18 s e tu t en t ( ) ;
19 while ( ( utbufp = getutent ( ) ) != NULL )
20 show_info ( utbufp ) ;
21 endutent ( ) ;
22 return 0 ;
23 }

This program is not thread-safe. Many functions in the various UNIX libraries use static variables
to store their results. These variables act like global variables within the programs that call these
functions. If a program is multi-threaded, these threads can corrupt each others data if they use
the unsafe function calls in an overlapping way. Thread-safe functions do not have this problem. A
thread-safe version of the who3 program can use getutent_r(), which is a GNU thread-safe version
of getutent().

The man page tells us that to use the getutent_r() function, we have to set a macro, the
_GNU_SOURCE macro, before including the header �le <utmp.h>. That is the purpose of the fol-
lowing lines from that man page:

The above functions are not thread-safe. Glibc adds reentrant versions

#define _GNU_SOURCE /* or _SVID_SOURCE or _BSD_SOURCE */

#include <utmp.h>

int getutent_r(struct utmp *ubuf, struct utmp **ubufp);

The macro de�nition of _GNU_SOURCE is required because the <utmp.h> header �le contains feature
test macros. Feature test macros can be used to control which de�nitions are exposed in the system
header �les when a program is compiled. This is important for creating portable applications,
because it prevents nonstandard de�nitions from being exposed in the program. If you remove the
de�nition of _GNU_SOURCE from your program and try to use getutent_r() you will get a compile
time error because the declaration of this function in the header �le is guarded by a conditional
preprocessor directive that is true only if _GNU_SOURCE is de�ned. It is essentially of the form
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#ifdef _GNU_SOURCE

extern int getutent_r (struct utmp *__buffer, struct utmp **__result) __THROW;

/* more stuff here

#endif

If you put the de�nition of _GNU_SOURCE after the include directive, it will be useless because it will
not be de�ned when the header �le is preprocessed by gcc, and so in this case too you will get an
error message.

The feature_test_macros man page describes everything you need to know to use these macros.

The main program of this thread-safe who, which we call who4.c, is almost the same as that of
who3.c:

1 L i s t i n g who4 . c
2 #include <s td i o . h>
3 #include <s t d l i b . h>
4 #include <unis td . h>
5
6 #define _GNU_SOURCE
7 #include <utmp . h>
8 #include <f c n t l . h>
9 #include <time . h>
10
11 int main ( int argc , char∗ argv [ ] )
12 {
13 struct utmp utbuf , ∗utbufp ;
14 int utmpfd ;
15
16 i f ( ( argc > 1) && ( strcmp ( argv [ 1 ] , "wtmp" ) == 0) )
17 utmpname(_PATH_WTMP) ;
18 else
19 utmpname(_PATH_UTMP) ;
20
21 s e tu t en t ( ) ;
22 while ( getutent_r(&utbuf , &utbufp ) == 0 )
23 show_info ( &utbuf ) ;
24 endutent ( ) ;
25 return 0 ;
26 }

2.6.8 A POSIX-compliant Version

There is yet another version of the who program, named who_p.c, in the demos directory for this
chapter on the server. This version is distinguished by the fact that it uses the POSIX-compliant
utmpx interface. The utmp structure is not standard across all versions of UNIX. The one we
described above is the GNU implementation, which is what is found on Linux systems. This GNU
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version includes members that may not be present on other systems. In an e�ort to standardize the
utmp interface, the POSIX standards since 2001 have replaced the de�nition of the utmp structure
with a utmpx structure. This structure is only guaranteed to have the following members:

char ut_user[] User login name.

char ut_id[] Unspecified initialization process identifier.

char ut_line[] Device name.

pid_t ut_pid Process ID.

short ut_type Type of entry.

struct timeval ut_tv Time entry was made.

In addition, the functions setutent(), getutent(), and endutent() are replaced by the corre-
sponding functions setutxent(), getutxent(), and endutxent(). In general, the utmpx structure
may de�ne a di�erent set of members than those found in a utmp structure. Linux systems actually
de�ne the utmpx structure to be the same as the utmp structure, unless the _GNU_SOURCE macro is
de�ned. In addition, Linux systems de�ne a larger set of allowed values of the ut_type member than
does POSIX. Programs that are meant to be portable can use conditional compilation with feature
test macros to detect which structure is actually on the system at compile time. The who_p.c

program demonstrates how this is done, but is not included in these notes.

2.6.9 Summary

The preceding set of implementations of the who command demonstrates that the man pages and
header �les can be used to learn enough about a command to implement it. The utmp interface
may not be the same on every UNIX system, and as a result there are several di�erent methods of
approaching the problem. One can use the GNU, non-POSIX, thread-safe version of the interface,
for example, or the POSIX-compliant utmpx interface. One can also use the lower-level system calls,
e.g. read(), to access either the utmpx or the utmp structure directly. A truly portable solution
would use feature test macros to conditionally compile the code depending on what system it is to
be run on. The exercise introduced various concepts along the way, but we are still not �nished
with it. Later we will return to the problem with a more e�cient solution.

2.7 Using a File in Read/Write Mode

Many applications need to have a �le open for both reading and writing. A good example of this is
the logout command. The logout command has to update the utmp �le, �nding within it the record
to be updated (i.e., reading it) and then modifying that record (writing it). Most I/O libraries allow
a �le to be opened for both reading and writing.

2.7.1 Opening a File in Read/Write Mode

Recall that the open() system call's second parameter is a set of �ags stored in an integer, and
that the �ags must include one of the access mode �ags: O_RDONLY, O_WRONLY, and O_RDWR. If the
access mode is set to O_RDWR, then the �le is opened in read/write mode. In read/write mode, the
process can read from and write to the �le. The �le is not truncated as it would be if opened with
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the O_CREAT �ag. Instead it is opened with the current position pointer pointing to the start of the
�le. The current position pointer is a member of the open �le structure, the data structure that is
created by the kernel when a �le is opened. It points to the position of the next byte to read or
write in the �le.

For example, to open the �le whose path is stored in the C-string file_to_open, one could write

if ( ( fd = open(file_to_open, O_RDWR)) == -1 ) {

perror(file_to_open);

// handle error here

}

2.7.2 Logout Records

When a user logs out of a UNIX system, the kernel does some bookkeeping tasks. One of the tasks is
to update the utmp �le to indicate that the user logged out. In particular, it has to change the utmp
record for the login session by changing the ut_type member from USER_PROCESS to DEAD_PROCESS.
It also has to change the ut_timemember to the current time and zero out the ut_user and ut_host

members.

In short, the logout process has to do the following:

1. Open the utmp �le for reading and writing

2. Read the utmp �le until it �nds the record for the terminal from which the logout took place.

3. Modify a copy of the utmp record in the process's memory, and replace the utmp record in the
�le with the modi�ed one, i.e., modify the utmp �le.

4. Close the utmp �le.

The �rst and last steps need no discussion. The second step requires being able to identify which
utmp record in the �le corresponds to the one logout is trying to modify. It cannot use the ut_user
member because a single user might have several lines open at a time. The piece of information that
is unique is stored in the ut_line. The ut_line member stores the name of the pseudo-terminal
as a string such as "pts/4". Only one person can be using a given terminal at the same time, so it
is su�cient to match the line.

The more interesting part of this task is how to replace the utmp record in the �le. The record
may be in the middle of the �le, so this operation involves replacing a �xed-size sequence of bytes
starting at some speci�c position in a �le with a sequence of the exact same size.

2.7.3 Using lseek to Move the File Pointer

As noted above, when a �le is opened and a �le descriptor is returned for it, a data structure is
created by the kernel. This data structure represents the connection to the �le. The current position
pointer of the data structure is the position of the next byte to read or write in the �le. If the �le
is open for reading, a read of N bytes starts at this position, and then the current position pointer
is advanced N bytes. If it is open for writing and writes N bytes, it writes starting at the current

This work is copyrighted by Stewart Weiss and licensed under the Creative Commons Attribution-
ShareAlike 4.0 International License.

29

http://creativecommons.org/licenses/by-sa/4.0/ 
http://creativecommons.org/licenses/by-sa/4.0/ 


UNIX Lecture Notes
Chapter 2 Login Records, File I/O, and Performance

Prof. Stewart Weiss

position and then advances it N bytes. Usually when a �le is open for writing the current position
pointer is at the end of the �le.

The lseek() system call changes the current position pointer in an open �le.

#include <sys/types.h>

#include <unistd.h>

off_t lseek( int fd, off_t dist, int base)

lseek() is given a �le descriptor, fd, a distance in bytes, dist, and an integer �ag, base. base

can be one of three values. The distance, dist, is used by lseek() to move the current position
pointer. If dist is positive, it moves forward; if it is negative, it moves backwards. The value of
base determines the starting position of the current position pointer from which it is to be moved.
The three values are

SEEK_SET the distance dist is forwards relative to the start of the �le,

SEEK_CUR the distance, dist, is relative to the current position pointer and may be positive or
negative

SEEK_END the distance, dist, is relative to the end of the �le and may be positive or negative.

If lseek() is successful, its return value is the resulting o�set location as measured in bytes from
the beginning of the �le, otherwise it returns �1.

When the value of the o�set is positive and the base is SEEK_END, the �le pointer is moved beyond
the end of the �le. Data can be written to this position, and this in e�ect creates a �hole� in the �le.
For example, if a �le is currently open and has the contents �123456789�, and a seek is performed
that moves the �le pointer 5000 bytes past the end, after which the characters �abcde� are written
to the �le, then the �le size will be 5014 bytes, even though there is a hole of 5000 bytes within it.
More will be said about this in Chapter 3.

The lseek() call can be used to code the third step of the logout procedure.

2.7.4 Updating the utmp File on Logout

The problem with updating the utmp �le is the following. We have to �nd the record that corresponds
to the login record on the line on which the logout occurred. Therefore we need to repeatedly read
a utmp record and check whether the ut_line member matches the line. When we �nd the record,
which has been read into a local variable in our function, we modify it and then have to write it
back. But at this point, the current position pointer has already been advanced to point to the
record immediately following the one we just read. Figure 2.1 illustrates this.

In the �gure, the matching record is numbered k. After it is found, the pointer has been advanced
to the start of record k+1. In order to write the modi�ed record where the original was, we need
to move the current position pointer back with lseek(). The following program demonstrates the
key ideas.
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utmp record k−1 utmp record k utmp record k+2utmp record k+1

utmp record k−1 utmp record k utmp record k+2utmp record k+1

... ...

... ...

Figure 2.1: Updating a utmp record in read/write mode

L i s t i n g who5 . c
#inc lude . . . .

i n t main ( i n t argc , char ∗ argv [ ] )
{

s t r u c t utmp utbuf ; // s t o r e s a s i n g l e utmp record
i n t fd ; // f i l e d e s c r i p t o r f o r utmp f i l e
i n t u t s i z e = s i z e o f ( utbuf ) ;
i n t u t l i n e s i z e = s i z e o f ( utbuf . ut_l ine ) ;

i f ( argc < 3 ){ // check usage
f p r i n t f ( s tde r r ,

" usage : %s <utmp−f i l e > <l i n e >\n" , argv [ 0 ] ) ;
e x i t ( 1 ) ;

}

// t ry to open utmp f i l e
i f ( ( fd = open ( argv [ 1 ] , O_RDWR)) == −1 ) {

f p r i n t f ( s tde r r , "Cannot open %s\n" , argv [ 1 ] ) ;
e x i t ( 1 ) ;

}

// I f the l i n e i s l onge r than a ut_l ine permits do not
// cont inue
i f ( s t r l e n ( argv [ 2 ] ) >= UT_LINESIZE ) {

f p r i n t f ( s tde r r , " Improper argument:%s \n" , argv [ 1 ] ) ;
e x i t ( 1 ) ;

}

whi l e ( read ( fd , &utbuf , u t s i z e ) == u t s i z e )
i f ( ( strncmp ( utbuf . ut_line , argv [ 2 ] , u t l i n e s i z e ) == 0)

&& ( utbuf . ut_user [ 0 ] == '\0 ' ) ) {
utbuf . ut_type = DEAD_PROCESS;
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utbuf . ut_user [ 0 ] = ' \ 0 ' ;
utbuf . ut_host [ 0 ] = ' \ 0 ' ;

i f ( gett imeofday(&utbuf . ut_tv , NULL) == 0 ) {
i f ( l s e e k ( fd , −ut s i z e , SEEK_CUR) != −1 )

i f ( wr i t e ( fd , &utbuf , u t s i z e ) != u t s i z e )
e x i t ( 1 ) ;

}
e l s e {

f p r i n t f ( s tde r r , "Error g e t t i n g time o f day\n " ) ;
e x i t ( 1 ) ;

}
break ;

}
c l o s e ( fd ) ;
r e turn 0 ;

}

Notice that every system call is tested for failure before its result is used (except for the call to
write()). Here, the calls are embedded within the conditional expressions of the if and while

statements above. The �rst if checks whether the record read in the while condition has the same
terminal line as the one we are looking for (stored in the variable line) and the user member is
not null. If this is successful, the type member ut_type of the record is set to the DEAD_PROCESS

type, the user and host members are set to null strings, and the time member, ut_tv, is updated to
the current time. If this is successful, the lseek() call moves the current pointer back to the start
of the last matched record, so that the write operation that follows will replace the old record. If
the write operation is reached and executes without error (determined by checking that the number
of bytes written is equal to the number requested to be written), then the program returns 0 for
success.

2.7.5 Another Use of lseek

One other use of lseek() is determining an open �le's size without having to look at its properties.
Recall that the return value of lseek() is the location of the �le pointer after it has been moved,
relative to the beginning of the �le, and expressed in bytes. If we move the �le pointer to the end
of the �le using lseek(), then we get its size as the return value. If fd is a �le descriptor for the
given �le, then

size_t filesize = lseek(fd, 0, SEEK_END);

stores the size of the �le into the variable filesize. We will make use of this soon.

2.8 Performance and E�ciency : Writing the cp Command

The who program was an exercise in reading a system data �le and extracting information from
it. It was a naive start, in that we did not pay much attention to its e�ciency, which is of utmost
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concern with most software. To demonstrate the problem a bit more clearly, we will implement a
di�erent command, one whose e�ciency or lack thereof will be much more obvious. Then we will
take what we learned from that exercise and apply it to the who program in our �nal version. The
command of interest is the cp command, which copies one or more �les or directories.

2.8.1 What cp Does

If you are familiar with the cp command you can skip this section. There are several di�erent ways
in which the cp command can be used. The simplest is to make a copy of a single �le:

$ cp source_file target_file

Whether or not target_file already exists, cp makes a copy of source_file named target_file.
If it does exist, it will be overwritten, an act known as clobbering. This is dangerous, as you cannot
recover the �le once you have clobbered it. To prevent accidental overwrites, the interactive option
-i should always be used, as in

$ cp -i source_file target_file

cp: overwrite `target_file'? n

It is a good idea to de�ne an alias in the .bashrc �le,

alias cp='cp -i'

so that you never forget to use the interactive mode.

If a new �le is created, it will have the permissions and ownership of the source �le. If an existing �le
is overwritten, it retains the permissions and ownership it had before the copy. No other attributes
are preserved in a copy. To preserve the time-stamps and other attributes, you must use the -p (p
for preserve) option.

Another form of the cp command is

$ cp source_file ... target_dir

in which the very last word on the command line, target_dir, is a directory and all preceding
words are non-directory �les. In this case, if the directory does not exist, it is an error. Otherwise
all of the source �les are copied into the directory with their existing permissions and names. If any
names already exist in the target directory, the rules described above apply.

In the last form,

$ cp -r |-R source source ... target_dir

the sources can include directory names. All of the �les and directories speci�ed on the command-
line, up to but not including target_dir, are copied into target_dir, which must already exist.
The �r or �R option must be speci�ed otherwise it is a syntax error. The �r speci�es that the
directories will be copied recursively. The �R is essentially the same; the di�erence has to do with
how they handle pipes, which is unimportant now.

For the remainder of the chapter, we try to understand the implementation of the simple form of
the command, without any options.

This work is copyrighted by Stewart Weiss and licensed under the Creative Commons Attribution-
ShareAlike 4.0 International License.

33

http://creativecommons.org/licenses/by-sa/4.0/ 
http://creativecommons.org/licenses/by-sa/4.0/ 


UNIX Lecture Notes
Chapter 2 Login Records, File I/O, and Performance

Prof. Stewart Weiss

2.8.2 Opening/Creating Files For Writing

The cp command has to create a �le if it does not exist and open it for writing, or overwrite it if it
does exist. To overwrite a �le, it is �rst truncated, i.e., its length is set to 0, and then the new data
is written to the empty �le.

2.8.2.1 Creating/Truncating Files

The �rst task is to learn how to create �les and truncate them. In fact, one call accomplishes both.
The creat() system call is used to open a �le for writing, if it exists, setting its length to 0 �rst, or
if it does not exist, to create it. Notice that there is no "e" at the end of creat. If you type �man
creat� you will get the man page for the open() system call:

#include <sys/types.h>

#include <sys/stat.h>

#include <fcntl.h>

int open(const char *pathname, int flags);

int open(const char *pathname, int flags, mode_t mode);

int creat(const char *path, mode_t mode);

The creat() system call has two arguments, a C string and a mode_t. The string should contain
the path name of the �le to be created and the mode_t speci�es the �le's mode, i.e., its permission
string, as an octal number. For example,

fd = creat("prototype", 0751)

creates a �le named prototype in the current working directory, if it does not exist, with permission
0751 (owner can read, write, and execute, group can read and execute, others can execute only)
provided that the process's umask does not modify the permission. Umasks are covered in the next
chapter. If the �le exists, the mode argument is ignored and the �le is truncated14. In either case,
upon termination of the call, fd is a �le descriptor associated with the write-only connection to the
�le.

2.8.2.2 Writing to Files

Having opened a �le for writing, the next step is to write data into it. The write() system call
is a symmetric counterpart to the read() call. It is used for writing sequences of bytes to the �le
speci�ed by a given �le descriptor:

#include <unistd.h>

ssize_t write(int fildes, const void *buf, size_t nbyte);

14It is possible to prevent the �le from being overwritten in case it exists, but not if you use the creat() call to try
to create it. Instead the open() call must be used. Chapter 4 covers the various methods of opening a �le for writing.
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The size_t type stores the sizes of things in bytes. It is usually a typedef of an unsigned long
integer, which may be 32 or 64 bits. The ssize_t type is almost the same as the size_t type.
It di�ers only in that it is signed and that it can also store a �1. If successful, the write() call
transfers nbyte bytes from the memory location pointed to by buf in the process's address space
to the position of the �le-pointer in the �le associated with fd, and returns the number of bytes
transferred. If the kernel cannot copy any of the data, write() returns �1.

The word "bu�er" is used to describe the second parameter in the read() and write() system
calls. It is declared as a void pointer. It is called a bu�er because it is a storage location in the
memory space of the calling process that is used to hold the data to be transferred to or from the
�le.

The code fragment

if (write(fd, buffer, num_bytes) != num_bytes ) {

fprintf(stderr, "Problem writing to file.\n");

}

attempts to transfer num_bytes bytes from the memory location pointed to by buffer to the position
of the �le pointer in the �le opened for writing via the �le descriptor fd. (By default, the �le pointer
is at �the end� of the �le, unless it has been moved elsewhere.) The reason for the condition

if (write(fd,buffer,num_bytes) != num_bytes)

is that the return value of write() is the number of bytes actually written and it may not be equal
to the number of bytes that were supposed to be written. The number of bytes successfully written
may be less than num_bytes for any number of reasons. The �le might have reached a prede�ned
maximum size, the disk might be full, or the user's disk quota might be reached. This is why it is
necessary to compare the return value of the write() call with the value of its third parameter.

2.8.3 A First Attempt at cp

The structure of the cp command is

open the source�le for reading
open the copy�le for writing
while a read of data from the source�le to a bu�er is not an empty read
write the data from the bu�er to the copy�le
close the source�le
close the copy�le

We know how to open and close �les and we know how to read and write them, so this is a relatively
easy program for us at this point. The only points that need explanation are how we create and use
bu�ers. For example, how big should the bu�er be? How do we declare it and pass it to the calls?
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1 L i s t i n g cp1 . c
2 // F i r s t at tempt at cp command , based on a program
3 // by Bruce Molay in Understanding Uunix/Linux Programming , p .53
4
5 #include <s td i o . h>
6 #include <unis td . h>
7 #include <f c n t l . h>
8
9 #define BUFFERSIZE 4096
10 #define COPYMODE 0644
11
12 void d i e (char∗ s t r ing1 , char∗ s t r i n g 2 ) ; // p r i n t er ror and q u i t
13
14 int main ( int argc , char ∗argv [ ] )
15 {
16 int source_fd , target_fd , n_chars ;
17 char buf [BUFFERSIZE ] ;
18
19 i f ( argc != 3 ){
20 f p r i n t f ( s tde r r , " u s ag e :  %s  s o u r c e  d e s t i n a t i o n \n" ,
21 ∗argv ) ;
22 e x i t ( 1 ) ;
23 }
24
25 // t r y to open f i l e s
26 i f ( ( source_fd = open ( argv [ 1 ] , O_RDONLY)) == −1 )
27 d i e ( "Cannot  open  " , argv [ 1 ] ) ;
28 i f ( ( target_fd = cr ea t ( argv [ 2 ] , COPYMODE)) == −1 )
29 d i e ( "Cannot  c r e a t " , argv [ 2 ] ) ;
30
31 // copy from source to t a r g e t
32 while ( ( n_chars = read ( source_fd , buf , BUFFERSIZE) )
33 > 0 ) {
34 i f ( n_chars != wr i t e ( target_fd , buf , n_chars ) )
35 d i e ( "Wri te  e r r o r  t o  " , argv [ 2 ] ) ;
36 }
37 i f ( −1 == n_chars )
38 d i e ( "Read e r r o r  f rom  " , argv [ 1 ] ) ;
39
40 // c l o s e both f i l e s
41 i f ( c l o s e ( source_fd ) == −1 | | c l o s e ( target_fd ) == −1 )
42 d i e ( " E r r o r  c l o s i n g  f i l e s " , " " ) ;
43
44 return 0 ;
45 }
46
47 void d i e (char ∗ s t r ing1 , char ∗ s t r i n g 2 )
48 {
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49 f p r i n t f ( s tde r r , " E r r o r :  %s  " , s t r i n g 1 ) ;
50 pe r ro r ( s t r i n g 2 ) ;
51 e x i t ( 1 ) ;
52 }

Comments

• The bu�er is declared as an array of BUFFERSIZE chars, which is equal to the maximum
number read in a read() call.

• The die() function encapsulates the error handling logic and calls the perror() function.

• Every call to a function in the API is checked for a possible error.

• The main work is in the while loop (lines 32-36). The entry condition is that the read() call
transferred one or more bytes. The body is the call to write the bytes just read to the output
�le. The return value of write() is checked to see if the number of bytes transferred equals
the number requested by the call.

If you compile and run this program you will see that it works correctly. But does it run fast? How
long will it take to copy a very large �le? How does one time programs in UNIX?

2.8.4 Timing Programs

The time command is a means of measuring the amount of time (and other resources) that a
command uses. The time command has many options, but its simplest form is

$ time -p command

where command is the command that you wish to know about. The '-p' option tells time to display
the traditional POSIX output, which consists of three values, each measured in seconds to two
decimal places:

• Elapsed clock time, denoted �real�

• User time, denoted �user�

• System time, denoted �sys�

Elapsed time is the number of seconds from when the command was invoked until it completed.
User time is the total amount of time that the process, and any children executing on its behalf,
spent running in user mode. System time is the total amount of time spent on the process's behalf
running within the kernel, i.e., in privileged mode, including such time spent by its children as well.
Non-POSIX output may be more voluminous; you can read the man page for further details. Also,
shells such as bash typically de�ne their own version of the time command, so it is best to type the
full path name when using it, if you want the non-bash version.

I created a �le named bigfile containing about 30 MB of data. When I ran
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$ time -p cp1 bigfile copy_of_bigfile

I got the following output on one of the UNIX systems at Hunter College:

real 4.05

user 0.01

sys 0.02

What accounts for the di�erence between the sum of user and system times and the elapsed time?
It is the time that the process spent waiting for I/O to complete. When a process issues a request
for I/O, it is blocked until the I/O is complete. The time that it spends in this blocked, or waiting,
state is part of the elapsed (real) time. cp1 spent about 4 seconds waiting for I/O. Although the
amount of time that a process spends waiting for I/O depends heavily on what else the system
is doing, the more calls it makes, the longer it will take, on average. The reason for this will be
explained below.

As we use cp1 on larger and larger �les, we will see worse performance. To create a spreadsheet
with the results of the time command I used a di�erent option to it:

/usr/bin/time -f "\t%e\t%U\t%S"

The -f option expects a format string, which I supplied as a tab-separated string of real-time, user-
time, and system-time format symbols. This allowed me to open the output with a spreadsheet
program for analysis:

File Size
(bytes)

Real User Sys

19,004,256 17.28 0.00 0.05

38,008,512 39.17 0.01 0.11

76,017,024 73.69 0.00 0.21

Notice that the real and system times increase roughly in proportion to the size of the �le over this
small sample.

2.8.5 Bu�ering and its Impact on Performance

Consider the cp1 program above. Suppose that N is the size of the �le to be copied, measured
in bytes. Then the while loop in lines 32 through 36 iterates dN/BUFFERSIZEe times, since
each iteration copies BUFFERSIZE bytes. It follows that as BUFFERSIZE is increased the number of
iterations decreases inversely, i.e., if we double the bu�er size, we halve the number of calls to both
read() and write(). The question is, how is the total running time a�ected as the bu�er size
increases, in general? Is the amount of time to make a single call to read() proportional to the
number of bytes to be read, or are there other components of its running time that are not related
to the size of the read?

To answer this question, we will �rst perform a little experiment. We will revise the cp program
so that the bu�er size is an input parameter, and run the program on a very large input �le with
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successively larger bu�er sizes, recording the three components of running time reported by the
time command for each run, and tabulating results. The revised program, called cp2.c, is in the
listing below.

1 L i s t i n g cp2 . c : a v e r s i on o f cp with bu f f e r s i z e g iven on the
2 command l i n e
3 // i n c l u d e s and d e f i n e s omit ted here
4
5 int main ( int argc , char ∗argv [ ] )
6 {
7 int BUFFERSIZE;
8 char endptr [ 2 5 5 ] ;
9 int source_fd , target_fd , n_chars ;
10 char ∗buf ;
11
12 // need to check f o r 3 arguments i n s t e ad o f 2
13 i f ( argc != 4 ){
14 f p r i n t f ( s tde r r ,
15 " u s ag e :  %s  b u f f e r s i z e  s o u r c e  d e s t i n a t i o n \n" ,
16 argv [ 0 ] ) ;
17 e x i t ( 1 ) ;
18 }
19 // e x t r a c t number from s t r i n g
20 BUFFERSIZE = s t r t o l ( argv [ 1 ] , (char∗∗) &endptr , 0 ) ;
21 i f (BUFFERSIZE == 0) {
22 f p r i n t f ( s tde r r ,
23 " u s ag e :  b u f f e r s i z e  must  be  a  number \n" ) ;
24 e x i t ( 1 ) ;
25 }
26
27 // SNIP : code cut out here , i n c l u d i n g error hand l ing
28
29 /∗ a l l o c a t e b u f f e r o f s i z e BUFFERSIZE ∗/
30 buf = (char∗) c a l l o c (BUFFERSIZE, s izeof (char ) ) ;
31 i f ( NULL == buf ) {
32 f p r i n t f ( s tde r r ,
33 " Could  not  a l l o c a t e  memory f o r  b u f f e r . \ n" ) ;
34 e x i t ( 1 ) ;
35 }
36
37 // Every th ing e l s e i s the same from t h i s po in t forward ,
38 // and omit ted from the l i s t i n g

For those who have not seen it before, calloc() (in line 30) and its companion, malloc() are
dynamic memory allocation functions in C. The prototype for calloc() is

void *calloc(size_t nelem, size_t elsize);
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Unlike malloc(), calloc() takes two arguments: the number of elements, and the size in bytes of
each element, and it attempts to allocate space for an array of nelem elements, each of size elsize.
If it is successful, it returns a void* pointer to the start of the array and �lls the allocated memory
with zeros. This pointer should be cast to the appropriate type before using it.

The table below shows the e�ect of bu�er size on the elapsed, user, and system times when copying
a �le of size 19MB on a particular host in the Computer Science Department network at Hunter
College running RHEL 4. As you can see, the user and system times roughly decrease in inverse
proportion to the bu�er size for most of the sampled range of values. The user time decreases
because the process spends less time in its own code, since there are fewer iterations of the loop and
hence fewer instructions to execute. The system time decreases for the same reason � the read()

and write() system calls are executed fewer times and therefore less time is spent in the kernel.
The elapsed time tends to reach a steady value after the bu�er size reaches 16. Since the total of
the user and system time continues to decrease for bu�er sizes greater than 16, this suggests that
the limiting factor is the time that the process spends waiting for the I/O operations to complete.

Bu�er
Size(bytes)

Real User Sys

2 50.19 3.11 28.27
4 33.27 1.59 13.09
8 24.28 0.76 6.08
16 22.56 0.39 3.08
32 20.53 0.21 1.57
64 21.66 0.10 0.78
128 20.12 0.04 0.43
256 18.27 0.02 0.24
512 19.70 0.00 0.15
1024 18.86 0.00 0.09

As the bu�er gets larger, the kernel is called fewer times to transfer the data: as we stated above, if
N is �le size and B is bu�er size, the number of calls is c = dN/Be. Another way to say this is that
cB is constant. The table shows that, if s is total system time, sB is also approximately constant,
except for B > 256. In other words, the total system time is roughly proportional to the number of
calls made for small values of B. For larger values of B, the total system time is not in proportion
to the number of calls, but is larger than it. Why is this?

There are two components to the running time of an I/O operation: the transfer time and the
overhead. The overhead is largely independent of the number of bytes to be read or written; each
read or write request to the disk has overhead that does not depend much on how much data is
to be transferred. This includes various components of time required by the device to set up and
initiate the transfer. It also includes the cost of the system call itself, which is not always negligible.

The transfer time is the time that it actually takes to copy data between the device and memory and
is a function of the amount of data. The kernel's involvement in this transfer in modern machines
with DMA is minor; it mostly just starts it and does more work when it is �nished. Nonetheless,
the kernel's involvement is a function of the amount of data to be transferred. Therefore, if B is
bu�er size, O is the overhead of a I/O operation, and t is a constant such that tB is the amount of
time the kernel spends in a single transfer operation, a single read() or write() system call uses
O + tB time units, and the program takes (NB ) · (O + tB) = ON

B + tN = N · (OB + t) time. Since
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N is the size of our data and does not change, you can see that the system time is proportional to
(OB + t). This explains why the system time does not keep diminishing by half. Eventually the t
term is large in proportion to the O

B term. When O is very large in comparison to t, doubling B
halves the expression, but otherwise it does not.

As we shall see shortly, in UNIX in particular, the design of a bu�ering system within the I/O
system makes the transfer time on average even smaller.

2.8.6 System Call Overhead

System calls have overhead. When a user process makes a call to the kernel for some kind of service,
the user process stops executing instructions in its own user space and starts executing instructions
that are physically located in kernel space. Prior to making the call, the process executes the
user program in a non-privileged mode, also known as user mode, and this phase of the process is
called the user phase. During the system call, the process executes system code with the privileges
accorded the kernel, and is said to be in supervisor or kernel mode; this is called the kernel phase of
the process15. When the call terminates, this kernel phase terminates and the user phase resumes.
This is a form of context-switch. A context-switch occurs when the kernel changes the currently
executed memory image (the context). This can happen because a new process is run or because the
kernel runs on behalf of a process, requiring that the memory image be switched. In some versions
of UNIX such as Linux 2.6, a full context switch is not performed when a process changes from user
phase to kernel phase or vice-versa.

The kernel needs to execute in kernel mode because it has to have access to all hardware instructions.
In contrast, user processes must be prevented from executing special instructions. Therefore, when
the system call is made, the machine must change mode twice, at the start and at the end of the
call. It must also change the CPU state, because when the kernel runs, it has a di�erent address
space, di�erent sets of resources, and so on. All of this changing means that a system call adds
overhead to the running time of the program.

2.8.7 System Bu�ering

In addition to the overhead of the system call itself, there is overhead involved with read() and
write() system calls. When a user process issues a read request from a disk, for example, the kernel
does not transfer the data directly from the disk to the address space of the user process. Instead,
it transfers the data from the disk to a bu�er in kernel memory, and when all of the data has been
transferred, it copies it into the user process's address space. This copying of data from kernel
memory to user memory takes additional time. The symmetric situation occurs on writes: the
kernel copies the data from the user address space into kernel memory, and from there it transfers
it to disk16.

UNIX uses this bu�ering scheme only for certain types of input and output17, particularly for read

15On some UNIX systems, such as Linux 2.6, the user phase and kernel phase are called user mode and kernel
mode respectively.

16There is a way to avoid this copying of data back and forth. Memory mapping is a method of I/O in which disk
�les are mapped directly into user memory. This topic will be discussed in a later chapter. If you are curious, read
about the mmap() and munmap() system calls.

17There are two types of I/O in UNIX: block I/O and character I/O. The block I/O system in UNIX is used for
block devices such as magnetic and optical disks and tapes. Character I/O is used for devices that are inherently
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and write operations to and from disks. While it may seem at �rst that it just adds overhead, in
fact it is a powerful and e�cient method of reducing overall time spent performing I/O.

The bu�ering scheme for both reading and writing makes it seem as if read operations read directly
from the device and write operations take place immediately. In fact, the kernel hides from the user
an important layer of complexity. To understand this complexity, one needs to know a bit about
how the disk is organized.

The disk is organized as a collection of �xed-size disk blocks. Disk blocks are numbered so that
they can be identi�ed. Each logical disk or disk partition has a unique name in UNIX, such as sd0a
or rsd2b.

The kernel maintains a pool of bu�ers in kernel memory that can be assigned to each device. Each
bu�er is given a name, corresponding to the device to which it is assigned and the particular block
whose contents it holds. For example, a bu�er might be assigned block 511 from disk rsd2b.

On a read request by a process, the bu�er pool is searched for a bu�er whose name matches the
block being sought on the disk. If a bu�er is found, the data is read directly from memory without
any physical I/O. If the bu�er is not found, the data must be read from disk. A bu�er will most
likely have to be reused for this data. A least recently used (LRU) algorithm is used to decide which
bu�er to replace. After the bu�er is selected, if it is "dirty" its contents are written to disk. Bu�ers
are dirty if they were modi�ed since the last time they were written to disk. The bu�er is renamed
to match the block being read and the read is performed.

Write requests are handled similarly. When a process requests a write to a speci�c block on a disk,
the bu�er pool is searched and if a bu�er is not found whose name matches the disk address to be
written, a new bu�er is allocated for this write operation. If no bu�er is available, a block is chosen
using the LRU algorithm and relabeled. The data is stored in the bu�er without any physical I/O
(i.e, disk accesses) and the bu�er is marked dirty. The write will be performed only when the block
is renamed.

Note that this scheme can greatly reduce the need to perform disk I/O, because reads and writes
can take place in memory, which is much faster, and it is completely transparent to the user. But
what happens if the system suddenly comes to an unexpected halt? Unless the system has time to
"�ush" its bu�ers, the updates are lost. This is why one should never halt a system in the wrong
way.

The advantages of bu�ering are a reduction in physical I/O and therefore a decrease in the overall
e�ective disk access time. The disadvantages include that

• I/O error reporting can lag behind the logical I/O and therefore can become meaningless,

• delayed disk writes can cause loss of data and �le system inconsistencies in the event of
unexpected system halts, and

• the order in which bu�ers are written to the external device may not be the same as the
order in which the logical I/O occurs, and unless programs are designed with this in mind,
disk-based data structures can become inconsistent.

Writes to sequential devices such as tape drives generally do not exhibit this problem because the
drivers are only allowed one outstanding write request per drive. In other words, if a logical write

one-character-at-a-time devices, such as the keyboard and terminals in general. Character I/O does not use kernel
bu�ers for I/O. All block I/O uses the kernel's bu�ering system.
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operation is requested for a particular drive, but there is a request that has not yet been satis�ed
by a physical write, the second request cannot be satis�ed until the �rst physical write takes place.
A device like a tape drive will reject requests for service until it �nishes what it is doing. It is a
one-job-at-a-time device.

In Linux 2.6 and later, the kernel o�ers a service named direct I/O for processes that wish to bypass
the kernel bu�ering system for block I/O. Certain types of programs such as database servers need
to implement their own caching schemes for e�ciency. Forcing them to also use the kernel bu�ering
system would slow them down signi�cantly and make the system ine�cient, because then there
would be duplicate copies of blocks: those in the database server's cache and those in the kernel's
cache. With direct I/O transfers, the kernel transfers data directly between the disk and user space.
Unfortunately, there are many problems associated with direct I/O, which you can read about in
the man page for the open() system call. An apt conclusion is reached at the bottom of that page,
with a quote from Linus Torvalds:

In summary, O_DIRECT is a potentially powerful tool that should be used with caution. It
is recommended that applications treat use of O_DIRECT as a performance option which
is disabled by default.

"The thing that has always disturbed me about O_DIRECT is that the whole interface is
just stupid, and was probably designed by a deranged monkey on some serious mind-
controlling substances."

� Linus

2.8.8 Memory Mapped I/O

Memory mapping is a way to perform I/O without kernel bu�ering, and it is fully supported on
almost all systems. The concept has been around for a long time. The idea in its simplest form
is easy to understand: a process can request that a �le be mapped to a set of virtual memory
addresses. Changes to those addresses are, in e�ect, writes to the �le. Reads of those addresses are
reads of the �le.

The actual use of the memory mapping system calls, mmap() and munmap(), is a bit more complex
than this. The purpose of munmap(), as its name suggests, is to undo a mapping. The mmap() call
has several parameters. We introduce memory mapping by writing the cp program a third way,
using memory mapped I/O instead of reading and writing.

The basic idea is to follow the sequence of steps outlined below:

1. Map the entire input �le to a region of memory. Assume it starts at address source_addr.

2. Determine the size of the input �le in bytes. Call it filesize.

3. Create an output �le with the given name and make it the same size as the input �le.

4. Map the output �le to a region of memory the exact same size as the �le. Assume it starts at
address dest_addr.

5. Do a single memory-to-memory copy of filesize bytes from source_addr to dest_addr

using memcpy().
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6. Undo the mappings and close the �les.

This causes the input to be copied to the output without any reads or writes. In order to implement
these steps we need to know the prototypes of the mapping functions and memcpy(). The prototypes
are

#include <sys/mman.h>

void *mmap(void *addr, size_t length, int prot, int flags, int fd, off_t offset);

int munmap(void *addr, size_t length);

The mmap() call creates a new mapping in the virtual address space of the calling process. The
starting address for the new mapping is speci�ed in the �rst argument, addr. The second argument,
length, speci�es the length in bytes of the mapping.

If addr is NULL, then the kernel chooses the address at which to create the mapping; this is the
most portable method of creating a new mapping. If addr is not NULL, then the kernel takes it as
a hint about where to place the mapping; on Linux, the mapping will be created at a nearby page
boundary. The address of the new mapping is returned as the result of the call. It is best to always
use NULL as the �rst argument.

The third argument describes the memory protection of the mapping; it must not con�ict with the
open mode of the �le. The possible values are

PROT_EXEC Pages may be executed.

PROT_READ Pages may be read.

PROT_WRITE Pages may be written.

PROT_NONE Pages may not be accessed.

They can be or-ed together. In other words, if the �le was opened read-only (O_RDONLY), then the
value should be PROT_READ. If it was opened read-write, then it should be set to PROT_READ|PROT_WRITE.
A warning about this follows below.

The fourth argument determines whether updates to the mapping are visible to other processes
mapping the same region, and whether updates are carried through to the underlying �le. This
behavior is determined by including exactly one of the following values in �ags:

MAP_SHARED Share this mapping. Updates to the mapping are visible to other processes that map
this �le, and are carried through to the underlying �le. The �le may not actually be
updated until msync() or munmap() is called.

MAP_PRIVATE Create a private copy-on-write mapping. Updates to the mapping are not visible to
other processes mapping the same �le, and are not carried through to the underlying
�le. It is unspeci�ed whether changes made to the �le after the mmap() call are visible
in the mapped region.
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Because we want to do I/O we need to set the �ag to MAP_SHARED, otherwise no changes will appear
in the output �le. There are other values that can be or-ed to this �ag, but we will not discuss them
at this point.

The next two arguments are the �le descriptor of the �le to be mapped and the o�set in bytes
relative to the start of the �le at which to map the �le. In other words, if you want to map only
the portion of the �le after the �rst N bytes, you would pass N as the last argument.

What you need to know is that the memory region is always a multiple of the page size of the
machine and must be allocated as such. If the length is not a multiple of page size, the last page
will be partly �lled. The starting address must always be a multiple of page size. For now this is
not our concern. After we learn how to get the page size of the machine, we will return to this issue.

A caveat � the documentation on my Linux system states that mmap() has been deprecated in
favor of mmap2(), but mmap2() does not exist on it. In fact, glibc (GNU's C Standard Library)
implements mmap() as a wrapper for the kernel's mmap2() call, so mmap() is actually mmap2().

Our third copy program is in the listing below. It does not include all of the error-checking and
handling that it should, but most is included. It makes use of memcpy() to do the actual transfer of
bytes from the source to the destination, but it does so within memory. The prototype for memcpy()
is

#include <string.h>

void *memcpy(void *dest, const void *src, size_t n);

where src is a pointer to the start of the memory to be copied, dest is the starting address where
the bytes should be written, and n is the number of bytes to copy. The memory areas cannot
overlap. In other words the absolute value of (dest - src) must be greater than n.

L i s t i n g cp3 . c −− a copy program us ing memory−mapped I /O

#inc lude <sys /mman. h>
#inc lude <sys / s t a t . h>
#inc lude <s t r i n g . h>
#inc lude <s t d l i b . h>
#inc lude <uni s td . h>
#inc lude <s td i o . h>
#inc lude <f c n t l . h>
#inc lude " . . / u t i l i t i e s / d i e . h"

#de f i n e COPYMODE 0666

i n t main ( i n t argc , char ∗argv [ ] )
{

i n t in_fd , out_fd ;
s i ze_t f i l e s i z e ;
char nu l l by t e ;
void ∗ source_addr ;
void ∗dest_addr ;
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/∗ check args ∗/
i f ( argc != 3 ){

f p r i n t f ( s tde r r , " usage : %s source d e s t i n a t i on \n" , ∗argv ) ;
e x i t ( 1 ) ;

}

/∗ open f i l e s ∗/
i f ( ( in_fd = open ( argv [ 1 ] , O_RDONLY)) == −1 )

d i e ("Cannot open " , argv [ 1 ] ) ;

/∗ The f i l e to be c rea ted must be opened in read/wr i t e mode
because o f how mmap( ) ' s PROT_WRITE works on i386 a r c h i t e c t u r e s .
According to the man page , on some hardware a r c h i t e c t u r e s ( e . g . ,
i 386 ) , PROT_WRITE imp l i e s PROT_READ. Therefore , s e t t i n g the
p ro t e c t i on f l a g to PROT_WRITE i s equ iva l en t to s e t t i n g i t to
PROT_WRITE|PROT_READ i f the machine a r c h i t e c t u r e i s i 386 or the
l i k e . S ince t h i s f l a g has to match the f l a g s by which the mapped
f i l e was opened , I s e t the opening f l a g s d i f f e r e n t l y f o r the
i386 a r c h i t e c t u r e than f o r o the r s .

∗/
#i f de f ined ( i386 ) | | d e f i n ed (__x86_64) | | d e f ined (__x86_64__) \

| | de f i ned ( i686 )
i f ( ( out_fd = open ( argv [ 2 ] , O_RDWR | O_CREAT |

O_TRUNC, COPYMODE )) == −1 )
d i e ( "Cannot c r e a t e " , argv [ 2 ] ) ;

#e l s e
i f ( ( out_fd = open ( argv [ 2 ] , O_WRONLY | O_CREAT |

O_TRUNC, COPYMODE )) == −1 )
d i e ( "Cannot c r e a t e " , argv [ 2 ] ) ;

#end i f
/∗ get the s i z e o f the source f i l e by seek ing to the end o f i t :

l s e e k ( ) r e tu rn s the o f f s e t l o c a t i o n o f the f i l e po in t e r a f t e r
the seek r e l a t i v e to the beg inn ing o f the f i l e , so t h i s i s a
good way to get an opened f i l e ' s s i z e .

∗/
i f ( ( f i l e s i z e = l s e e k ( in_fd , 0 , SEEK_END) ) == −1 )

d i e ( "Could not seek to end o f f i l e " , argv [ 1 ] ) ;

/∗ By seek ing to f i l e s i z e in the new f i l e , the f i l e can be grown
to that s i z e . I t s s i z e does not change un t i l a wr i t e occurs
the re .

∗/
l s e e k ( out_fd , f i l e s i z e −1, SEEK_SET) ;

/∗ So we wr i t e the NULL byte and f i l e s i z e i s now s e t to f i l e s i z e .
∗/
wr i t e ( out_fd , &nul lbyte , 1 ) ;
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/∗ Time to s e t up the memory maps ∗/
i f ( ( source_addr = mmap(NULL, f i l e s i z e , PROT_READ,

MAP_SHARED, in_fd , 0) ) == ( void ∗) −1 )
d i e ( "Error mapping f i l e " , argv [ 1 ] ) ;

i f ( ( dest_addr = mmap(NULL, f i l e s i z e , PROT_WRITE,
MAP_SHARED, out_fd , 0) ) == ( void ∗) −1 )

d i e ( "Error mapping f i l e " , argv [ 2 ] ) ;

/∗ copy the input to output by doing a memcpy ∗/
memcpy( dest_addr , source_addr , f i l e s i z e ) ;

/∗ unmap the f i l e s ∗/
munmap( source_addr , f i l e s i z e ) ;
munmap( dest_addr , f i l e s i z e ) ;

/∗ c l o s e the f i l e s ∗/
c l o s e ( in_fd ) ;
c l o s e ( out_fd ) ;

r e turn 0 ;

}

2.9 Returning to who

Our previous implementations of who read one utmp record at a time. Each read requires a system
call, even though a single utmp record is quite small and there are many of them. We now know
that this is ine�cient. Just as the cp command can bene�t by increasing bu�er size, so too can
who. We will modify it so that it reads several utmp records at a time and stores them in an internal
array. We are now up to version 5, and this version will be called who5.c18.

2.9.1 User-De�ned Bu�ering

A process is said to perform input bu�ering when it requests more data than it can process in an
input operation and stores the extra data in its own memory space until it is ready to use it. Input
bu�ering is a way to reduce the cost of input operations because it decreases the amount of time
that the process spends in system calls.

In order for who to perform input bu�ering, it needs a place to store the extra records until it is
ready to use them. The logical place is in an array of records. If it reads 20 records at a time, for
example, then these 20 records will be placed into its internal array. It can maintain a pointer to a
current record. Each time it needs to examine a new record, it checks whether the current record
pointer has exceeded the array bounds. If it has, it attempts to fetch the next 20 records from the

18This idea is borrowed from Bruce Molay, Understanding Unix/Linux Programming, Prentice Hall.2003.
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utmp �le and �ll the array with them. If no records are left in the �le, it cannot obtain a new record,
and it is �nished. Otherwise, it fetches as many as it can, up to 20, and then gets the current record
from the array and advances the current record pointer.

The logic for input bu�ering is encapsulated into a separate library of routines for interacting with
the utmp records, called utmp_utils.c. The interface to this library consists of three functions:
open_utmp(), next_utmp(), and close_utmp(). The open_utmp() function opens the given utmp

�le, the next_utmp() function delivers the next record, reading a new chunk from the �le if the
bu�er is empty, and the close_utmp() closes the �le. The interface follows.

L i s t i n g utmp_utils . h
typede f s t r u c t utmp utmp_record ;

i n t open_utmp( char ∗ utmp_file ) ;
// opens the g iven utmp_file f o r bu f f e r ed read ing
// r e tu rn s : a va l i d f i l e d e s c r i p t o r on suc c e s s
// −1 on e r r o r

utmp_record ∗next_utmp ( ) ;
// r e tu rn s : a po in t e r to the next utmp record from the
// opened f i l e and advances to the next record
// NULL i f no more r e co rd s are in the f i l e

void close_utmp ( ) ;
// c l o s e s the utmp f i l e and f r e e s the f i l e d e s c r i p t o r

The implementation of the library is next. It uses global variables (static variables) so that the
functions can communicate. We do not want to pass these as parameters, because then client code
would have to do that as well, breaking the abstraction. If this were written in C++, this library
would be a class instead, and the globals would be member variables.

1 L i s t i n g utmp_utils . c
2 #include <s td i o . h>
3 #include <f c n t l . h>
4 #include <sys / types . h>
5 #include <utmp . h>
6
7 #define NUM_RECORDS 20
8 #define NULL_UTMP_RECORD_PTR (( utmp_record ∗) NULL)
9 #define SIZE_OF_UTMP_RECORD ( s izeof ( utmp_record ) )
10 #define BUFSIZE (NUM_RECORDS ∗ SIZE_OF_UTMP_RECORD)
11
12 stat ic char utmpbuf [BUFSIZE ] ; // b u f f e r o f records
13 stat ic int number_of_recs_in_buffer ; // num records in b u f f e r
14 stat ic int current_record ; // next rec to read
15 stat ic int fd_utmp = −1; // f i l e d e s c r i p t o r f o r utmp f i l e
16
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17 int open_utmp( char ∗ utmp_file )
18 {
19 fd_utmp = open ( utmp_file , O_RDONLY ) ;
20 current_record = 0 ;
21 number_of_recs_in_buffer = 0 ;
22 return fd_utmp ; // e i t h e r a v a l i d f i l e d e s c r i p t o r or −1
23 }
24
25 int f i l l_utmp ( )
26 {
27 int bytes_read ;
28
29 // read NUM_RECORDS records from the utmp f i l e i n t o b u f f e r
30 // bytes_read i s the a c t ua l number o f b y t e s read
31 bytes_read = read ( fd_utmp , utmpbuf , BUFSIZE ) ;
32 i f ( bytes_read < 0 ) {
33 d i e ( " F a i l e d  to  r e ad  from  utmp f i l e " , " " ) ;
34 }
35
36 // I f we reach here , the read was s u c c e s s f u l
37 // Convert the by tecount in t o a number o f records
38 number_of_recs_in_buffer = bytes_read/SIZE_OF_UTMP_RECORD;
39
40 // r e s e t current_record to s t a r t a t the b u f f e r s t a r t
41 current_record = 0 ;
42 return number_of_recs_in_buffer ;
43 }
44
45 utmp_record ∗ next_utmp ( )
46 {
47 utmp_record ∗ r e co rdpt r ;
48 int byte_pos i t ion ;
49
50 i f ( fd_utmp == −1 )
51 // f i l e was not opened c o r r e c t l y
52 return NULL_UTMP_RECORD_PTR;
53
54 i f ( current_record == number_of_recs_in_buffer )
55 // the r e are no unread records in the b u f f e r
56 // need to r e f i l l t he b u f f e r
57 i f ( utmp_fi l l ( ) == 0 )
58 // no utmp records l e f t in the f i l e
59 return NULL_UTMP_RECORD_PTR;
60
61 // There i s a t l e a s t one record in the bu f f e r ,
62 // so we can read i t
63 byte_pos i t ion = current_record ∗ SIZE_OF_UTMP_RECORD;
64 r e co rdpt r = ( utmp_record ∗) &utmpbuf [ byte_pos i t ion ] ;
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65
66 // advance current_record po in t e r and re turn record po in t e r
67 current_record++;
68 return r e co rdpt r ;
69 }
70
71 void close_utmp ( )
72 {
73 // i f f i l e d e s c r i p t o r i s a v a l i d one , c l o s e the connect ion
74 i f ( fd_utmp != −1 )
75 c l o s e ( fd_utmp ) ;
76 }

Comments

1. In next_utmp(), if

( current_record == number_of_recs_in_buffer )

is true, it means that the number of records read so far is equal to the number of records in
the bu�er, which implies that it is time to read from the �le again.

2. In next_utmp(), the line

recordptr = ( utmp_record *) &utmpbuf[byte_position];

sets recordptr to point to the address of the array entry at the given byte position. We have
to cast the address of the linear array of bytes to a utmp_record pointer type.

The main program must be revised to use these functions, as follows.

L i s t i n g who4 . c
#inc lude "utmp_utils . h"

i n t main ( i n t argc , char ∗ argv [ ] )
{

utmp_record ∗utbufp ; // po in t e r to a utmp record

i f ( open_utmp( UTMP_FILE ) == −1 ){
pe r ro r (UTMP_FILE) ;
e x i t ( 1 ) ;

}
whi l e ( ( utbufp = next_utmp ( ) ) != NULL_UTMP_RECORD_PTR )

show_info ( utbufp ) ;

close_utmp ( ) ;
r e turn 0 ;

}
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2.9.2 Final Comments

This last version of the who command improved performance by reading larger amounts of the �le
at a time, thereby reducing the overhead of disk reads. It follows that if we could read the entire
�le all at once with a single read() call, then we would reduce the amount of overhead to the least
it could be. In fact, some versions of the who command do precisely this. At this point we cannot
write this implementation because it depends upon our knowing how to use the stat() system call
and some knowledge of the structure of the �le system, which will come later. However, this method
has a pitfall: the �le may be larger than the available memory for the process. In this case, the
program must be able to identify this and adjust how it reads the �le. The GNU implementation
of who does exactly this.
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Appendix A

A.1 Filters: An Introduction

A �lter is a program that gets its input from the standard input (stdin), transforms it, and sends
the transformed input to the standard output (stdout). The data passes �through� the �lter, which
typically has command-line options that control its behavior. A �lter may also perform a �null�
transformation, making no change at all to its input (which is what cat does.) Filters process text
only, either from input �les or from the output end of another Unix command (i.e., through a pipe.)
All �lters can be given optional �lename arguments, in which case they take their input from the
named �les rather than from standard input. For example, in the command

$ cat first second third > combinedfile

cat reads �les first, second, and third in that order and concatenates their contents, sending
them to the standard output, which has been redirected to a �le named combinedfile.

The most useful �lters are

cut (usually System V only)1 simple text cutting
grep simple regular expressions as �ltering pattern
egrep extended (more powerful) regular expressions as �ltering patterns
fgrep fast, string matching expressions with alternation as patterns
sed line-oriented text editing �lter
awk pattern-matching, �eld-oriented �lter and full-�edged Turing

computable programming language
cat primitive �lter with little transformation
sort very general sorting �lter
head,tail lets only the top or bottom of a stream pass through
fold wraps each input line to �t in a speci�ed width

If your time is limited and you could learn but one of these, the most important would be grep �
the return on your investment will be greatest. Coming in second would be sed, and then awk. The
remaining �lters are easy to learn and use and are described brie�y �rst.

A.1.1 sort

sort is easy to use:

$ sort file
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will sort the text �le named file and print it on standard output. By default is uses collating order,
the order of the characters in the character code of the terminal, which is usually ASCII or UTF-8.
In this case uppercase letters precede lowercase letters. There are versions of sort that ignore case
by default, but if your does not, you can turn o� case-sensitivity with the -i option.

If you want to sort numerically, use the -n option, as in

$sort -n numeric_data

which will sort numbers correctly. Without the -n, 9 will precede 10 because 1 precedes 9 in the
collating sequence. Read the man page for details.

A.1.2 head and tail

Simply put, head displays the �rst N lines of its input and tail, the last N lines. By default
N = 10. To print a di�erent number of lines, use

$ head -N

or

$ tail -N

respectively.

A.1.3 cut

cut is a lesser �lter. You will rarely use it. It does simple tasks well. It cuts out selected pieces of
lines of the input.

$ cut �c1-10

copies the �rst 10 characters from every line, removing the rest.

$ cut �f2,4

copies only �elds 2 and 4 of every line to the output stream. Fields are delimited by the TAB
character unless the delimiter character is changed using the �d option. Fields are 1-based, so the
�rst �eld is �eld 1. The delimiter must be a single character:

$ cut -f1,5 -d: /etc/passwd

will display �elds 1 and 5 of the /etc/passwd �le, which are the username and gcos �elds.
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A.1.4 Regular Expressions and grep

We focus on grep and regular expressions. The regular expressions used by grep are the same as
those used by sed and the visual text editor, vi. The simplest form of the grep command is

$ grep <regularexpression> files

where <regular expression> is an expression that represents a set of zero or more strings to be
matched. The syntax and interpretation of regular expressions is found in the regex man page in
Volume 7, as well as the man page for grep, so typing

$ man 7 regex

or

$ man grep

will give you everything you need to know on how to use them. The simplest patterns are strings
that do not contain regular expression operators of any kind; those match themselves. For example,

$ grep print file1 file2 file3

prints each line in �les file1, file2, and file3 that contains the word "print". It will print these
in the order in which the �les are listed, �rst lines in file1, then file2, then file3. If you want
just a count of those lines, use the -c option; if you want the non-matching lines, use the -v option.
If you want the line numbers, use the -n option. There are many more useful options described in
its man page.

If you want to match a string that contains characters that have special meaning to the shell, such
as white-space, asterisks, slashes, dollar-signs, and so on, it should be enclosed in single-quotes:

$ grep 'atomic energy' file1 file2 file3

will match all lines in the given �les that have the exact string 'atomic energy' somewhere in the
line. Note that the lines merely have to contain the string as a substring; they do not have to match
the the string exactly. If you want the pattern to match an entire line, you have to bracket it with
operators called anchors. The start of line anchor is the caret ^ and the end of line anchor is the
dollar sign $:

$ grep '^atomic energy$' file1 file2 file3

matches lines in the given �les that are exactly the string atomic energy.

Regular expressions can be formed with various operators such as the asterisk *, which multiplies
the expression to its left 0 or more times, as in
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a*

which matches strings with zero or more a's: a, aa, aaa, and the null string. To match a string
like ababab, you have to enclose it in \(...\), as in

\(ab\)*

which matches 0 or more sequences of ab. Note that

(ab)*

will match strings like (ab)(ab)(ab), not ababab because in regular expressions, the parentheses
by themselves are not special characters.

The period matches any character. There are character classes, which are formed by enclosing a list
(or a range) in square brackets []. A character class represents a single character from that class.
Because the special characters in regular expressions typically have special meaning in the shell as
well, it is a good idea to always enclose the pattern in single quotes. In particular, if you give it a
regular expression using an asterisk you must enclose the string in quotes1.

A.1.4.1 Examples

In the following examples, the �le argument is omitted for simplicity. In this case grep would apply
the pattern against standard input, which means if you actually type this, it will wait for you to
enter text followed by an end-of-�le signal, Cntrl-D.

$ grep 'while *(.*)'

matches lines containing the word 'while' followed by zero or more space characters, followed by a
parenthesized expression.

$ grep '^[a-zA-Z][a-zA-Z0-9_]*'

matches lines that begin with a word that starts with a letter, upper or lowercase, following by zero
or more letters or digits or underscores.

$ grep '[0-9][0-9]*\.[0-9][0-9]\>'

The pattern selects strings that have 1 or more digits followed by a single period, followed by exactly
two digits. The period must be preceded by a backslash so that grep does not treat the period as
the special character meaning "match any character". The "\>" tells grep to anchor the pattern to
the end of the word. A word is a sequence of letters and/or digits. This forces grep to select only
those words that end in two digits. If I omitted the "\>" grep would have matched strings such as
1.234 or 1.23ab. There is a matching operator, \<, that anchors to the beginning of the word.

Now take a look at this one.
1Single quotes are better than double quotes. Single quotes prevent the shell from doing any interpretation of the

enclosed characters, whereas when the shell sees a double-quoted string, it does a certain amount of interpretation.
Until you understand what the shell will attempt to interpret inside double-quoted strings, use single quotes for
enclosing grep patterns.
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$ grep '\/\*.*\*\/'

Since / is a special character, if I want to match it I have to escape it with a \ like this: \/.
Similarly, since * is a special character in regular expressions, \* is how you have to match a single
asterisk *. So to match the two-character sequence /* I have to write \/\* and to match /* followed
by any number of characters and then followed by */, I have to write

\/\*.*\*\/

in which .* matches zero or more characters of any kind (including the period itself). This �nds
lines with C-style comments in them.

Regular expressions also provide a means of �remembering� matched expressions, for re-use in the
expression. This is very handy in vi and sed, which have substitution operators. The same operator
used for grouping is also used for remembering matching strings. The remembered string is then
referenced using the back-reference \1 (or \2, \3... if there are multiple strings remembered):

$ grep '\([a-z]\)\1\1\1\1'

matches any line that contains a sequence of 5 copies of a letter, such as xxxxx or bbbbb.

$ grep '\([1-9][0-9]\).*\1'

matches any line that has a two digit number that is repeated later in the line. The command

$ grep '\([a-z]\)\([a-z]\)\([a-z]\)\3\2\1'

has three remembered matches in the back-references \1, \2, and \3, but in reverse order. Each
will have a copy of the single lower-case letter that it matched, so this pattern matches palindromes
of length 6 such as xyzzyx.

You are encouraged to read the man page for grep. There is a lot more to regular expressions than
is covered here. The best way to learn them is to experiment. You can open a terminal window
and type grep followed by a pattern. It will then wait for you to type lines on the keyboard. Lines
that match will be repeated. Lines that don't will not. Try it.

A.1.5 The Rest of the grep Family

A.1.5.1 egrep

egrep (extended grep or expression grep) has a larger set of regular expressions meta-symbols than
grep, including '|', '?', '+', and parentheses. It is not a strict superset of grep because it does not
allow \( \), \{ \}, \< \>. These are equivalent to (), {}, and <>, in egrep.

For example, you can write

$ egrep 'March|April|May'
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and

$ egrep 'M(iss)+ippi'

which matches Mississippi as well as Mississississippi. Another extension in egrep is the +
operator. A �+� after a regular expression indicates to search for one or more occurrences of the
regular expression, as in

$ egrep '[a-z]+'

which matches 1 or more letters.

A.1.5.2 fgrep

The fgrep variant of grep does not support regular expressions but does support multiple strings.
It is used to search quickly for many di�erent �xed strings. For example, you can put a list of
frequently misspelled words into a �le and then call fgrep to search for them:

$ fgrep -f errors document

will print all lines in document that contain one of the strings in the �le named errors.

A.2 File Globs

All UNIX shells have the ability to parse patterns that represent sets of �les. These patterns are
called �le globs, or simply globs, or wildcard expressions. In essence, the shell will replace a �le-glob
by the list of �les that it represents. For example,

$ ls *.c

is a command to list all �les in the current working directory that have zero or more characters
followed by a �.c�.

The regular expressions that the shell uses for �le-globbing have a di�erent syntax from those used
by vi, grep, and the other �lters and commands. They are not really regular expressions. File-globs
are more limited, and the asterisk * does not multiply the character that precedes it. It, by itself,
represents zero or more characters of any kind. Thus,

$ rm *.o

removes all �les ending in �.o� and

$ for i in hwk2_*.gz ; do unzip $i ; done
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will run unzip on every �le in the current working directory whose name starts with hwk2_ and
ends in �.gz� (in bash and sh and other Bourne-shell-like shells). You must be very careful when
using �le globs, especially with dangerous commands such as rm that are not reversible, because
they may represent �les that you did not think they did. One disastrous example would be

$ rm -r .*

which a naive user might think removes the �hidden� �les in the given directory and their descen-
dants. But the pattern .* matches .., which implies that the command will recursively remove
everything in .., the parent directory. There are many other things to know about �le globs; the
complete description can be found in the man page in Volume 7:

$ man 7 glob

will display it.
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Chapter 3 File Systems and the File Hierarchy

Concepts Covered

UNIX �le systems and �le hierarchies
Internal structure of a �le system
Mounting
i-nodes and �le attributes
The dirent structure
Manipulating directories and i-nodes
Creation of �les by the kernel
Implementing ls, pwd, and du,
Traversing �le hierarchies,

opendir, readdir, closedir, seekdir,
telldir, rewinddir, stat, lstat, fstat,
chmod, chown, creat, link, unlink,
unlinkat, readlink, umask, fnmatch
chgrp, chown, utime,getpwuid,
getgrgid, getpwnam, getgrnam,
rename, ntfw, fts_open, fts_read,
fts_children, fts_close.

3.1 Introduction

This chapter looks at UNIX �le systems from the programmer's perspective. The primary objective
is to be able to write programs that use the part of the UNIX API concerning the �le system and its
components. Of necessity, we will begin with an overview of what the �le system is, and to a limited
extent, how it is implemented. Although it is not necessary to understand how it is implemented
to write programs that use it, a basic understanding of the typical implementation can help in
understanding performance considerations and limitations.

3.2 File System Abstraction

A �le system is an abstraction that supports the creation, deletion, and modi�cation of �les, and
organization of �les into directories. It also supports control of access to �les and directories and
manages the disk space accorded to it. We tend to use the phrase ��le system� to refer to a
hierarchical, tree-like structure whose internal nodes are directories and whose external nodes are
non-directory-�les (or perhaps empty directories), but a �le system is actually the �at structure
sitting on a linear storage device such as a disk partition. The layout of Linux, for example, is
shown in Figure 3.1. This �at structure is completely hidden from the user, but not entirely from
the programmer. The user sees this as a hierarchically organized collection of �les and directories,
which is more properly called the directory hierarchy or �le hierarchy.

3.3 File System Mounting

Multiple storage devices are usually attached to a modern computer. Some operating systems treat
the �le systems on these devices as independent entities. In Microsoft's DOS, and systems derived
from it, for example, each separate disk partition has a drive letter, and the �le hierarchy on each
separate drive or partition is separate from all others attached to the computer. In e�ect, DOS
has multiple trees whose roots are drive letters. For example, a typical Windows machine may
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have a directory E:\users on the "E:" drive and a directory "C:\Temp" on the "C:" drive but these
directories are in two separate trees, not a single tree.

In UNIX there is a single �le hierarchy. It is a tree if you think of the leaf nodes as �lenames, but it
is not a tree if you think of the leaf nodes as actual �les, since a single �le can have more than one
name, existing as a directory entry in multiple directories, making the topology a directed acyclic
graph1. We will take the liberty of referring to it as a tree, knowing that this is inaccurate.

In UNIX, every accessible �le is in this single �le hierarchy, no matter how many disks are attached.
There is no such thing as the "C" drive" or "E" drive" in UNIX. This is because of the concept
of mounting, which will be described in more detail later. In short, in UNIX, a �le system may be
mounted onto the single �le hierarchy by attaching that �le system's root to some directory in the
hierarchy. It is like grafting a branch onto a tree. By mounting a �le system onto the �le hierarchy,
the �le system becomes a subtree of the hierarchy, making it possible to navigate into the �le system
from the rest of the �le hierarchy. The mount command without arguments displays a list showing
all of the �le systems currently mounted on the �le hierarchy. As an example, the output of the
mount command could be:

/dev/mapper/root.vg-root.lv on / type ext3 (rw)

proc on /proc type proc (rw)

sysfs on /sys type sysfs (rw)

devpts on /dev/pts type devpts (rw,gid=5,mode=620)

tmpfs on /dev/shm type tmpfs (rw,rootcontext="system_u:object_r:tmpfs_t:s0")

/dev/sda1 on /boot type ext3 (rw)

none on /proc/sys/fs/binfmt_misc type binfmt_misc (rw)

Each line is of the form,

�le_system_name on place_where_it_is_mounted type �le_system_type other_options

The sixth line states that there is a �le system named /dev/sda1 of type ext3 that is mounted on
the directory /boot. You may wonder about the meaning of the line

proc on /proc type proc (rw)

In a subsequent chapter we will explore the /proc �le system, which is not a �le system that
manages disk space, but an interface to the kernel's memory. Further interpretation of this output
will be delayed until after a discussion of �le systems and mounting in greater depth. At this point,
the signi�cance of mounting is that di�erent �le systems can be, and usually are, part of a single
conceptual �le hierarchy, making it possible to partition a disk into separate �le systems that all
become part of a single �le hierarchy.

3.4 Disk Partitions

In the early versions of UNIX, the disk was con�gured as a single partition with a single �le system.
As disks grew in size it became advantageous in operating system design to partition them into
multiple logical devices that were actually distinct physical portions of the same disk. Partitioning
a disk allowed for

1If you include symbolic links. it may even be cyclic
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Figure 3.1: Linux �le system layout, reproduced from "Linux Internals", by Simone Demblon and
Sebastian Spitzner, Courtesy of The Shuttleworth Foundation.

• more control of security � di�erent user groups could be placed into di�erent partitions, and
di�erent mounting options could be used on separate partitions, so that some might be read
only, and others might have di�erent security options

• more e�cient use of the disk � di�erent partitions could use di�erent block sizes and �le size
limits

• more e�cient operation � shorter seek distances would improve disk access times

• improved back-up procedures � backups could be done on partitions, not disks, thereby making
it possible to back-up di�erent �le systems at di�erent intervals

• improved reliability � damage could be restricted to a single partition rather than the entire
disk, and redundancy could be built in

The biggest disadvantage of partitioning a disk is that partitions can not be increased in size, so when
they are created, if they are too small and �ll up, the entire disk would need to be reorganized. There
are other disadvantages of partitioning a disk, but they tend to be outweighed by the advantages.

Modern UNIX systems allow disks to be partitioned into two or more separate physical entities,
each containing a distinct �le system. The �le systems in separate physical partitions are connected
to each other by virtue of their being mounted on directories of the one and only directory hierarchy
rooted at "/", but they are otherwise unrelated. Each separate �le system has its own pool of free
blocks, its own set of �les, and its own i-node table.

3.5 UNIX File Systems

The di�erent UNIX-like operating systems provide di�erent �le systems, each of which may be
implemented in its own way. The implementation of the �le system is not part of any UNIX
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standard: there is no single implementation prescribed or proscribed in any standards document.
Therefore, when reading about an implementation of the UNIX �le system, you be aware that it is
not the only way it is done.

The legacy UNIX �le system is not used in many modern systems; modern implementations are more
complex because they incorporate many enhancements to the original design. One reason for this is
the fact that modern machines must be able to mount �le systems of di�erent types. For example,
many UNIX systems allow users to mount FAT 2 and NTFS disk-based �le systems, which do not
follow the UNIX model. In Chapter 1 it was noted that a directory in UNIX is a �le that consists of
a list of directory entries, each of which contains the name of a �le and its i-number, which serves as
a pointer to the �le's i-node. In a FAT system (persisting since early Windows operating systems),
directories do not have this structure. UNIX kernels, if they are designed to mount such systems,
must create a kernel object in memory to simulate the UNIX directory. Still more importantly, the
UNIX kernel cannot hard-code system calls such as read() because the implementation of read()
will depend on the �le system. As a result, the actual machine code that is executed when these
calls are invoked cannot be bound to the function name when the kernel is compiled.

This situation is analogous to the problem that is solved by pointers in a programming language
or virtual functions in C++. When it is not known how much storage a data structure needs at
compile time, instead of declaring it statically, the binding of the name to the storage is delayed
until run-time by using a pointer instead. In C++, when classes are created with virtual functions,
the function code that is executed as a result of a function call is not determined until run-time,
another form of delayed binding. In this case, the solution is achieved opaquely through the use of
pointers in the underlying implementation3.

In modern UNIX systems, such as Linux, the implementation of the �le system is achieved by
dynamically binding the implementations of �le system calls to functions that are hard-coded in the
particular �le system that is mounted, a form of delayed binding as well. How this is accomplished
is not important right now; what matters is that modern UNIX �le systems are virtual �le systems,
designed to handle many di�erent types of underlying physical �le systems. In fact, in Sun's variants
of UNIX, from SunOS through Solaris, and in BSD (and FreeBSD), the concepts of i-node and i-
number have been replaced by those of v-node and v-number, with the "v" standing for "virtual".
Linux continues to use the term "i-node", and in these notes we will do the same.The Linux Second
Extended File System (Ext2 ) is depicted in Figure 3.2.

The original Linux Virtual File System was developed by Chris Provenzano, and later rewritten
by Linus Torvalds. The Linux Ext2 �le system was developed in the mid 1990's by Rémy Card,
Theodore Ts'o, and Stephen Tweedie. The next Linux �le system was Ext3, which was developed
by Stephen Tweedie and which di�ers from Ext2 only in that it contains journaling. Journaling is
a way to maintain �le system consistency in the event of hardware failures. A special journal �le is
used to record all of the actions that are supposed to be taken on the �le system, such as creating
and deleting �les, changing their contents or attributes, and so on. In a journaling �le system, this
record can be used to recover the state of the �le system without the lengthy task of examining
every block and i-node. Ext2 and Ext3 are interchangeable � one can be converted to the other
while the �le system is mounted because the di�erence is the journaling. The Fourth Extended File
System, Ext4, was released in 2008, mostly to improve performance. While Linux supports many
types of �le systems, the Ext2, Ext3, and Ext4 �le systems are native to it and found on almost all

2FAT stands for File Allocation Table, and is the �le system found on many Microsoft operating systems as well
as other external storage devices such as memory cards.

3A special table called a virtual dispatch table is usually how virtual functions are implemented.
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Linux systems.

Although there are many di�erent UNIX �le systems, most current implementations are built upon
ideas from Dennis Ritchie's original implementation. Therefore, the implementations described in
these notes should be thought of as generic implementations, meaning they do not actually exist in
any one system but approximate many actual implementations. I will, as much as possible, describe
how some Linux variant does things, since that is the most prevalent UNIX system that students
use, and that is the one running on our host computer.

Figure 3.2: The Linux Second Extended File System (Ext2)

3.6 The Principal Components of a UNIX File System

Every �le system has (at least) one superblock located at the beginning of its allocated storage. The
superblock contains all of the information about how the �le system is con�gured, such as block
size, block address range, and mount status4. Copies of the superblock are almost always stored in
several other places within a partition5.

Each �le system in UNIX has at least one table that identi�es the �les in it. The entries in this
table are called i-nodes (pronounced �eye-nodes�), and the indices of the i-nodes in this i-node table
are called i-numbers. The i-nodes contain the �le attributes and a map indicating where the blocks
of the �le are located on the disk. Attributes include properties such as

• the owner,

4The superblock actually contains (on most UNIX systems) the block size, a pointer to the i-node table and
free i-node list, a pointer to a structure specifying the type of �le system, a device identi�er for the block device, a
structure with the allowed operations, the mount status, and other information as well.

5Originally there was a single superblock. In later versions of UNIX, a copy of the superblock was placed in every
cylinder group in case of a disk crash.
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• the group,

• the permissions allowed on the �le and the �le type,

• the number of links to the �le

• the time of last modi�cation,

• the time of last access,

• the time the attributes were last changed,

• the size in bytes of the �le,

• the number of blocks used by the �le, and

• the id of the device on which the �le resides.

I-nodes and the tables that use them are important components of the UNIX �le system. Modern
�le systems usually have multiple i-node tables, as described below.

Every �le system separates the i-node tables from the data blocks. The data blocks are where �le
contents are stored.

Figure 3.1 depicts the structure and layout of a modern UNIX disk device with several �le systems
on it. Each successively lower layer of the �gure is an enlargement of a structure in the preceding
layer. You can see that in a modern �le system, not only are there multiple superblocks in a single
�le system, but multiple i-node tables as well. This is an enhancement added for performance
reasons. As disks grew in size, �les whose blocks were on the outer edge of the disk became further
away from the i-nodes that contained the block addresses and �le status. Disk accesses to read or
write the �le required ever increasing latency caused by the disk seeks. By making several smaller
tables, each in its own cylinder group, no �le became too far away from the i-node table. The �gure
shows that the i-node in position 2 of the table usually points to the entry for the root directory
�le in the �le system. We will return to this issue below.

3.6.1 De�ning and Creating File Systems

Partitioning a disk divides the disk into logically distinct regions, often named with letters from the
beginning of the alphabet, i.e., a, b, c, and so on. In UNIX, partitions are not necessarily disjoint.
The "c" partition is almost always the entire disk6, and typically does not have a �le system. It is
used by utilities that access the disk block by block. The "b" partition traditionally was reserved as
the swapping store, i.e., the partition used for swapping; it did not have a �le system written onto
it. The innermost partition, "a", is where the kernel is installed and it is typically very small, since
little else should be put in it. If a disk has a 100 GB storage capacity, you might make the �rst 1
GB partition a, the next 10 GB, b, the next 50GB d, the remainder, e, and the whole disk, c.

In order to create �les in a partition, a �le system must be created in that partition. Creating a �le
system includes doing the following:

6On Solaris hosts, it referred to the entire disk. In FreeBSD, it refers to entire "slices", which can be thought of
as collections of partitions.
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Figure 3.3: Partitions, block groups, and their structures in Ext2

• Dividing the partition into equal size logical blocks, typically anywhere from 1024 to 4096
bytes each, depending upon expected �le size. The block size is �xed at �le system creation
time; it cannot be changed after that without rebuilding the �le system. Block size is always
a power of two. Larger block sizes result in more wasted disk space in internal fragmentation,
whereas smaller sizes result in more disk activity and more disk waits. Larger blocks are
appropriate for �le systems expecting large �les. In the �le systems on my personal Linux
host, the root �le system uses 1024-byte blocks and the second partition, used for user data,
uses 4096-byte blocks.

• Deciding how many alternate blocks are needed in each cylinder. (A cylinder is the set of
all tracks that are accessible from one position of the disk head assembly. In other words,
a cylinder is the set of tracks that are vertically aligned one on top of the other.) When a
block becomes bad, it has to be removed from the �le system. Alternate blocks are reserved
to replace bad blocks.

� In Linux Ext2, block groups take the place of cylinder groups. Whereas a cylinder group
is a physical concept, tied to the geometry of the disk, a block group is a logical concept,
independent of the disk geometry, because modern hard disk drives hide the geometry
from the operating system. Figure 3.3 illustrates this.

• Deciding how many cylinders are in each cylinder group. Grouping cylinders is done for
performance and reliability. A cylinder group is a collection of adjacent cylinders that are
grouped together to localize information. The �le system tries to allocate all data blocks for
a given �le from the same cylinder group if the �le is small enough. Each cylinder group also
keeps a copy of the superblock, as described below.

� In Linux Ext2, each block group contains the following (see Figure 3.3):

∗ a redundant copy of the �le system's superblock,

∗ a redundant copy of a table of block group descriptors; each block group descriptor
contains information about the structure of a speci�c block group and a map of
where everything in the group is located; the table is identical in all groups,

∗ the block bitmap, which has a bit for each block in the group indicating whether it
is free or in use,

∗ an i-node bitmap, which has a bit for each i-node in the group indicating whether it
is free or in use,

∗ an i-node table for the i-nodes in this block group,
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Figure 3.4: Addresses stored in an i-node

∗ the actual data blocks.

• Deciding how many bytes to allocate to each i-node. They can be as small as 64 bytes. The i-
nodes on the Linux Ext �le systems are usually 128 bytes. Larger i-nodes means fewer i-nodes,
which means fewer �les. Smaller i-nodes allow more �les.

• Dividing the cylinder group or partition, depending on the system, into three physical regions:

� The superblock. This stores the map of how the disk is used as well as the �le system
parameters. In the Linux �le system, the superblock contains information such as the
block size in bits and bytes, the identi�er of the physical device on which the superblock
resides, various �ags indicating whether it is read-only or locked, or how it is mounted,
and queues of mounts waiting to be performed.

� The i-node area. This is where used and free i-nodes are stored. The used and free i-
nodes were traditionally arranged into two lists, the i-list and the free-list, with the start
of each list stored in the superblock. That method of storage management is obsolete.
Later versions of UNIX used a more e�cient method7, in which, when the �le system is
created, a �xed number of i-nodes was allocated within each cylinder group. This puts
i-nodes closer to their data blocks, reducing the overall number of seeks8.

� The data area. This is where the data blocks are stored.

Many other things need to be done to the partition to make a �le system. For example, because
the disk rotates while it is reading data, there need to be gaps between blocks. How big should the
gaps be? Because the disk head has to advance to a new cylinder to read the next block sometimes,
and the disk is rotating while it advances, the next block should not be in the same sector. Which
sector should be read next? Also, the superblock is usually replicated on the disk for reliability.
How many times? Where should it be placed?

3.6.2 File Storage

The method of storing �les in UNIX is �exible and reasonably e�cient. Remember that each �le has
an i-node in an i-node table containing information such as the user-id of the owner, the group-id of

7In BSD they called this the Fast FileSystem,
8If the i-node is at the beginning of the disk and the data blocks are in the middle, then the head has to go back

and forth, reading the address from the i-node, getting the data, going back to the i-node, etc. With the i-nodes near
the data blocks, it takes a little more time to reach the i-node, but it is more than made up in the savings in data
block access.

This work is copyrighted by Stewart Weiss and licensed under the Creative Commons Attribution-
ShareAlike 4.0 International License.

8

http://creativecommons.org/licenses/by-sa/4.0/ 
http://creativecommons.org/licenses/by-sa/4.0/ 


UNIX Lecture Notes
Chapter 3 File Systems and the File Hierarchy

Prof. Stewart Weiss

Figure 3.5: Allocation of blocks to a �le in a UNIX File System

the �le, the �le size, permissions and so on. The i-node also contains an array 15 block addresses9.
A block address is usually 4 bytes long.

In BSD, i-nodes contains an array of 15 block addresses, which are used as follows:

• For regular �les, the �rst 12 block addresses in this array are the addresses of the �rst 12
blocks of the �le. If the block size is 4096 bytes (4 KB), then a �le with at most 12 · 4 = 48
KB can be accessed by one level of indirection.

• If a �le is larger than 48 KB, then the 13th address is the address of a single indirect block,
which is a 4096-byte block used to store block addresses. Since a block address is 4 bytes,
there are 4096/4 = 1024 block addresses in this block. Since each of these 1024 blocks is 4096
bytes, using the �rst 12 addresses plus the 13th address allows for addressing �les whose size
is at most 48 KB + 1024 · 4096 bytes, or 48 KB + 4 MB.

• For still larger �les, the 14th address is the address of a double indirect block that contains
1024 addresses of single indirect blocks, each of which contains 1024 device addresses. This
accommodates �les whose size does not exceed 48 KB + 4 MB + 1024 · 4096 KB , roughly 4
GB.

• The 15th address is that of a triple indirect block, which, needless to say points to 1024 double
indirect blocks and so on. It allows for 1024 · 1024 · 4096 additional KB, or a maximum �le
size of roughly 4 terabytes.

Figure 3.4 shows how the block pointers are laid out in the i-node and Figure 3.5 illustrates the
distribution of blocks that results. With this design, there can be a lot of disk seeking, because the
di�erent parts of a �le can be very far away from each other. For most �les though, the blocks tend
to be physically contiguous and so actual I/O overhead is acceptable. For very large �les requiring
several addressing steps before accessing the disk blocks, overhead can be large. This is o�set by
the use of the kernel I/O bu�ering described in Chapter 2.

9The number of addresses varies. On early UNIX systems, it was 13. In 4.4BSD it is 15. In some implementations
of Linux, it is 13 and in others, it is 15.

This work is copyrighted by Stewart Weiss and licensed under the Creative Commons Attribution-
ShareAlike 4.0 International License.

9

http://creativecommons.org/licenses/by-sa/4.0/ 
http://creativecommons.org/licenses/by-sa/4.0/ 


UNIX Lecture Notes
Chapter 3 File Systems and the File Hierarchy

Prof. Stewart Weiss

3.6.3 How the Kernel Creates Files

Suppose that the current working directory is /home/sweiss/scratch, and the command

$ gcc -o testprog testprog.c

is executed. Assuming that the program is compiled and linked, and that I have write and execute
permission for the directory /home/sweiss/scratch, gcc will create the �le named testprog in
this directory. This section answers the question, "What steps are taken by the kernel to create the
�le testprog" on behalf of gcc? These steps can be outlined as follows:

1. The kernel creates an i-node for the �le, if possible.

2. The kernel �lls in the i-node with the �le status.

3. The kernel allocates data blocks for the �le and stores the �le data in these blocks.

4. The kernel records the addresses of the data blocks in the i-node.

5. The kernel creates a directory entry in the scratch directory with the i-node number and �le
name testprog.

Each of these steps is explained below.

Creating the i-node

The very �rst step is to create an i-node for the �le. To do this, the kernel must get a free i-node
in the i-node table. If there isn't a free one, it must report the error and stop here. If this happens,
the user will get a message that the �le system is full. This is one reason to enable disk quotas on
the system. A table of active i-nodes is kept in memory with a copy on disk as well.

Updating the i-node

Assume that the kernel obtained an i-node, and that it has index 47 in the i-node table. The kernel
�lls the i-node in with the owner, permissions, time of last modi�cation, and so on. It then saves
the i-number, 47, of this i-node. The i-node update takes place in the memory copy of the table,
not the disk resident copy. This is updated periodically by the kernel.

Allocating Data Blocks

The next step is to store the �le's data. To do this the kernel must acquire the right number of
blocks. As gcc runs, it is generating the �le, writing it in pieces at a time. Because the kernel does
output bu�ering, the �le is being stored in kernel bu�ers, which are not written to disk until the
bu�ers are �ushed. If the �le is small, all of it will �t in memory and the kernel will know how many
disk blocks are needed for it. If the �le is very large, the kernel may start allocating blocks before
it knows the �le's actual size. Assuming that the �le system has storage for it, it will �rst allocate
direct blocks. If the �le is larger than the number of bytes that can �ll all of the direct blocks,
the kernel allocates single-indirect blocks as needed. If it is larger than the amount of storage they
can provide, it starts allocating double indirect blocks. It continues this procedure, using a triple
indirect block if not even all of the double indirect blocks will su�ce.
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Recording Locations of Data Blocks

The kernel records the order and location of the data blocks in the i-node. Some �le systems also
have �le maps for faster access to the �les. Whatever data structures are used to record the block
locations, these must be updated at this point.

Recording the File Name in the Directory

If all of the preceding steps were successful, then the kernel will create a new entry in the current
working directory consisting of the pair (47, testprog), because 47 is the i-number and testprog

is the name.

3.6.4 How the Kernel Accesses Files

When a user enters a command that has to open a �le for reading, what actually happens? For
example, when the command

$ cat myfile

is executed by the shell, what steps are taken and by which programs? The �rst step is that the
shell parses the command and determines that the cat command is the executable and that it has
a single �le argument named myfile. It will arrange for the name myfile to be placed into the
argv array that cat will see in its main() parameter list:

int main(int argc, char *argv[])

cat will ask the kernel to open the �le for reading via the open() system call. The open() system
call tries to �nd the i-number of the �le whose name is passed to it. To do so, it has to resolve the
pathname, which is a fact that we overlook for now. But just to give you an idea of the complexity,
what if the �lename were

../../shared/temp1/coursework/workspace/myfile

This would be a little more challenging than if it were in the working directory. For now suppose
that open() �gures out what directory to open and then searches through that directory for the
name "myfile". When it �nds it, it obtains the i-number for it. Once it has the i-number, it can
retrieve the i-node information from its i-node table. If the �le is already open, the i-node will be
in the active i-node table in kernel memory. If not, it is retrieved from the i-node table on disk, and
the i-node is copied into the active i-node table.

Once the kernel has a copy of the i-node in its memory space, it can access the i-node's information.
One of the �rst things it has to do is check that the permission bits allow the cat program to access
the �le. The cat program runs with an e�ective user-id of the user who invoked it. If this user does
not have appropriate permission to access this �le in the given directory, the open() call will return
�1 and set the static variable errno to EPERM. which is the error code that system calls assign to
errno when they fail because of a permission problem.
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If the access is allowed, the open() call will have returned a �le descriptor for the �le, and that
descriptor will be pointing to a data structure that, among other things, has a pointer to the i-node
for the �le. The cat command, as it makes successive calls to read the �le, is essentially asking the
kernel to access the i-node and get the data from the �le's data blocks. The kernel uses the i-node
to determine which blocks to access. From the �le size, the kernel can determine whether the data
is entirely in direct blocks (e.g., with a block size of 4096 bytes and 12 direct blocks, at most 48
KB can be stored in them) or whether to read the �rst single indirect block. If the �le is stored in
indirect blocks, it will be slower to access, because most of the data blocks will require three disk
accesses or even four. If the block size were 8192 bytes, then �les of up to 96 KB would be accessed
more quickly. The kernel also knows from the active i-node, whether the �le's blocks are in a system
bu�er and can be accessed without disk I/O.

3.7 The ls Command

Equipped with a bit more understanding of what a �le system does and how it does it, we can try
a small exercise by writing a program that uses the �le system's programming interface. The ls

command is a simple enough start.

The ls command can be given a list of �lenames of all kinds (e.g., regular �les, special �les, and
directories) as arguments:

ls [ options ] FILE FILE ...

where FILE, FILE, . . . are �lenames, whether they are regular �les, special �les, symbolic links,
or directories. Of course, as with almost all commands, the �lename arguments can be arbitrary
pathnames. If an argument is a directory, it displays the �le links contained in that directory, and
if the appropriate option is given, the �le attributes as well. If it is not a directory, ls displays the
�lename, and if the �l option is speci�ed, the �le attributes as well. There are many options that
change the default behavior of ls. You can read the man page for the full list of them.

Summarizing, ls does two di�erent things, depending on whether the argument is a directory or a
non-directory �le.

• When the argument is a directory, ls displays its contents.

• When the argument is not a directory, ls displays its name.

In either case, the options might require that some subset of its attributes are displayed as well, in
a speci�ed order.

Somehow ls can determine whether an argument is a directory or not. To implement ls, we have
to �gure out

1. how to determine if a �le name is that of a directory;

2. how to list the contents of a directory; and

3. how to list the attributes of a �le.
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When the argument to ls is a non-directory �le, it may have to obtain the attributes of the �le and
display them. When the argument is a directory, say dir, ls has to do something like

open the directory dir

while not all directory entries in dir have been read

read the entry

optionally display information about the entry

close the directory

The questions are, how can we open, read, and close a directory, and how can we obtain information
about �le attributes. Fortunately none of these tasks are particularly di�cult, owing to the simplicity
of the �le system interface.

3.8 The Directory Interface

Recall that, as far as the kernel is concerned, regular �les are just sequences of bytes. Directories
are like regular �les except that

1. They are never empty:

Directories are not empty because every directory has two unique entries, �.� and �..� that
refer respectively to the directory itself and to the parent directory. These are created when
the directory is created.

2. They cannot be written to by unprivileged programs:

They can only be modi�ed by very speci�c system calls, unlike regular �les. In contrast,
anyone with appropriate permission may read the contents of a directory. Some commands
that operate on regular �les can be applied to directories, but with unexpected results.

3. They have a speci�c structure:

A directory is a �le that contains a collection of (name, i-number) pairs. In other words, a
directory is a table of records. You can think of it as a hash table, since it is accessed with a
name in order to retrieve the i-number.

Some commands that read �les also read directories, but the results are not useful. For example, on
some systems, the cat command and the od command may display the contents of a directory as a
stream of bytes, but because a directory is not a text �le, the output of cat will look garbled. The
output of od may look normal. Usually, these commands, like the more command, check whether
their argument is a directory, and if so, refuse to execute, displaying instead an error message:

$ more projects

*** projects: Is a directory ***

The more command refused to display projects because it is a directory and a directory displayed
as a sequence of characters would not be meaningful. The output of od may reveal the structure of
the directory to you if you really examine it carefully. The �c option to od displays bytes that can
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be converted to characters as characters. On Linux, neither od, nor cat, nor more will display the
contents of a directory.

If you are wondering what system calls might work with directories, the open(), read(), and
close() system calls will act on directories because they do not modify the directory, but because
a directory has a speci�c structure, there is not much point to using them. They are not intended
to be used with directories. It is better to use the speci�c system calls or library functions designed
to open, read, modify, and close directories.

If you use a man page search to look for man pages that refer to the word "directory" you will �nd
a long list of them. It is best to �lter the output of the search, using something like

$ man �k directory | grep read

which will display just a few entries. You might see, among other things

readdir (2) - read directory entry

readdir (3) - read a directory

readdir (3p)- read a directory

readdir_r [readdir] (3p)- read a directory

seekdir (3) - set the position of the next

readdir() call in the directory stream

Di�erent systems will deliver slightly di�erent sets of man pages, depending on which version of
UNIX they are running. All should list the readdir() system call in Section 2, and most should
list a call named readdir() in Section 3 or 3P or both. On almost all systems, if you read the
man page for readdir() system call in Section 2, it will advise you not to use this system call and
instead to use the POSIX library function of the same name. It will refer you to the readdir() C
library function whose man page is in Section 3 or 3P. You might need to use a lowercase p in your
man command, as in

$man 3p readdir

Because of the wide variation among the di�erent systems, we cannot know exactly what you will
see, but all pages should have, at a minimum the following:

SYNOPSIS
#inc lude <sys / types . h>
#inc lude <d i r en t . h>

s t r u c t d i r en t ∗ r eadd i r (DIR ∗ d i r ) ;
DESCRIPTION

The readd i r ( ) func t i on r e tu rn s a po in t e r to a d i r en t
s t r u c tu r e r ep r e s en t i ng the next d i r e c t o r y entry in the
d i r e c t o r y stream pointed to by d i r . I t r e tu rn s NULL on
reach ing the end−of− f i l e or i f an e r r o r occurred .
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This tells us that readdir() requires an argument of type DIR* and returns a pointer to a dirent

structure. The rest of the man page may contain a de�nition of this dirent structure, but it may
not, depending on the system. If it does not, then you need to use the strategy described earlier
for �nding it. It will not explain what a DIR* is or where it is de�ned. That will almost certainly
require further research. To be clear, in case the page does not contain the dirent de�nition, you
should look in the SEE ALSO section for man pages that might give us more information; the list
might look like the following:

SEE ALSO
read (2 ) , c l o s e d i r ( 3 ) , d i r f d ( 3 ) , ftw (3 ) , opendir ( 3 ) ,
r ewindd i r ( 3 ) , s cand i r ( 3 ) , s e e kd i r ( 3 ) , t e l l d i r ( 3 ) ,
feature_test_macros (7 )

Among the pages listed above, the most likely candidate would be the man page for opendir();
this is the function that most likely is the �rst one to call to do any directory processing. If that
page does not have the de�nition, then we would have to read the man page for <dirent.h> or read
the header �le itself.

One way or another, you will discover that the dirent structure is de�ned as follows:

s t r u c t d i r en t {
ino_t d_ino ; /∗ inode number ∗/
of f_t d_off ; /∗ o f f s e t to the next d i r en t ∗/
unsigned shor t d_reclen ; /∗ l ength o f t h i s r ecord ∗/
unsigned char d_type ; /∗ type o f f i l e ; not supported

by a l l system types ∗/
char d_name [ 2 5 6 ] ; /∗ f i l ename ∗/

} ;

But you will �nd, whether in the Section 3 or 3P man page for readdir() or in the page for the
<dirent.h> header �le, a caveat such as the following:

According to POSIX, the dirent structure contains a �eld char d_name[] of unspeci�ed
size, with at most NAME_MAX characters preceding the terminating null byte. POSIX.1-
2001 also documents the �eld ino_t d_ino as an XSI extension. Use of other �elds will
harm the portability of your programs.

Translation: the only two members that are guaranteed to be present in a dirent structure are
the d_ino and the d_name members, and the d_name member is not necessarily a �xed length
string; POSIX only guarantees that it is a NULL-terminated string whose length is at most NAME_MAX
characters. Therefore, whatever we do, we should not use those other members, and we should
make sure that any variables that store a name are large enough to store NAME_MAX characters. We
will return to the question of how to use NAME_MAX in a program.

We need to �gure out how to use readdir(), what a DIR is, and how we get a DIR* to use in
readdir(). The man page for readdir() basically says that successive calls to readdir() with
the same directory stream pointer return successive entries in the directory pointed to, and that
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when all entries have been accessed, a NULL pointer is returned. This is very much like how the
getutent() function worked with utmp structures, and that function required that the library be
initialized by a call to setutent(). It would be a good guess that the opendir() function listed in
the SEE ALSO section performs this initialization for readdir().

The man page for opendir() begins as follows:

SYNOPSIS
#inc lude <sys / types . h>
#inc lude <d i r en t . h>

DIR ∗ opendir ( const char ∗name ) ;

DESCRIPTION
The opendir ( ) func t i on opens a d i r e c t o r y stream cor re s−
ponding to the d i r e c t o r y name , and re tu rn s a po in t e r to the
d i r e c t o r y stream . The stream i s po s i t i on ed at the f i r s t
entry in the d i r e c t o r y .

RETURN VALUE
The opendir ( ) f unc t i on r e tu rn s a po in t e r to the d i r e c t o r y
stream . On er ror , NULL i s returned , and errno i s s e t
app rop r i a t e l y .

In other words, given the pathname of a directory as a string, opendir() returns a pointer to
something called a DIR that the documentation refers to as a directory stream. Names in uppercase
letters are usually macros, de�ned in a header �le with a "#define" directive, and the DIR type
may be a macro. It could be a typedef as well. We do not need to know what a DIR is to open a
directory and read from it, so for now we will move on.

In the same way that correct use of getutent() requires that we call endutent() to clean up after
accessing all utmp records, correct use of readdir() requires that we clean up afterwards. The SEE
ALSO section contains a reference to a closedir() function. If we look at its man page we will see
that closedir(), given a pointer to a DIR, closes the connection to the directory, which is exactly
what we must do when readdir() has returned a NULL pointer.

From the man pages for readdir() (in 3 and 3P), opendir(), and dirent.h, we can piece together
how the directory reading interface works. When a directory is opened using openddir(), a static
variable points to the �rst entry in the directory. The readdir() call reads the entry pointed to by
this hidden variable, and increments the pointer so that it points to the next entry. Thus, successive
calls iterate through the directory. If at any time, the program needs to know which entry it is
about to read, telldir() :

#include <dirent.h>

long telldir(DIR *dirp);

returns its index, which is an integer o�set from the beginning of the directory stream. If the
program needs to start all over again without closing the directory, rewinddir() will do that, and
seekdir() will move the pointer to a speci�ed index:
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#include <dirent.h>

void seekdir(DIR *dirp, long offset);

The o�set returned by telldir() can be passed to seekdir().

Although we do not need to know the structure of a DIR to use these calls, curiosity beckons us.
What you will discover is that DIR is not a macro, but a typedef:

typedef struct __dirstream DIR;

and that there is no de�nition of the struct __dirstream in any exposed header �les in the system.
This is because __dirstream is an incomplete type. An incomplete type is a type that describes
an object but lacks the information needed to determine its size. Each implementation of UNIX
must de�ne it, and is free to de�ne it as it chooses, but it need not expose that implementation10

in any header �les. The <dirent.h> header �le declares the struct __dirstream and makes DIR
equivalent to it, but does not de�ne its members. This gives programmers the ability to declare
objects of type DIR*, but not the ability to access the members of a DIR object.

Our curiosity satis�ed, we set this aside and tackle the NAME_MAX problem that arose earlier. There is
no man page search that can tell you where a constant such as NAME_MAX might be de�ned, i.e. which
header �le needs to be included in a program to access its de�nition. One can do a search for that
string in all of the header �les on the system, but then one has to know all of the places containing
header �les. Such a search will probably fail in /usr/include for example, because NAME_MAX is
a system-dependent value contained someplace where implementation-dependent header �les are
stored. One can do an exhaustive recursive grep for " NAME_MAX " (the spaces are important) and
one will �nd it:

$ grep -R " NAME_MAX " /usr/* 2>/dev/null

In bash, the redirect 2>/dev/null throws away all messages sent to standard error. The output of
this command may look something like

/usr/include/linux/limits.h:#define NAME_MAX 255

/* # chars in a file name */

/usr/include/glib-1.2/glib.h:# define NAME_MAX 255

followed by lines from other �les that may or may not de�ne the macro.

NAME_MAX is a system limit in UNIX. It speci�es the maximum number of characters in a �le name.
As such it is one of many such constants de�ned in the header �le <limits.h>. This fact is not as
easily discovered as some of the others so far. One must include this header �le to use the constant.
In the next chapter, we will cover how to discover and use system limits in programs. For the
moment, we use just a few.

We have enough knowledge now to make an attempt at writing ls.

10If you write a program that references a __dirstream object, the compiler will give an error that its size is
unknown. If you instead declare a __dirstream* pointer, the program will compile, because the pointer's size is
known. You will not be able to dereference this pointer and use what it points to because your program does not
have an implementation of it. But it is implemented in the libraries that use it. This is an example of information
hiding in C.
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3.9 Implementing ls

The �rst attempt at writing ls will handle multiple command line arguments and not much more.
For each argument, if it is a directory, it will display its contents, in no particular order. One
problem is solved for us by the opendir() call; the call will fail, returning a -1 if the argument is
not a directory. This will be our test for whether or not a �lename is that of a directory.

1 L i s t i n g : l s . c Vers ion 1
2 #include <s td i o . h>
3 #include <sys / types . h>
4 #include <di r en t . h>
5
6 #define HERE " . "

7 void l s (char [ ] ) ;
8
9 int main ( int argc , char ∗argv [ ] )
10 {
11 int i = 1 ;
12
13 i f ( 1 == argc ) // no arguments ; use .
14 l s ( HERE ) ;
15 else

16 // f o r each command l i n e argument , d i s p l a y con ten t s
17 while ( i < argc ){
18 p r i n t f ( "%s : \ n" , argv [ i ] ) ;
19 l s ( argv [ i ] ) ;
20 i++;
21 }
22 }
23
24 // L i s t the con ten t s o f the d i r e c t o r y named dirname
25 // Uses opendir to check whether argument i s a d i r e c t o r y
26 // Doesn ' t check i f argument i s or " ." or " . . "
27 void l s ( char dirname [ ] )
28 {
29 DIR ∗dir_ptr ; // d i r e c t o r y stream
30 struct d i r en t ∗ d i r entp ; // ho ld one entry
31
32 i f ( ( dir_ptr = opendir ( dirname ) ) == NULL )
33 // Could not open −− maybe i t was not a d i r e c t o r y
34 f p r i n t f ( s tde r r , "Cannot  open  %s \n" , dirname ) ;
35 else

36 {
37 while ( ( d i r entp = readd i r ( dir_ptr ) ) != NULL )
38 p r i n t f ( "%s \n" , d i rentp−>d_name ) ;
39 c l o s e d i r ( dir_ptr ) ;
40 }
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41 }

Comments

• The real work is done by the ls() function, which will print an error if the �le is not a
directory. It discovers this when it tries to open the directory using the opendir() call. This
call will return a NULL pointer if it cannot open the directory or if it is not a directory. It
sets errno to a speci�c value to indicate the cause of the error, but we ignore errno in this
version.

• This version lists all �les, including dot-�les.

• It does not sort the �les, which the real ls does.

• It does not put the output into columns, which the real ls does.

• It does not handle any command-line options.

• It does not display information about the three special bits of the �le.

This was just a warm-up exercise. Now we know some of the problems that we have to address. We
write a second version, trying to solve some, but not all, of the problems. We also add the ability
to display long listings.

3.10 A Second Version of ls

3.10.1 Adding the -l Option to ls

The -l option to ls displays �le attributes. The set of displayed attributes for �les that are not
device �les is de�ned in the table below.

Field Name Description

mode A ten character �eld in which the �rst character is a single letter that
denotes the �le type. A "-" means it is a regular �le; a "d" means it is a
directory. There are other types as well. This was described in Chapter 1.
The remaining nine characters de�ne the �le mode, also described in
Chapter 1.

number of links The number of names this �le has in all directories combined. A single �le
may have entries in multiple directories, possibly with the same name or
with di�erent names.

owner name The user-name of the user who owns this �le.

group name The name of the group to which this �le belongs. If the group does not
have a name its group-id might appear instead.

size in bytes The actual number of data bytes in the �le, not the number of bytes in the
blocks allocated to it, except that if the �le is a directory, it is the number
of bytes in the blocks allocated to the directory and is therefore a multiple
of the block size.
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Field Name Description

date of last
modi�cation

The date and time that the �le was modi�ed last. If the �le is relatively
new, it shows month, day, time, but if it is older it shows month, day , year.
The de�nition of new varies, depending on which standard the
implementation adheres to. In POSIX compliant ls, a �le is recent if the
date is within the past 6 months. Also, the exact date format can be
changed with various options.

�le name The name of the �le in the directory.

If a �le is a symbolic link, then the default behavior of ls is to display this information about the
link itself, not the �le that it references. To display the referenced �le's attributes, ls must be given
the -L option (on most systems) in addition to the -l option.

The question is, how does the ls command access this information, which we know is in the i-nodes
associated to the �le? We need a function that accesses the information in an i-node. Once again,
the way to �nd out is by searching the man pages. This time it is likely to be di�cult to �nd the
information. Searching for man pages referring to i-nodes will come up empty. We can try searching
for a piece of information from the i-node, such as mode, size, or date of last modi�cation, but these
terms are too common and might produce long lists. The key is that the information in an i-node
is called the �le status. Searching for status will succeed:

$ man -k status | grep file

fileno [ferror] (3) - check and reset stream status

fstat (3p) - get file status

fstat [stat] (2) - get file status

ifcfg-ppp0 [pppoe] (5) - Configuration file used by adsl-start(8), adsl-stop(8),

adsl-status(8) and adsl-connect(8)

lam_rfstate (2) - Report status of remote LAM file descriptors

lstat [stat] (2) - get file status

stat (1) - display file or filesystem status

stat (2) - get file status

stat (3p) - get file status

The returned list may be di�erent than this, but it will contain the stat family of calls: stat(),
lstat(), and fstat(), probably with two pages for stat(), one in Section (2) and another in (3)
or (3P). The stat (3P) man page is the POSIX version. The man page for stat (2) begins with:

NAME
stat , l s t a t , f s t a t − get f i l e s t a tu s

SYNOPSIS
#inc lude <sys / types . h>
#inc lude <sys / s t a t . h>

in t s t a t ( const char ∗path , s t r u c t s t a t ∗buf ) ;
i n t l s t a t ( const char ∗path , s t r u c t s t a t ∗buf ) ;
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i n t f s t a t ( i n t f i l d e s , s t r u c t s t a t ∗buf ) ;

DESCRIPTION

These f unc t i on s re turn in fo rmat ion about the s p e c i f i e d
f i l e . You do not need any ac c e s s r i g h t s to the f i l e to get
t h i s in fo rmat ion but you need search r i g h t s to a l l
d i r e c t o r i e s named in the path l ead ing to the f i l e .

s t a t s t a t s the f i l e po inted to by fi le_name and f i l l s in
buf .

l s t a t i s i d e n t i c a l to s tat , except in the case o f a
symbol ic l ink , where the l i n k i t s e l f i s s tat−ed , not the
f i l e that i t r e f e r s to .

f s t a t i s i d e n t i c a l to s tat , only the open f i l e po inted
to by f i l e d e s ( as returned by open ( 2 ) ) i s s tat−ed in p lace
o f f i le_name .

They a l l r e turn a s t a t s t r u c tu r e which has the f o l l ow i n g
f i e l d s :

mode_t st_mode ; /∗ F i l e mode ( see mknod ( 2 ) ) ∗/
ino_t st_ino ; /∗ Inode number ∗/
dev_t st_dev ; /∗ ID o f dev i ce conta in ing a ∗/

d i r e c t o r y entry f o r t h i s f i l e ∗/
dev_t st_rdev ; /∗ ID o f dev i ce ∗/

/∗ This entry i s de f i ned only f o r ∗/
/∗ char s p e c i a l or b lock s p e c i a l f i l e s ∗/

nl ink_t st_nl ink ; /∗ Number o f l i n k s ∗/
uid_t st_uid ; /∗ User ID o f the f i l e ' s owner ∗/
gid_t st_gid ; /∗ Group ID o f the f i l e ' s group ∗/
of f_t s t_s i z e ; /∗ F i l e s i z e in bytes ∗/
time_t st_atime ; /∗ Time o f l a s t a c c e s s ∗/
time_t st_mtime ; /∗ Time o f l a s t data mod i f i c a t i on ∗/
time_t st_ctime ; /∗ Time o f l a s t f i l e s t a tu s change ∗/

/∗ Times measured in seconds s i n c e ∗/
/∗ 00 : 00 : 00 UTC, Jan . 1 , 1970 ∗/

long s t_b lk s i z e ; /∗ Pre f e r r ed I /O block s i z e ∗/
blkcnt_t st_blocks ; /∗ Number o f 512 byte b locks a l l o c a t e d ∗/

In short, we pass the stat() or lstat() function the pathname to the �le and it �lls in the stat

structure pointed to by the second argument. If the pathname is not absolute, stat() and lstat()

treat it as relative to the working directory. This is important, because if we pass it just a �lename,
the working directory of the process must be the one containing that �lename. If a �le is a symbolic
link, lstat() displays information about the link itself, rather than the �le to which it points, so if
we want our program to behave like the real ls, we should use lstat() instead of stat().

There is more information returned by a call to one of the stat() functions than is displayed by
ls -l, so we have to select which members of the stat structure we need to display. If you were
wondering, the POSIX description of the structure in Section (3P) is similar11. It will point out

11In fact, the POSIX page now contains example source code that solves the ls problem.
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that some of the members of the stat structure are required and others are not. All of the members
that we need are in the POSIX de�nition of this structure.

Much of the work is writing a function that, when given a �lename, displays a line of output in
the form of ls -l; therefore we concentrate on that function as a start. Initially we will create a
function that displays the individual pieces of information one per line. Once we have that working,
we can format it to �t on a line. The "one-per-line" version will be named print_file_status().
We can create a driver program that simply calls this function, using its command line argument
as the �le that we want to "stat". Since we already learned how to display time in Chapter 2, we
can reuse that function here. A �rst pass at this function would be something like the following:

void p r i n t_ f i l e_s t a tu s ( char ∗ fname , s t r u c t s t a t ∗buf )
{

p r i n t f (" mode : %o\n" , buf−>st_mode ) ; // type + mode
p r i n t f (" l i n k s : %d\n" , buf−>st_nl ink ) ; // # l i n k s
p r i n t f (" user : %d\n" , buf−>st_uid ) ; // user id
p r i n t f (" group : %d\n" , buf−>st_gid ) ; // group id
p r i n t f (" s i z e : %d\n" , buf−>st_s i z e ) ; // f i l e s i z e
p r i n t f ("mtime : %s \n" ,

t ime2s t r ( buf−>st_mtime ) ) ; // l a s t modi f i ed
p r i n t f (" name : %s \n" , fname ) ; // f i l ename

}

Here, time2str() is a simple function that converts the time_t into a string without the "day of
week" name at the start. It will be replaced by something else later. In this �rst attempt, the mode
is numeric, the user and group are displayed as user and group-ids instead of with actual names.
We will take each line one at a time and re�ne it so that it displays the information in the proper
form. First we will �x up the mode.

3.10.2 Converting File Mode to String Format

The �le mode is stored in the st_mode member of the stat structure as a 16-bit quantity. The 16
bits are used for di�erent purposes.

The �rst four bits are reserved for the �le type, such as regular �le or directory. The next three
bits are the special bits: the set-user-id bit, the set-group-id bit, and the sticky bit. We will get to
these afterwards. The next nine bits are three sets of three bits each. Each set has a read, write,
and execute bit. The three sets of bits are the user, group, and others sets of bits. A 1-bit means
the permission or property is on, and a 0-bit, that it is o�. With this in mind, it is easy to write
code to convert this 16-bit quantity into a ten-character mode string using bit masks.

Other than the �le type, which is stored in bits 12 to 15, all other �ags are single bits in st_mode.
In fact, UNIX provides all of the masks we need, in the �le <sys/stat.h>. These masks are stan-
dardized in POSIX and are described in one of the stat man pages. The header �le <sys/stat.h>
has the de�nitions, which are replicated here. The single-bit masks are
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S_ISUID 0004000 s e t UID b i t
S_ISGID 0002000 set−group−ID b i t ( s e e below )
S_ISVTX 0001000 s t i c k y b i t ( s ee below )
S_IRWXU 00700 mask f o r f i l e owner pe rmi s s i ons
S_IRUSR 00400 owner has read permis s ion
S_IWUSR 00200 owner has wr i t e permis s ion
S_IXUSR 00100 owner has execute permis s ion
S_IRWXG 00070 mask f o r group pe rmi s s i ons
S_IRGRP 00040 group has read permis s ion
S_IWGRP 00020 group has wr i t e permis s ion
S_IXGRP 00010 group has execute permis s ion
S_IRWXO 00007 mask f o r pe rmi s s i ons f o r o the r s
S_IROTH 00004 othe r s have read permis s ion
S_IWOTH 00002 othe r s have wr i t e permis s ion
S_IXOTH 00001 othe r s have execute permis s ion

and the masks for extracting �le type are

#de f i n e S_IFMT 0170000 /∗ type o f f i l e ∗/
#de f i n e S_IFREG 0100000 /∗ r e gu l a r ∗/
#de f i n e S_IFDIR 0040000 /∗ d i r e c t o r y ∗/
#de f i n e S_IFBLK 0060000 /∗ block s p e c i a l ∗/
#de f i n e S_IFCHR 0020000 /∗ cha rac t e r s p e c i a l ∗/
#de f i n e S_IFIFO 0010000 /∗ FIFO ∗/

POSIX de�nes macros for testing the �le type, which are much easier than using the masks:

S_ISREG(m) i s i t a r e gu l a r f i l e ?
S_ISDIR(m) d i r e c t o r y ?
S_ISCHR(m) charac t e r dev i c e ?
S_ISBLK(m) block dev i ce ?
S_ISFIFO(m) FIFO (named pipe )?
S_ISLNK(m) symbol ic l i n k ?
S_ISSOCK(m) socket ?

We can use these masks to write a function to convert the numeric mode to the string that is
displayed by ls. For now it does not handle the setuid, setgid, and sticky bits. Before incorporating
them into the string, we should understand what they do and how they can be displayed in the
mode string. After all, the string has ten characters and we need all ten � 1 for type, and 3 sets of 3
for permissions � so where could we display the values of the setuid, setgid, and sticky bits anyway?

The following function, mode2str(), given the mode as a 16-bit integer, �lls the character string
str with a permission string in the standard format.
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void mode2str ( i n t mode , char s t r [ ] )
{

s t r cpy ( s t r , "−−−−−−−−−−" ) ;

i f ( S_ISDIR(mode) ) s t r [ 0 ] = 'd ' ; // d i r e c t o r y ?
e l s e i f ( S_ISCHR(mode) ) s t r [ 0 ] = ' c ' ; // char dev i c e s
e l s e i f ( S_ISBLK(mode) ) s t r [ 0 ] = 'b ' ; // block dev i c e
e l s e i f ( S_ISLNK(mode) ) s t r [ 0 ] = ' l ' ; // symbol ic l i n k
e l s e i f ( S_ISFIFO(mode ) ) s t r [ 0 ] = 'p ' ; // Named pipe (FIFO)
e l s e i f ( S_ISSOCK(mode ) ) s t r [ 0 ] = ' s ' ; // socket

i f ( mode & S_IRUSR ) s t r [ 1 ] = ' r ' ; // 3 b i t s f o r user
i f ( mode & S_IWUSR ) s t r [ 2 ] = 'w ' ;
i f ( mode & S_IXUSR ) s t r [ 3 ] = 'x ' ;

i f ( mode & S_IRGRP ) s t r [ 4 ] = ' r ' ; // 3 b i t s f o r group
i f ( mode & S_IWGRP ) s t r [ 5 ] = 'w ' ;
i f ( mode & S_IXGRP ) s t r [ 6 ] = 'x ' ;

i f ( mode & S_IROTH ) s t r [ 7 ] = ' r ' ; // 3 b i t s f o r other
i f ( mode & S_IWOTH ) s t r [ 8 ] = 'w ' ;
i f ( mode & S_IXOTH ) s t r [ 9 ] = 'x ' ;

}

3.10.3 Converting User/Group ID to Strings

The next step is to convert the user-id and the group-id to names. We need a function that is given
a user-id and returns the name of the person with that user-id, and a function that is given the
group-id and returns the name of the group. How do we �nd such a function? We can try man
page searches using keywords such as username, name, user, and so on. After a few tries like this,
you could hone it down to something like

$man -k name | grep user

You will come up with a not-too-long list that includes the following prospect:

getpwnam (3p) - search user database for a name

If we look at this man page, we will discover that, while getpwnam() is not what we want,
getpwuid() is. Both of these functions access the password database, regardless of where the
actual �le is located, i.e., even if it is the network database, and return a passwd structure. The
function getpwuid() accesses the password database by user-id and getpwnam() accesses it by
username. We have a user-id, but we need the name, so we want the getpwuid() function. It is
given a user-id as an argument and it returns a pointer to a passwd structure, which is de�ned in
/usr/include/pwd.h as
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s t r u c t passwd {
char ∗pw_name ; /∗ Username ∗/
char ∗pw_passwd ; /∗ Password ∗/
_uid_t pw_uid ; /∗ User ID ∗/
_gid_t pw_gid ; /∗ Group ID ∗/
char ∗pw_gecos ; /∗ Real name ∗/
char ∗pw_dir ; /∗ Home d i r e c t o r y ∗/
char ∗pw_shell ; /∗ She l l program ∗/

}

The pointer returned by getpwuid() can be dereferenced to access an individual member of the
passwd structure, provided that the pointer is not NULL. The man page for getpwuid() notes that
the returned pointer will be NULL if there was no matching entry in the password database. The
application must check for this.

You may wonder why there may not be a matching name. It sometimes happens that a user account
is deleted from a UNIX system, but some �les created by that user are left behind. For example, the
/tmp directory is usually world-writable, and anyone can put �les there. If the deleted user account
had created �les there, the system administrator probably did not delete them, since searching
through the entire �le system for traces of a user's �les is resource-consuming. If ls were trying to
list the contents of /tmp, it would not be able to display that username.

It does not end there. Suppose that someone else had hard links to the deleted user's �les. Even if
the administrator deleted the "original" �les created by that user, the actual �les still exist because
their link counts are not zero. The user-id of the owner of the �le is stored in the i-node of the �le, not
the directory entry. So, for example, if George linked to a �le owned by Sherry and Sherry's account
was deleted, then George's links are still owned by Sherry. The administrator cannot rightly delete
these links if George needs them, and a listing of George's �les would fail to display a username.

It is also possible that the user-id does correspond to a legitimate username, but the username
and user-id are de�ned in an NIS map from a di�erent domain than the one to which the host
belongs. For example, if a �le system is remotely mounted from a di�erent NIS domain, then the
owners of the �les will have user-ids and names from that domain, and the getpwuid() function
will not be able to �nd the username. As a concrete example, suppose a host named earth is in the
geography domain, but I have an account on earth in that domain (say sweiss@geography) and
I, for a while, was remotely mounting earth's �le system on my desktop machine, which lived in
the csci domain. All of the �les that I saw belonged to me, sweiss, but it was not the me I knew;
it was sweiss@geography, so the user-id was di�erent than the one in the csci NIS maps. As a
result, getpwuid() would fail to �nd that user-id in the csci maps. So you see that getpwuid()
can fail for that reason as well.

Since there may not be an entry in the passwd �le for a given user, there may not be a user-name
associated with the �le. There is still a user-id, but no user-name. In this case, the best that ls can
do is to print the user-id.

This is not the end of it. It is possible that ls �nds a name but it is the wrong name. Suppose that
the administrator reused the deleted user-id for a new user, not knowing that there were still �les
from the old user. When this happens, getpwuid() will �nd the user-id in the password database,
but it will be wrong. It will now be associated to a di�erent person, an impostor, if you like, for
the old owner. ls will display the new user-name as the owner of the �les, as the old account rolls
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over in its cybergrave, and as far as UNIX is concerned, the new user is now the inadvertent owner.
There is nothing we can do to prevent this.

What about group names? It turns out that a similar database, similar functions, and similar
problems exist for groups. The /etc/group �le lists all of the groups in the system, together with
the users who are in each group. The �le has an entry for each group consisting of the group name,
the group password, the group-id and a comma-separated list of user-names, such as

root::9:root

other::1:

bin::2:root,bin,daemon

sys::3:root,bin,sys,adm

staff::4:tbw,snw

From the list above you can see that root belongs to more than one group. In general, users can
belong to more than one group. The primary group of a user is the group speci�ed in the password
�le entry for that user. When a user creates a �le, the user's primary group is made the group of
the �le. The owner of a �le can change the group of a �le with the chgrp command.

The getgrgid() system call, given a group-id, searches the list of groups and returns a pointer to the
group structure of the group whose group-id matches, or NULL if no such group is found. Similarly,
the getgrnam() function searches the group database by name and returns a pointer to the group
structure that matches that name, or NULL. The group structure is de�ned in /usr/include/grp.h

as

s t r u c t group {
char ∗gr_name ; /∗ group name ∗/
char ∗gr_passwd ; /∗ group password ∗/
gid_t gr_gid ; /∗ group ID ∗/
char ∗∗gr_mem; /∗ group members ∗/

} ;

It is easy to write a function to convert group-ids to group-names, provided that such groups have
names. The same arguments about passwords apply to groups; it is possible that the group-id will
not resolve to a correct group name.

3.10.4 Formatting Time

In Chapter 2, we used ctime() to format time values. Here we will use strftime() and localtime()
together, so that our program can behave more closely to the real ls program. The real ls program
formats times di�erently depending upon the user's locale. In addition, for �les whose time of last
modi�cation is not �recent�, the format is di�erent. The de�nition of �recent� is six months or less.
Of course six months is di�erent at di�erent times of the year, so this is an approximate de�nition.
We will use the �nancial sector's de�nition of six months � 182 days.

For �les that are not recent, ls displays the month name, the day of the month, and the year. For
recent �les, it displays the month, the day of the month, and the hour and minute. The exact format
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depends upon the locale settings. We will put this logic into a function named get_date_no_day(),
since it never displays the day of the week. this function is given a time_t value and produces a
pointer to a statically allocated string as its return value. If that value is not copied before the
function is called again, it will be overwritten. The function's logic is

1. Check if the �le is recent by comparing current_time - given_time to the number of seconds
in 182 days.

2. Create a struct tm from the given_time value.

3. If the �le is not recent, format it in the format MMM DD YYYY.

4. If the �le is recent, �rst try to format it using the user's locale settings.

5. If that fails, format it using the format MMM DD HH:MM

The function is shown in the listing below.

char∗ get_date_no_day ( time_t t imeva l )
{

const i n t sixmonths = 15724800; /∗ number o f s e c s in 182 days ∗/
s t a t i c char ou t s t r [ 2 0 0 ] ;
s t r u c t tm ∗tmp ;
time_t current_time = time (NULL) ;
i n t r e c en t = 1 ;

i f ( ( current_time − t imeva l ) > sixmonths )
r e c en t = 0 ;

tmp = lo c a l t ime (&t imeval ) ;
i f ( tmp == NULL) {

pe r ro r (" get_date_no_day : l o c a l t ime " ) ;
}

i f ( ! r e c en t ) {
s t r f t ime ( outs t r , s i z e o f ( ou t s t r ) , "%b %e %Y" , tmp ) ;
r e turn ou t s t r ;

}
e l s e i f ( s t r f t im e ( outs t r , s i z e o f ( ou t s t r ) , "%c " , tmp) > 0)

re turn ou t s t r +4;
e l s e {

p r i n t f (" e r r o r with s t r f t im e \n " ) ;
s t r f t ime ( outs t r , s i z e o f ( ou t s t r ) , "%b %e %H:%M" , tmp ) ;
r e turn ou t s t r ;

}
}
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3.10.5 Getting the Name of the Reference of a Link

If the �le is a symbolic link, we need to print out the pathname of the �le to which it points. If we
do a manpage search for functions that might work with links, i.e.

man -k link | grep '([23])'

we will see, among the set of choices,

readlink (2) - read value of a symbolic link

This is apparently what we need. Reading its manpage we see that the readlink() function reads
the value of a link:

SYNOPSIS

#include <unistd.h>

ssize_t readlink(const char *path, char *buf, size_t bufsiz);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

readlink(): _BSD_SOURCE || _XOPEN_SOURCE >= 500 ||

_POSIX_C_SOURCE >= 200112L

DESCRIPTION

readlink() places the contents of the symbolic link path in the buffer

buf, which has size bufsiz. readlink() does not append a null byte to

buf. It will truncate the contents (to a length of bufsiz characters),

in case the buffer is too small to hold all of the contents.

readlink() �lls its second argument with the contents of the symbolic link path. This storage is
allocated by the calling program, not by readlink(), so you need to declare a large enough string
to hold the pathname. You could declare this to be of size PATH_MAX12, but this will be extremely
large and it is probably better to truncate the name if it is very large. Because readlink() does
not append the null byte to the string, the proper usage of this function is roughly as follows, if
filename is the link being read:

ssize_t count;

if ( -1 == (count = readlink(filename, buf, NAME_MAX-1)) )

perror("function calling this ");

else {

buf[count] = '\0';

// use the buf contents here

}

NAME_MAX is the maximum length of a �le name, usually around 255. This is also probably too large.

A second version of ls follows. This version still does not parse the command line to detect whether
the -l option is present, but the code is revised to make it easy to incorporate that change later.
The other de�ciencies are noted after the listing.

12Recall from Chapter 1 that PATH_MAX is a system dependent limit specifying the maximum number of bytes in a
pathname.
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L i s t i n g l s . c Vers ion 2
void p r i n t_ f i l e_s t a tu s ( char ∗ , s t r u c t s t a t ∗ ) ;
void mode2str ( i n t , char [ ] ) ;
char ∗ get_date_no_day ( time_t ∗ time ) ;
char ∗ uid2name ( uid_t ) ;
char ∗ gid2name ( gid_t ) ;
void l s ( char [ ] , i n t ) ;

i n t main ( i n t argc , char ∗argv [ ] )
{

i n t i = 1 ;

i f ( argc == 1 ) // no arguments ; use .
l s ( HERE ) ;

e l s e
whi l e ( i < argc ){

p r i n t f ("%s : \ n" , argv [ i ] ) ;
l s ( argv [ i ] , 1 ) ;
i++;

}
}

// Does not check whether e n t r i e s are f i l e s or d i r e c t o r i e s
// or . f i l e s
void l s ( char dirname [ ] , i n t do_ long l i s t i ng )
{

DIR ∗dir_ptr ; // d i r e c t o r y stream
s t r u c t d i r en t ∗ d i r entp ; // ho lds one entry
s t r u c t s t a t i n f o ; // s t o r e s s t a t r e s u l t s

i f ( ( dir_ptr = opendir ( dirname ) ) == NULL )
// could not open −− maybe i t was not a d i r e c t o r y
f p r i n t f ( s tde r r , " l s 1 : cannot open %s\n" , dirname ) ;

e l s e {
whi l e ( ( d i r entp = readd i r ( dir_ptr ) ) != NULL ) {

i f ( do_ long l i s t i ng ) {
i f ( l s t a t ( d irentp−>d_name , &s ta tbu f ) == −1) {

pe r ro r ( d irentp−>d_name ) ;
cont inue ; // s t a t c a l l f a i l e d but we go on

}
p r i n t_ f i l e_s t a tu s ( direntp−>d_name , &s ta tbu f ) ;

}
e l s e // not long −− j u s t p r i n t name

p r i n t f ("%s\n" , d irentp−>d_name ) ;
}
c l o s e d i r ( dir_ptr ) ;

}
}

void p r i n t_ f i l e_s t a tu s ( char ∗ f i l ename , s t r u c t s t a t ∗ info_p )
{

char modestr [ 1 1 ] ;
s s i z e_t count ;
char buf [NAME_MAX] ;
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mode2str ( info_p−>st_mode , modestr ) ;
p r i n t f ( "%s" , modestr ) ;
p r i n t f ( "%4d " , ( i n t ) info_p−>st_nl ink ) ;
p r i n t f ( "%−8s " , uid2name ( info_p−>st_uid ) ) ;
p r i n t f ( "%−8s " , gid2name ( info_p−>st_gid ) ) ;
p r i n t f ( "%8ld " , ( long ) info_p−>st_s i z e ) ;
p r i n t f ( "%.12 s " , get_date_no_day ( info_p−>st_mtime ) ) ;
p r i n t f ( "%s" , f i l ename ) ;
i f ( S_ISLNK( info_p−>st_mode ) ) {

i f ( −1 == ( count = read l i nk ( f i l ename , buf , NAME_MAX−1)) )
pe r ro r (" p r i n t_ f i l e_s t a tu s : " ) ;

e l s e {
buf [ count ] = ' \ 0 ' ;
p r i n t f ("−>%s " , buf ) ;

}
}
p r i n t f ("\n " ) ;

}

// Given user−id , r e turn user−name i f p o s s i b l e
char ∗uid2name ( uid_t uid )
{

s t r u c t passwd ∗pw_ptr ;
s t a t i c char numstr [ 1 0 ] ; // must be s t a t i c !

i f ( ( pw_ptr = getpwuid ( uid ) ) == NULL ) {
// convert uid to a s t r i n g ; us ing s p r i n t f i s e a s i e s t
s p r i n t f ( numstr ,"%d" , uid ) ;
r e turn numstr ;

}
e l s e

re turn pw_ptr−>pw_name ;
}

char ∗gid2name ( gid_t gid )
{

s t r u c t group ∗grp_ptr ;
s t a t i c char numstr [ 1 0 ] ;

i f ( ( grp_ptr = ge tg rg id ( g id ) ) == NULL ) {
// convert g id to s t r i n g

s p r i n t f ( numstr ,"%d" , g id ) ;
r e turn numstr ;

}
e l s e

re turn grp_ptr−>gr_name ;
}

What Is Still Wrong?

• It still treats all arguments like directories and displays an error if given a regular �le.
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• It still will not correctly display the �les in directories speci�ed on the command-line unless
they are within the current working directory.

• The program does not print the total lines printed.

• It does not sort by �lename.

• It displays all entries, including . and ..

• It does not display information about the three special bits of the �le.

The most serious of these problems is that this version will fail if the directory argument is not in
the current working directory. For example, if this is called as follows:

$ ls2 /

passing it the root directory, and there are subdirectories /etc, /usr, and /bin, the stat() function
will be given the �lenames "etc", "usr", and "bin". It will treat these as if they are in the current
working directory since it has no way of knowing their absolute pathnames. It will fail to �nd them
in the current working directory and will thus fail. The solution is to pass lstat() the absolute
pathnames of these directories, or their correct relative names. This is accomplished by passing
lstat(), for example, "/etc" instead. This implies that we need to concatenate the path of the
directory argument to its �le names. We could also change the working directory each time we need
to list its contents, saving the old one to return to afterwards.

3.11 The Three Special Bits

A �le's i-node and the st_mode member of the stat structure returned by the various stat() calls,
each use 16 bits to de�ne the �le's permissions and type. We have accounted for a 4-bit type and
9 bits of permissions. That leaves three unexplained bits. The three bits are the set-user-id bit
(setuid bit), the set-group-id bit (setgid bit) and the save-text-image bit (the sticky bit).

3.11.1 The Set-User-ID Bit

The setuid bit plays a critical role in UNIX. Consider the problem of allowing users to change their
own passwords. A user should be able to change her password, but no one else should be able to
do so, except the super-user. Since all passwords are stored in a single �le, the user has to have
permission to modify the password �le. This implies that the user needs write permission on the
password �le. But if the user has write permission on the password �le, then she can modify anyone
else's password too, which is not acceptable. So users cannot have write permission on the password
�le; the �le should be owned by root, and no user except the superuser should have write permission
to the �le. So we are back where we started, right?

Not exactly. To change a password, a user runs the passwd command. The passwd command
accesses the password �le and changes it. Ordinarily, when a user runs a command, the process
executing the command has the same e�ective user-id as the user who invoked the command from
the shell, and the permissions associated with that e�ective user-id. If this were true for the passwd
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command, then the passwd program would not be able to modify the password �le, since only root

has write permission on it. What if somehow we could give the passwd program the permissions
associated with root so that it could modify the password �le. Enter the setuid bit.

Recall that, at any given time, a process has two associated user-ids called its real user-id and its
e�ective user-id. The real user-id can never be changed. The e�ective user-id can vary. Ordinarily,
when a program is run, its e�ective user-id is set to be the e�ective user-id of the process that
created it, such as the shell. This is usually the real user-id of the user who indirectly ran the
process. But if the setuid bit is set on an executable �le, the e�ective user-id of the process that
executes the program in that �le is the user-id of the owner of the �le. In this case, root owns the
/usr/bin/passwd program �le, so when passwd runs, its e�ective user-id is that of root.

Recapping, the passwd program is owned by root, but it has its setuid bit turned on. When a user
executes this program, it runs with root as the e�ective user-id, not the user. Because the program
checks what the real user-id of the caller is by calling getuid(), it knows that it is being run by a
speci�c user and it can access the appropriate line of the password �le. This prevents passwd and
consequently the user from modifying anything other than the password of its own entry. Other
uses of the setuid bit include protecting global game data, protecting the print spooler, protecting
global databases in general.

3.11.2 The Set-Group-ID Bit

The set-group-id bit is similar to the set-user-id bit except it sets the e�ective-group-id of the running
program. If a program belongs to a group and has the setgid bit on, then when the program runs, it
runs with the privileges accorded to the group that owns it rather than the privileges of the group
that runs it.

The set-group-id bit is used by the write command. The write command (/usr/bin/write), not
the write() system call, is a command that lets users write to a terminal. The syntax is

write username [ ttyname]

After entering this command, all input will be displayed on the given user's terminal, until an end-
of-input signal (Ctrl-D) is received. To try it, type who to see who is logged on, and which terminals
they are using. Suppose I am logged in on terminal /dev/pts/2. You could type

$ write sweiss /dev/pts/2

Can I bother you?

Ctrl-D

and wait for my response. Your typing will appear on my terminal window. How is it possible that
one person can write on another person's terminal?

The write command needs write permission on the terminal on which it wants to write. First take
a look at the list of pseudo-terminal devices in /dev/pts. The list will look something like

crw------- 1 tlewis tty 136, 1 Mar 5 17:50 1

crw--w---- 1 tbw tty 136, 3 Mar 3 16:22 3

crw------- 1 nguyen04 tty 136, 4 Mar 5 10:36 4

crw--w---- 1 tbw tty 136, 5 Mar 3 15:40 5

crw--w---- 1 sweiss tty 136, 7 Mar 5 18:00 7
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Notice that some of these have the group write bit set and others do not. Notice that all terminals
belong to the tty group. This means that any process that runs with an e�ective group-id of tty
can write to those terminals whose write bit is set. Now take a look at the write command's status:

$ ls -l /usr/bin/write

-rwxr-sr-x 1 root tty 10124 Jul 27 2005 /usr/bin/write*

and observe that the write executable is in the tty group and its setgid bit is set. When a user runs
write, the process that executes it runs with the e�ective group-id of the write program, which is
the tty group. This implies that the write command will be able to write to any terminal whose
group write bit is set. Since it can be annoying to receive messages on your terminal while you are
working, UNIX provides a simple command to query, enable, or disable this bit:

$ mesg [y/n]

If you type mesg alone, it will display y or n, depending on whether the bit is set. Typing mesg y

turns it on, and mesg n turns it o�.

3.11.3 The Sticky-Bit

The sticky bit, also called the save-text-image bit, serves two di�erent purposes when it is applied
to �les and directories. Originally, UNIX was a pure swapping operating system. Processes were
swapped in and out of memory to maintain the multiprogramming level. The swapping store was a
separate disk or a separate partition of a disk that was used exclusively for storing process images
when they were swapped out. The executable code and other data were kept in contiguous bytes
on the swapping store, making reads and writes faster.

A program that was used by many people might go through many memory loads and unloads each
day. Putting it in the swapping store made loads and unloads easier, because the �le was in one
piece. Setting the sticky bit on a program �le prevented it from being removed from the swapping
store.

If a directory has the sticky bit on, then any �le you place in the directory will be protected from
being deleted by anyone except you. You put a �le in the directory and no one but you can remove
that �le. The directory is readable and writable by everyone, but the sticky bit prevents one person
from deleting another person's �les in that directory. This is how UNIX can implement directories
such as /tmp, which is used to store temporary �les.

3.11.4 The Special Bits and ls

How does ls �l display these three bits? If the set-uid bit is turned on, the permission string has
an s instead of an x in the owner set:

-rws------

instead of
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-rwx------

If the setgid bit is set, the second x becomes an s:

-rwxrws---

If the sticky bit is set, the rightmost character is a t instead of an x or a dash:

-rwxrwxrwt

We simply have to test these bits and modify the string accordingly. The revised mode2str()

function is included in the listings that follow.

3.12 A Final Version of ls

The �nal version of the ls program can use the bit masks described above to display the appropriate
letter in case the set-uid, set-gid, or sticky bit is set on a �le. The problem of not displaying the
�les when the directory argument is not within the current working directory has an easy solution.
The argument to the stat() call must be constructed by concatenating the directory name, a slash,
and the directory entry, as in

...

while ((dp = readdir(dir)) != NULL) {

sprintf(fname,"%s/%s",dirname, dp->d_name); // changed here

if (stat(fname, &statbuf) == -1) {

...

The sprintf() function is used to concatenate the directory name and the directory entry with
the slash in between. This way, the argument to stat() will be either an absolute path name, if
the directory argument was, or it will be relative to the working directory, since if it were not, the
opendir() call would fail, and that would be the user's error in passing a non-existent directory
name to the program.

The error that occurs when a command-line argument of ls is not a directory is slightly more work
to remove. The problem is that the ls function called by main() starts out with

i f ( ( dir_ptr = opendir ( dirname ) ) == NULL )
// could not open −− maybe i t was not a d i r e c t o r y
f p r i n t f ( s tde r r , " Cannot open %s\n" , dirname ) ;

e l s e {
. . .

The opendir() call fails because the argument is not a directory, and the program displays an error,
e.g.
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Cannot open foo

Instead we need to �rst test whether the �le is a regular �le or a directory. In order to do this,
we need to call stat() with the �le name, and check whether the �le is a directory by using the
S_ISDIR() macro on the st_mode member. The following is how the function should start:

i f ( l s t a t ( dirname , &s ta tbu f ) == −1 ) {
pe r ro r ( fname ) ;
r e turn ; // s t a t c a l l f a i l e d so we qu i t t h i s c a l l

}
e l s e i f ( ! S_ISDIR( s t a tbu f . st_mode ) ) {

i f ( do_ long l i s t i ng )
p r i n t_ f i l e_s t a tu s ( dirname , s t a tbu f ) ;

e l s e
p r i n t f ("%s \n" , dirname ) ;

r e turn ;
}

i f ( ( d i r = opendir ( dirname ) ) == NULL )
f p r i n t f ( s tde r r , " Cannot open %s\n" , dirname ) ;

e l s e {
. . .

The main program needs to be modi�ed to parse the command line, using the getopt() function
that POSIX requires of a compliant UNIX system. We need to include the <unistd.h> header �le
to use it. For this version we have a single option letter, �l�, but the program can easily be extended
to include other options. The main program is in the following listing, and the supporting functions
are in the listing that follows it.

L i s t i n g l s . c F ina l Vers ion o f main ( )

void l s ( char dirname [ ] , i n t do_ long l i s t i ng ) ;
void p r i n t_ f i l e_s t a tu s ( char ∗ fname ,

s t r u c t s t a t s t a tbu f ) ;
char ∗ mode2str ( i n t mode ) ;
char ∗uid2name ( uid_t uid ) ;
char ∗gid2name ( gid_t gid ) ;

i n t main ( i n t argc , char ∗argv [ ] )
{

i n t l o n g l i s t i n g = 0 ;
i n t ch ;
char opt ions [ ] = " : l " ;

op t e r r = 0 ; // turn o f f e r r o r messages by getopt ( )

whi l e (1 ) {
ch = getopt ( argc , argv , opt ions ) ;
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// i t r e tu rn s −1 when i t f i n d s no more opt ions
i f ( −1 == ch )

break ;
switch ( ch ) {
case ' l ' :

l o n g l i s t i n g = 1 ;
break ;

case ' ? ' :
p r i n t f (" I l l e g a l opt ion ignored . \ n " ) ;
break ;

d e f au l t :
p r i n t f (" getopt returned charac t e r code 0%o ??\n" ,

ch ) ;
break ;

}
}

i f ( opt ind == argc ) // no arguments ; use .
l s ( " . " , l o n g l i s t i n g ) ;

e l s e
whi l e ( opt ind < argc ){

l s ( argv [ opt ind ] , l o n g l i s t i n g ) ;
opt ind++;

}

return 0 ;
}

The supporting functions follow. Some functions are the same as in the previous version. Those are
not listed to save space. A comment indicates this when appropriate.

void l s ( char dirname [ ] , i n t do_ long l i s t i ng )
{

DIR ∗ d i r ; // po in t e r to d i r e c t o r y s t r u c t
s t r u c t d i r en t ∗dp ; // po in t e r to d i r e c t o r y entry
char fname [PATH_MAX] ; / / s t r i n g to hold path name
s t r u c t s t a t s t a tbu f ; // to s t o r e s t a t r e s u l t s

/∗ t e s t i f a r e gu l a r f i l e , and i f so , j u s t d i sp l ay i t ∗/
i f ( l s t a t ( dirname , &s ta tbu f ) == −1 ) {

pe r ro r ( fname ) ;
r e turn ; // s t a t c a l l f a i l e d so we qu i t t h i s c a l l

}
e l s e i f ( ! S_ISDIR( s t a tbu f . st_mode ) ) {

i f ( do_ long l i s t i ng )
p r i n t_ f i l e_s t a tu s ( dirname , s t a tbu f ) ;

e l s e
p r i n t f ("%s\n" , dirname ) ;

r e turn ;
}

i f ( ( d i r = opendir ( dirname ) ) == NULL )
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f p r i n t f ( s tde r r , " Cannot open %s\n" , dirname ) ;
e l s e {

p r i n t f ("\n%s : \ n" , dirname ) ;
// Loop through d i r e c t o r y e n t r i e s
whi l e ( ( dp = readd i r ( d i r ) ) != NULL) {

i f ( strcmp (dp−>d_name , " . " ) == 0 | |
strcmp (dp−>d_name , " . . " ) == 0 )

// sk ip dot and dot−dot e n t r i e s
cont inue ;

i f ( do_ long l i s t i ng ) {
// cons t ruc t a pathname f o r the f i l e us ing the
// d i r e c t o r y name passed to the program and the
// d i r e c t o r y entry
s p r i n t f ( fname ,"%s/%s " , dirname , dp−>d_name ) ;

// f i l l the s t a t bu f f e r
i f ( l s t a t ( fname , &s ta tbu f ) == −1) {

pe r ro r ( fname ) ;
cont inue ; // s t a t c a l l f a i l e d but we go on

}
p r i n t_ f i l e_s t a tu s (dp−>d_name , s t a tbu f ) ;

}
e l s e

p r i n t f ("%s\n" , dp−>d_name ) ;
}

}
}

void p r i n t_ f i l e_s t a tu s ( char ∗dname ,
s t r u c t s t a t s t a tbu f )

{
s s i z e_t count ;
char buf [NAME_MAX] ;

/∗ Print out type , permiss ions , and number o f l i n k s ∗/
p r i n t f ("%10.10 s " , mode2str ( s t a tbu f . st_mode ) ) ;
p r i n t f ("%3d" , ( i n t ) s t a tbu f . s t_nl ink ) ;

/∗ Print out owner ' s name i f i t i s found us ing getpwuid ( ) ∗/
p r i n t f (" %−8.8s " , uid2name ( s t a tbu f . st_uid ) ) ;

/∗ Print out group name i f i t i s found us ing ge tg rg id ( ) ∗/
p r i n t f (" %−8.8s " , gid2name ( s t a tbu f . st_gid ) ) ;

/∗ Print s i z e o f f i l e ∗/
p r i n t f (" %8jd " , ( intmax_t ) s t a tbu f . s t_s i z e ) ;

/∗ Print time o f l a s t mod i f i c a t i on ∗/
p r i n t f ( " %.12 s " , get_date_no_day ( s t a tbu f . st_mtime ) ) ;

/∗ pr in t f i l e name and i f a l ink , the l i nked f i l e ∗/
p r i n t f (" %s " , dname ) ;
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i f ( S_ISLNK( s ta tbu f . st_mode ) ) {
i f ( −1 == ( count = read l i nk (dname , buf , NAME_MAX−1)) )

pe r ro r (" p r i n t_ f i l e_s t a tu s : " ) ;
e l s e {

buf [ count ] = ' \ 0 ' ;
p r i n t f ("−>%s " , buf ) ;

}
}
p r i n t f ("\n " ) ;

}

char ∗ mode2str ( i n t mode )
{

s t a t i c char s t r [ 1 1 ] ;
s t r cpy ( s t r , "−−−−−−−−−−" ) ; // d e f au l t=no perms

i f ( S_ISDIR(mode) ) s t r [ 0 ] = 'd ' ; // d i r e c t o r y ?
e l s e i f ( S_ISCHR(mode) ) s t r [ 0 ] = ' c ' ; // char dev i c e s
e l s e i f ( S_ISBLK(mode) ) s t r [ 0 ] = 'b ' ; // block dev i ce
e l s e i f ( S_ISLNK(mode) ) s t r [ 0 ] = ' l ' ; // symbol ic l i n k
e l s e i f ( S_ISFIFO(mode ) ) s t r [ 0 ] = 'p ' ; // Named pipe (FIFO)
e l s e i f ( S_ISSOCK(mode ) ) s t r [ 0 ] = ' s ' ; // socket

i f ( mode & S_IRUSR ) s t r [ 1 ] = ' r ' ; // 3 b i t s f o r user
i f ( mode & S_IWUSR ) s t r [ 2 ] = 'w ' ;
i f ( mode & S_IXUSR ) s t r [ 3 ] = 'x ' ;

i f ( mode & S_IRGRP ) s t r [ 4 ] = ' r ' ; // 3 b i t s f o r group
i f ( mode & S_IWGRP ) s t r [ 5 ] = 'w ' ;
i f ( mode & S_IXGRP ) s t r [ 6 ] = 'x ' ;

i f ( mode & S_IROTH ) s t r [ 7 ] = ' r ' ; // 3 b i t s f o r other
i f ( mode & S_IWOTH ) s t r [ 8 ] = 'w ' ;
i f ( mode & S_IXOTH ) s t r [ 9 ] = 'x ' ;

i f ( mode & S_ISUID ) s t r [ 3 ] = ' s ' ; // set−uid
i f ( mode & S_ISGID ) s t r [ 6 ] = ' s ' ; // set−g id
i f ( mode & S_ISVTX ) s t r [ 9 ] = ' t ' ; // s t i c ky b i t
re turn s t r ;

}

char ∗uid2name ( uid_t uid )
// same as prev ious ve r s i on and omitted here .

char ∗gid2name ( gid_t gid )
// same as prev ious ve r s i on and omitted here .

This last version of ls solves all of the important problems. The goal was really to understand how
to interface to various system functions, and writing ls correctly was a way to get experience with
a few important structures: the dirent object and the i-node.
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3.13 Modifying File Attributes

The preceding exercise accessed attributes stored in the i-nodes, but did not modify any of them.
This is a good time to consider which of how attributes can be modi�ed by user level programs,
and how. When appropriate, various shell commands that are related will be noted.

3.13.1 Type of a File

The type of a �le is initialized when the �le is �rst created and it cannot be changed after that. As
mentioned before, a �le can be a regular �le, a directory, a device special �le (of which there are
several types), a socket, a symbolic link, or a named pipe.

The creat() system call creates regular �les; the mkdir() call makes a directory. The mkdir

command creates a new directory. In fact it is the only way to make a directory. Other calls make
the other types of �les. For example, mknod() is the system call that creates special �les such as
device special �les. The mknod command makes these at the user level. There is also a special
function to make FIFO special �les, the mkfifo() call.

3.13.2 Permission Bits and Special Bits

The permission bits are initialized when the �le is created by the kernel. The second argument
of the creat() call, for example, is a number used to initialize the �le mode. However, the mode
assigned to the �le is not exactly this argument; it is this number modi�ed by applying the process's
umask. The umask of the process is the umask of the e�ective user-id of the process.

Every user has a umask. The umask is an inverted mask; a 1 in the umask represents a bit to turn
o� in the masked value, i.e., the bitwise C operation (mode & ~umask) is applied. For example, if
the umask is octal 022, then it is binary 000010010. This shows that bits 2 and 5 of the mask are
set, which means bits 2 and 5 are turned o� in the masked value. Since 2 is write by others and
5 is write by group, this umask sets the default �le mode so that no one other than the owner can
write to the �le. The call,

fd = creat("newfile", 0766 );

would create the �le named newfile with permission string �rwxrw-rw- if there were no umask. If
the umask has value 022, then the umask is subtracted and the �le permissions would be �rwxr�r--.
Remember, the umask is an un-mask mask � it unsets the bits that are set in it. And it only does
this when the �le is created, not after.

A process inherits its umask value when it is started up13, but it can change it by calling umask():

#include <sys/types.h>

#include <sys/stat.h>

mode_t umask(mode_t mask);

13All processes are created by other processes. When you run a program from the command line, the shell creates
the process that executes the program and the shell is its parent process. The umask of the shell becomes the
umask of the new process. The umask of the shell is initialized when the shell starts up, usually by reading a shell
con�guration script such as the .bash_pro�le �le.
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The umask() system call changes the umask to the bitwise AND of mask and octal 0777 and returns
the value of the previous mask. In other words, it ignores the parts of the mode_t value passed to
it that de�ne the �le type and special bit values. There is also a shell command named umask that
can be used to inspect or change the user's umask.

A �le's permission bits can be changed by a process by calling chmod() :

#include <sys/stat.h>

int chmod(const char *path, mode_t mode);

As with the mode in the creat() system call, the mode may be supplied as an integer or as the
bitwise-or of one or more of the bitmasks described earlier � e.g. S_IRUSR.

Of course at the user level, chmod is the command to change the permission bits of a �le. See the
man page for all of the details on how to use it. There are many variations on it.

3.13.3 Number of Links to a File

The name of a �le is just a name stored in a directory. The total number of names that a �le has
is called its link count. The i-node contains this link count. When the link count is decremented
because a name is deleted, it is compared to zero. When it reaches zero, the �le is actually removed.

The link() system call creates a new name for an existing �le and the unlink() and unlinkat()

calls remove a name for a �le:

#include <unistd.h>

int link(const char *existingpath, const char *newpath);

int unlink(const char *path);

#include <fcntl.h>

int unlinkat(int dirfd, const char *pathname, int flags);

Feature test macro on glibc for unlinkat():

Since glibc 2.10: _XOPEN_SOURCE >= 700 || _POSIX_C_SOURCE >= 200809L

Before glibc 2.10: _ATFILE_SOURCE

If the new pathname exists already, link() will not overwrite it, instead returning -1 and setting
errno to EEXIST. Most implementations require that both pathnames be on the same �le system,
although POSIX.1 allows an implementation to support linking across �le systems. There are
various other conditions that can cause it to fail as well, and you should read its man page for
details.

Unlinking a �le, whether with unlink() or unlinkat(), requires that the process has write per-
mission and execute permission in the directory containing the name to be removed, since it is the
directory entry that is removed. If the sticky bit is set in this directory the process must have write
permission for the directory and either

• own the �le,

• own the directory, or
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• have superuser privileges.

If none of these are satis�ed, errno is set to EPERM. The unlink() call may do more than just delete
the name of the �le. If that name was the last link to a �le and no processes have the �le open
the �le is deleted and the space it was using is made available for reuse. However, if one or more
processes still have the �le open, it will remain in existence until the last �le descriptor referring to
it is closed, even if the link count went to zero. Some versions of Unix will set errno to EBUSY in
this case (but not Linux.)

The unlinkat() system call does the same thing as unlink(), but it does so relative to a given
directory that has been opened14. Speci�cally, one can use the open() system call to open a
directory and get a �le descriptor for it, and use that �le descriptor as the reference point for the
pathname second argument. Thus, a path relative to a given directory can be supplied. The last
argument is a �ag that can be used to make unlinkat() behave more like the rmdir() system
call. If it is passed AT_REMOVEDIR, then it is as if rmdir() was called on pathname. The following
example demonstrates its use.

L i s t i n g unlinkatdemo . c
/∗ usage : unlinkatdemo d i r e c t o r y f i l e

where path i s the path to a f i l e r e l a t i v e to
the g iven d i r e c t o r y .

∗/
#inc lude <s td i o . h>
#inc lude <s t d l i b . h>
#inc lude <uni s td . h>
#inc lude <f c n t l . h>

in t main ( i n t argc , char ∗argv [ ] )
{

i n t d i r f d ;

/∗ check args ∗/
i f ( argc < 3 ){

f p r i n t f ( s tde r r , " usage : %s d i r e c t o r y f i l e \n" , ∗argv ) ;
e x i t ( 1 ) ;

}

/∗ open d i r e c t o r y ∗/
i f ( ( d i r f d = open ( argv [ 1 ] , O_RDONLY)) == −1 ) {

f p r i n t f ( s tde r r , " could not open %s\n" , argv [ 1 ] ) ;
e x i t ( 1 ) ;

}
/∗ We could check here i f argv [ 2 ] r e f e r s to a d i r e c t o r y or a f i l e

to make t h i s more robust , but we don ' t . ∗/

14The reason that unlinkat() exists is to prevent possible race conditions which unlink() is susceptible to. A
component of a pathname given to unlink() might change in parallel to the call if the pathname is not within the
current working directory of the process. By opening a directory and getting its �le descriptor, the race condition is
eliminated.
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/∗ unl ink the f i l e r e l a t i v e to d i r f d ∗/
i f ( −1 == unl inkat ( d i r fd , argv [ 2 ] , 0) ) {

f p r i n t f ( s tde r r , " could not un l ink %s/%s\n" , argv [ 1 ] , argv [ 2 ] ) ;
e x i t ( 1 ) ;

}
re turn 0 ;

}

A descriptor for the directory supplied as the �rst argument to the program is obtained and stored
in dirfd. If this is successful then unlinkat() is called with this descriptor and the name of a �le
relative to that directory, which is supplied in the second argument to the program.

At the user level, the commands to create new links and remove old links are link and unlink.
There is also ln:

/usr/sbin/link existing-file new-file

/usr/sbin/unlink file

/usr/bin/ln [ -fns ] source_file [ target ]

Consult their man pages for details.

3.13.4 Owner and Group of a File

The owner and group of a �le are established when the �le is created. Remember, you as a user do
not create any �les. The kernel does. Whether you use the shell to create a �le, or vi, or any other
program, the program makes a request to the kernel, sooner or later, by calling creat(). The kernel
uses the e�ective-user-id and the e�ective group-id of the process that issued the creat() call as
the owner and group of the �le. Sometimes though, it uses the group-id of the parent directory.

The owner and group of a �le are changed only by the chown() and chgrp() system calls or their
command equivalents. It is very unusual for anyone other than the super-user to change ownership
of a �le. The chown command or system call changes who owns a �le. You cannot change the
ownership of a �le that you do not already own. You should consult the man pages for the details.

3.13.5 Size of a File

A �le increases in size as data is written to it using the write() system call. Its size is set to zero by
the creat() call. There is no call to reduce the size of a �le other than to zero it. In other words,
�les can grow and can be reset to zero size, but nothing else. The lseek() system call may be used
to reposition a �le pointer beyond the physical end of the �le. This by itself does not change the
size of the �le. Only actual writes can do that. If data is written to this position, the �le's stored
size will be increased, with a hole in its middle. The number of disk blocks that it uses will be the
number actually required to store data excluding the hole. The following listing illustrates.

L i s t i n g f i l e_ho l e . c
#inc lude <s t d l i b . h>
#inc lude <f c n t l . h>
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i n t main ( i n t argc , char ∗argv [ ] )
{

i n t fd ;

/∗ c r e a t e a new f i l e named f i l e_with_hole in the pwd ∗/
i f ( ( fd = c r ea t (" f i l e_with_hole " , 0644)) < 0)

e x i t ( 1 ) ;

/∗ put a smal l s t r i n g at the beg inning ∗/
i f ( wr i t e ( fd , bu f f e r , 10) != 10)

e x i t ( 1 ) ;

/∗ seek 131072 = 2^17 bytes past the beg inning o f the f i l e ∗/
i f ( l s e e k ( fd , 131072 , SEEK_SET) == −1)

e x i t ( 1 ) ;

/∗ wr i t e a smal l s t r i n g the re as we l l . ∗/
i f ( wr i t e ( fd , enddata , 10) != 10)

e x i t ( 1 ) ;

/∗ we now have a l a r g e f i l e with a big ho le . ∗/
e x i t ( 0 ) ;

}

If you do an ls -sl on the �le file_with_holes you will see that its size is 131082 bytes and uses
12 blocks. A block is usually 1KB.

$ ls -sl file_with_hole

12 -rw-r--r-- 1 stewart stewart 131082 Feb 21 20:09 file_with_hole

3.13.6 Modi�cation and Access Time

Every i-node maintains three timestamps:

• st_mtime, the time the �le was last modi�ed

• st_ctime, the time the �le attributes were last modi�ed

• st_atime, the time the �le was last read

These three timestamps are set by the kernel as the �le is accessed and modi�ed. You have no
control over st_ctime, but you can change st_atime and st_mtime manually using the utime()

system call:

#include <sys/types.h>

#include <utime.h>

int utime(const char *path, const struct utimbuf *times);
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where a utimbuf is de�ned as

s t r u c t utimbuf {
time_t actime ; /∗ ac c e s s time ∗/
time_t modtime ; /∗ mod i f i c a t i on time ∗/

} ;

It is possible to change the modi�cation time of a �le to a future time! The system does not check
that any time values make sense. The listing below can be used to change the timestamps on a �le
to any time at all.

There are many system calls that a�ect the time stamps on a �le. For example, when you remove
an entry from a directory, the directory itself is modi�ed and its st_mtime value changes. If you
list the contents of a directory, its st_atime value changes.

L i s t i n g chang e f i l e t ime s . c
#inc lude <time . h>
#inc lude <s td i o . h>
#inc lude <s t d l i b . h>
#inc lude <s t r i n g . h>
#inc lude <sys / types . h>
#inc lude <sys / s t a t . h>
#inc lude <uni s td . h>
#inc lude <utime . h>

#de f i n e CH_ACCESS 1
#de f i n e CH_MOD 2

// se t c l o ckback
// Given a time_t now , r e tu rn s a new time_t by subt ra c t i ng the days
// hours , minutes , and seconds s p e c i f i e d
time_t se t c l o ckback ( time_t now , i n t days , i n t hours ,

i n t mins , i n t s e c s )
{

s t r u c t tm time_tm ;
time_t newtime ;

loca l t ime_r(&now , &time_tm ) ;
time_tm . tm_sec −= se c s ;
time_tm . tm_min −= mins ;
time_tm . tm_hour −= hours ;
time_tm . tm_mday −= days ;
newtime = mktime(&time_tm ) ;

re turn newtime ;
}

void backdate ( const char∗ fn , i n t mode , i n t t imes [ ] , i n t s i z e )
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{
s t r u c t s t a t buf ;
time_t temp_t ;
time_t access_t , mod_t ;

s t r u c t utimbuf utbuf ;

i f ( 4 != s i z e ) {
f p r i n t f ( s tde r r , "wrong number o f parameters to backdate . \ n " ) ;
e x i t ( 1 ) ;

}

i f ( −1 == s t a t ( fn , &buf ) ){
pe r ro r ("Could not s t a t f i l e . \ n " ) ;
e x i t ( 1 ) ;

}

time(&access_t ) ;
i f ( mode & CH_ACCESS ) {

temp_t = se t c l o ckback ( access_t , t imes [ 0 ] , t imes [ 1 ] ,
t imes [ 2 ] , t imes [ 3 ] ) ;

access_t = temp_t ;
}
time(&mod_t ) ;
i f ( mode & CH_MOD ) {

temp_t = se t c l o ckback ( mod_t , t imes [ 0 ] , t imes [ 1 ] ,
t imes [ 2 ] , t imes [ 3 ] ) ;

mod_t = temp_t ;
}
utbuf . actime = access_t ;
utbuf . modtime = mod_t ;

i f ( −1 == utime ( fn , &utbuf ) ) {
pe r ro r (" Error changing t imes " ) ;
e x i t ( 1 ) ;

}

}
i n t main ( i n t argc , char ∗ argv [ ] )
{

i n t i = 0 ;
time_t now ;
char∗ t imes t r ;
char f i l ename [ 2 5 5 ] ;
i n t t imes [ 4 ] = {0 , 0 , 0 , 0} ;

i f ( argc < 2) {
p r i n t f (" usage : %s f i l ename days hours minutes seconds \n" ,

This work is copyrighted by Stewart Weiss and licensed under the Creative Commons Attribution-
ShareAlike 4.0 International License.

45

http://creativecommons.org/licenses/by-sa/4.0/ 
http://creativecommons.org/licenses/by-sa/4.0/ 


UNIX Lecture Notes
Chapter 3 File Systems and the File Hierarchy

Prof. Stewart Weiss

argv [ 0 ] ) ;
e x i t ( 1 ) ;

}

s t r cpy ( f i l ename , argv [ 1 ] ) ;
whi l e ( (−−argc >= 2) && ( i < 4) ) {

t imes [ i ] = a t o i ( argv [ i +2 ] ) ;
i++;

}

time(&now ) ;
t imes t r = ctime(&now ) ;
backdate ( f i l ename , CH_ACCESS|CH_MOD, times , 4 ) ;
r e turn 0 ;

}

3.13.7 Name of a File

The system call to rename a �le is rename():

#include <stdio.h>

int rename(const char *oldname, const char *newname);

It returns �1 on failure, 0 on success. oldname is the pathname of the �le or directory to be renamed
and newname is the new pathname. The behavior is complex, depending on whether oldname refers
to a �le, a directory, or a symbolic link, and whether newname already exists and whether it is on
the same �le system. To illustrate just some of the complexity:

• If oldname speci�es a �le that is not a directory, then if newname exists, it must not refer to a
directory. If newname exists and is not a directory, it is removed, and oldname is renamed to
newname. The process must have write permission for the directory containing oldname and
for the directory containing newname, since both are being changed.

• If oldname speci�es a directory, and if newname exists, it must refer to an empty directory. If
so, it is removed, and oldname is renamed to newname. Additionally, newname cannot contain
a path pre�x that includes oldname. For example, you cannot rename /class_stuff/notes

to /class_stuff/notes/systemcalls, because the old name /class_stuff/notes is a path
pre�x of the new name and cannot be removed.

• As a special case, if oldname and newname refer to the same �le, the function returns success-
fully without changing anything.

The process calling rename() must have appropriate permissions in all cases. A simplistic descrip-
tion is that rename() renames a �le, and if this involves deleting a name from one directory and
creating one in another, that is what it does. For complete details see the man page.
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3.14 Traversing the Tree, Up and Down

Two common things that we do with trees are ascending them and descending them. By �ascending�
we mean traveling from a given node to the parent and to the grandparent and so on until we reach
the root. By �descending� we mean something more extensive, as there are many nodes in the
subtree rooted at a given node � we mean visiting all nodes in that subtree in some speci�ed order.
This is a descent into the tree.

The �rst type of traversal is what the pwd command does; it travels from the current working
directory up the tree so that it can display the path from the root to the current working directory.
With a little research you will discover that there is a system call15, getcwd(), that does exactly
this. The second type of traversal is what recursive versions of commands such as ls, grep, chown,
chmod, and many more, do, and what the find command must do as well. They start in the given
directory and visit all �les in the subtree rooted at that directory.

Both of these problems present interesting programming challenges and require us to learn a bit
more about the �le system and the �le hierarchy. We will �rst solve the problem of �nding the path
to the current working directory. After that we will look at two di�erent functions provided in the
API for �walking� the �le tree.

3.15 The pwd Command

Recall that the pwd command prints the absolute pathname to the current working directory. As a
warm-up, we will exercise our knowledge of directories and i-nodes to make sure we understand the
task that lies ahead. Speci�cally we will try to reconstruct a portion of a �le hierarchy from limited
information about i-numbers in a set of directories.

Suppose that we are given a directory named scratch that contains subdirectories that also have
subdirectories, and so on. Each of these subdirectories may have regular �les as well. The command

$ ls -iaR scratch

will recursively display the i-numbers and �lenames of all �les within these directories, including
entries for �.� and �..�. The listing below shows the output of this command on a hypothetical
directory named scratch, except that directory names that would ordinarily appear in the output
and just displayed the �les contained in them. From this listing, it is possible to reconstruct the �le
hierarchy rooted at scratch.

725 .

449 ..

753 temp

727 test1

728 test2

731 .

728 ..

733 junk

732 stuff

727 .

725 ..

729 file1

730 file2

733 garbage

728 .

15In Linux it is a system call. On other systems it is a library function.
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725 ..

731 data

748 srcs

729 temp

Before reconstructing the hierarchy, you should be able to answer the following questions:

• What is the i-number of scratch?

• Which �lenames are links to the same �le?

The key to reconstruction is to use the i-numbers of the parent entries to obtain their names, and
use process of elimination for the rest. See Figure 3.6.

srcs datatemp garbagefile2file1

junk stuff

test2

temp 

test1

Figure 3.6: Hierarchy below scratch directory

This exercise shows that the parent directory entries in a directory play a vital role in the hierarchy,
because they are, in essence, back links. They are a way to ascend the tree.

3.15.1 Implementing the pwd Command

Suppose my working directory is chapter03, which is located in the directory unix_demos, which is
in class_stuff, which is in cs82010, which is in home, which is in the root directory. Then typing
pwd prints the path

/home/cs82010/class_stuff/unix_demos/chapter03

Of course when it starts, pwd does not �know� where it is. It is somewhere in a node of a very
large tree, but it does not know the path to it. It could use an exhaustive search to �nd the path,
starting at the root and recursively searching through every directory until it �nds one whose i-
number matches the i-number of the current working directory, but that would not be a very useful
command. From the preceding exercise it should be clear that pwd has work backwards to construct
the path, using the parent entries in the directories as it goes along.

3.15.2 About pwd

Before proceeding, let us note that the actual pwd command is very often a shell built-in, not a
separate program. The easiest way to determine if it is a built-in or a program, at least on a Linux
host, is to enter
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$ type pwd

If it is a shell built-in, the reply will be

pwd is a shell builtin

If not, it will be the pathname to the executable, such as /bin/pwd. You can then use the file

command to identify the type of �le:

$ file /bin/pwd

/bin/pwd: ELF 32-bit LSB executable, Intel 80386, version 1 (SYSV), dynamically

linked (uses shared libs), for GNU/Linux 2.6.9, stripped

which shows the type of executable it is. The shell built-in most likely just retrieves the value of
the environment variable PWD, which is updated as the working directory is changed. The shell will
use the kernel's getcwd() system call to accomplish this. We exclude the possibility of solving this
problem by calling getcwd(); that defeats the objective, which is in e�ect to write our own version
of getcwd().

3.15.3 How pwd Works

How does pwd construct the path? It is not stored anywhere. In fact, no directory has information
about where it is located except for that one little item � the dot-dot entry. The ".." in a directory
always contains the i-number of the parent directory, with one exception: the root of the �le system
has no parent. If you list the i-numbers in the root directory you will see that . and .. have the
same i-number:

$ cd /

$ ls �iaF | grep '\./'

2 ./

2 ../

This provides a stopping criterion for an iterative solution to printing the pathname. The idea is
to do the following:

1. Record the i-number, n, of the current directory, i.e., the i-number for ".".

2. Change directory (chdir()) to the parent directory.

3. Compare the i-number of the parent directory, which is now the current directory, to n. If
the i-number of the parent directory is n, stop. Otherwise, �nd the name of the link with
i-number n and append that name to the left of the current pathname, and append a "/" to
the left of that, and go back to step 1.

4. Print the current pathname.

This algorithm seems like it should work. However, as we have to construct the string from the right
end to the left end, it is easier to use a recursive solution. Recursion is never a fast strategy and
you should not think that the real pwd is recursive, however, it is an easy way to create a working
solution.
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3.15.4 A First Version of pwd

The �rst version of pwd.c is below, named pwd1.c. As we will see shortly, this program does not
work correctly. The bug is only exposed in limited conditions. Some comments are omitted from
the listing to save space.

L i s t i n g 1 . pwd1 . c
#inc lude <s td i o . h>
#inc lude <s t r i n g . h>
#inc lude <s t d l i b . h>
#inc lude <sys / types . h>
#inc lude <sys / s t a t . h>
#inc lude <d i r en t . h>

// BUFSIZ i s de f i ned in s t d i o . h : i t i s the maximum s t r i n g s i z e
#de f i n e MAXPATH BUFSIZ

// print_pwd p r i n t s the pwd to the s t r i n g abs_pathname and
// NULL−t e rminates i t
void print_pwd ( char ∗ abs_pathname ) ;

// print_path p r i n t s to s t r the path from / to the f i l e
// s p e c i f i e d by cur_inum .
void print_path ( char ∗ s t r , ino_t cur_inum ) ;

// inum_to_name puts the f i l ename o f the f i l e with i−node inum
// in to s t r i n g buf , at most l en chars long and NULL−t e rminates i t .
void inum_to_name( ino_t inum , char ∗ buf , i n t l en ) ;

// get_ino ge t s the i−node number o f f i l e fname , i f that fname
// i s the name o f a f i l e in the cur rent working d i r e c t o r y
// Returns 0 i f s u c c e s s f u l , −1 i f not .
i n t get_ino ( char ∗ fname , ino_t ∗ inum ) ;

/∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/
i n t main ( nt argc , char ∗ argv [ ] )
{

char path [MAXPATH] = "\0" ; // s t r i n g to s t o r e pwd

print_pwd ( path ) ; // p r i n t pwd to s t r i n g path
p r i n t f ("%s\n" , path ) ; // p r i n t path to stdout
re turn 0 ;

}

/∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/
void print_pwd ( char ∗ pathname )
{

ino_t inum ;

get_ino ( " . " , &inum ) ;
print_path ( pathname , inum ) ;

}
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/∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/
void print_path ( char ∗ abs_pathname , ino_t this_inode )

{
ino_t parent_inode ;
char its_name [BUFSIZ ] ;

// get inumber o f parent
get_ino ( " . . " , &parent_inode ) ;

// At root i f f parent inum == cur inum
i f ( parent_inode != this_inode ) {

chd i r ( " . . " ) ; // cd up to parent
// get f i l ename o f cur rent f i l e
inum_to_name( this_inode , its_name , BUFSIZ ) ;
// r e c u r s i v e l y get path to parent d i r e c t o r y
print_path ( abs_pathname , parent_inode ) ;
s t r c a t ( abs_pathname , "/" ) ;
s t r c a t ( abs_pathname , its_name ) ;

}
e l s e

s t r c a t ( abs_pathname , "/" ) ;
}

/∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/
void inum_to_name( ino_t inode_to_find , char ∗namebuf ,

i n t bu f l en )
{

DIR ∗dir_ptr ;
s t r u c t d i r en t ∗ d i r entp ;

dir_ptr = opendir ( " . " ) ;
i f ( dir_ptr == NULL ) {

per ro r ( " . " ) ;
e x i t ( 1 ) ;

}

// search d i r e c t o r y f o r a f i l e with s p e c i f i e d inum
whi le ( ( d i r entp = readd i r ( dir_ptr ) ) != NULL )

i f ( d irentp−>d_ino == inode_to_find ) {
strncpy ( namebuf , d i rentp−>d_name , bu f l en ) ;
namebuf [ buf len −1] = ' \ 0 ' ;
c l o s e d i r ( dir_ptr ) ;
r e turn ;

}
f p r i n t f ( s tde r r , "\ nError l ook ing f o r i−node number %d\n" ,

inode_to_find ) ;
e x i t ( 1 ) ;

}

/∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/
i n t get_ino ( char ∗ fname , ino_t ∗ inum )
{

s t r u c t s t a t i n f o ;
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i f ( s t a t ( fname , &i n f o ) == −1 ){
f p r i n t f ( s tde r r , "Cannot s t a t " ) ;
pe r ro r ( fname ) ;
r e turn −1;

}
∗ inum = in f o . st_ino ;
re turn 0 ;

}

The recursive function in the above listing is the print_path() function. Given an i-number,
this_inode, of the current working directory �le, it checks whether the i-number of the parent
directory is equal to this_inode. If they are equal, it stops the recursion, because this means it
is at the root. In this case, it appends a slash, �/�, to the pathname under construction. If it is
not, it has to get the �lename of the current working directory. Following the logic we described
above, it does this by going up one level to the parent directory and looking for the i-number in
that directory. When it �nds it, it retrieves the name matching the i-number.

Therefore, it begins by getting the i-number of the parent directory into parent_inode. It then
compares parent_inode to this_inode, and if unequal it calls chdir("..") to step into the
parent directory. Once in the parent directory, it calls inum_to_name() with this_inode. The
inum_to_name() call will store into its_name the actual name of the directory with i-number
this_inode. print_path() then makes a recursive call to itself, passing the i-number of the par-
ent, parent_inode, and the string in which it is constructing the pathname. In the recursive call, it
is one step closer to the root of the �le system, ensuring that the problem size is diminished. After
the recursive call, we assume that the absolute pathname from the root down to the parent directory
is in the argument abs_pathname, so we append a slash followed by the �le name we found for the
current directory, its_name, to abs_pathname. and we return. If parent_inode == this_inode,
then print_path() appends a slash to abs_pathname. When it does this, abs_pathname is the null
string, so when this program is called from within the root directory, it will display �/�.

The function that obtains the i-number of a �lename is simple; it calls stat() with the given
�lename and returns the st_ino member of the stat structure �lled by the stat() call. The
inum_to_name() function is a slightly more complex. It opens the current working directory and
repeatedly reads the entries in the directory until it �nds an entry with the given i-number. This
is a linear search of the directory. It uses the readdir() call to retrieve a pointer to a dirent

structure and pulls the name member out of the dirent structure. If it does not �nd an entry with
the given i-number it prints an error message on the standard error stream.

Running the program from various directories, you should discover that

• most pathnames start with a leading double-slash instead of a single slash, and

• the root directory is correctly displayed as /.

Now try running the program from within a directory in a �le system that has been mounted on
the root �le system. You will discover that either the program does not print the full absolute path,
that it prints an incorrect path, or that it generates the error

Error looking for i-node number n

for some n. This is a result of the program's not taking into account the way in which �le systems
are mounted. In order to understand this, we will revisit how mounting works.
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3.15.5 Multiple File Systems: Mounting

Section 3.3 introduced the concept of �le system mounting. In UNIX, unlike DOS or Windows, all
�les on all volumes are part of a single directory hierarchy; this is achieved by mounting one �le
system onto another. What exactly do we mean by mounting one �le system onto another? To
make it clear, suppose that we have a root �le system that looks in part like the one in Figure 3.7.

etc data

/

a c

doc1 var

Figure 3.7: Root �le system before mount

It has a subdirectory named data with two subdirectories named a and c. Notice that c is not empty.
Suppose this �le system is located on one internal disk of the computer, and suppose that there is
a second internal disk that contains its own �le system, as shown in Figure 3.8. The second disk
is represented by a device special �le named /dev/hdb. There is a �le system on this second disk,
whose root has two subdirectories named staff and students, and students has subdirectories
grad and undergrad. To make the �les in this second �le system available to the users of the
system, it has to be mounted on a mount point. A mount point is a directory in the root �le system
that will be replaced by the root of the mounted �le system.

undergrad grad

staff

/

students

Figure 3.8: File system /dev/hdb

If the directory /data/c is a mount point for the /dev/hdb �le system, then we say that /dev/hdb

is mounted on /data/c. The following mount command will mount the /dev/hdb �le system on
/data/c. It does not matter that c contains �le links already; the mount merely hides them while
it is there. They would disappear from view until the �le system was unmounted, when they would
reappear.

$ mount /dev/hdb /data/c

After this command, the root �le system will be as in Figure 3.9.
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Figure 3.9: Root system after mount of /dev/hdb

The absolute pathname of the grad directory would then be /data/c/students/grad.

In reality, we would have to specify the type of �le system written on /dev/hdb, unless it is the default
�le system, and only the superuser is allowed to run the mount command, with a few exceptions,
such as mounting removable storage devices such as CD-ROMs, DVDs, and USB devices.

When a directory becomes a mount point, the kernel restructures the directory hierarchy. The
directory contents are not lost; they are masked by the root directory of the mounted �le system. The
kernel records in a list of mount points that this �le system is mounted on this directory. Di�erent
versions of UNIX implement mounting in di�erent ways. This relevant part of this discussion is
that operations that traverse the tree can identify mount points because they are directories that
are the roots of di�erent �le systems than their parents.

3.15.6 Duplicate I-node Numbers and Cross-Device Links

The advantage of mounting is that it simpli�es the user's conceptualization and navigation of the
�le hierarchy. It is a single hierarchy. One problem that the kernel must deal with is that there may
be many �les with the same i-number, since i-numbers are unique only within a single �le system.
In fact, the root of every �le system has i-number 2, and its ".." entry is also 2, so there will be
many i-nodes with i-number 2. The kernel is able to distinguish i-nodes because i-nodes are also
known by the name of the device on which they are located. On all modern UNIX systems, the
i-node contains a member that stores the name of the device on which it is located. It is like having
a dog tag on a dog; if the dog gets lost, someone can look at it and know where it came from. (I'll
admit i-nodes can't wander around, but a process looking at a memory copy of an i-node may need
to know which device it got it from.) So i-nodes are more accurately represented by (i-number,
device number) pairs.

To pursue this line of thought, suppose there is a �le in the root �le system with i-number 52.
Suppose it has a hard link named /data/a/doc1. Suppose also that, referring to the �gure above,
/dev/hdb has a �le /students/undergrad/hwk1 with i-number 52. If UNIX allowed the creation
of a hard link across the two �le systems with the call

link( "/data/a/doc1", "/data/c/students/grad/doc1")
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then, after the call, there would be two links in the /dev/hdb �le system, each having the same
i-number, but these i-numbers would refer to di�erent i-nodes. This would break the �le system,
unless directories were able to store device numbers as well as i-numbers with �le names, which
would require rewriting almost the entire kernel. Therefore, UNIX systems generally do not allow
anyone to create hard links that span across �le systems. All hard links to a �le must be in a single
�le system. For the same reason, you cannot use the rename() call to move a �le across �le systems.
The rename() call makes a new name in the speci�ed directory pointing to the original �le. The
call,

rename( "/data/a/doc1", "/data/c/students/grad/doc1")

would cause the �le system to have two links to di�erent �les but with the same i-number.

3.15.7 A Second Version of pwd

It is now possible a correct implementation of the pwd command, which we call pwd2.c. The problem
with the original program is what it does when it reaches a mount point as it works its way towards
the root. Suppose that the current working directory is

/data/mnt/backups/backup1/current_backup/home/class_stuff

and that /data/mnt/backups is actually a mount point on which the �le system /dev/sdc1 has
been mounted. The device /dev/sdc1 is an external drive that is mounted to backup and restore
�les as needed, and it has a top-level directory named /backup1, under which one can �nd the
directory current_backup/home/class_stuff.

As our program ascends the tree, it eventually reaches the directory backup1. Suppose this has
i-number 6643. When the program has made backup1 its current working directory, it obtains the
i-number of its parent, which is the root of the mounted �le system /dev/sdc1 and therefore has
i-number 2.

It then changes directory to this parent directory, the /data/mnt/backups directory, and calls
inum_to_name() with i-number 6643. inum_to_name() searches through the directory entries in
the directory /data/mnt/backups, �nds 6643, and sets its_name to "backup1".

Then the program makes the next recursive call, in which this_inode = 2. When it changes
directory to its parent though, it has just crossed the mount point. There will not be a directory
entry in this directory with the i-number 2. Although backups has i-number 2 as the root of the
/dev/sdc1 �le system, the directory for /data/mnt does not have a dirent entry for it with the
i-number 2. As a result inum_to_name() will fail (unless by coincidence, it has an entry with i-
number 2 for some other name); it will search through the entire directory and then report that it
could not �nd i-number 2.

Although the dirent entry for backups in /data/mnt does not have i-number 2, its i-node does have
that i-number. This is why, if we were to issue the command

ls -i /data/mnt
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we would see the i-number 2 displayed for backups, because ls calls stat() to retrieve the i-node
contents. We must do the same thing. We make several changes to make the program correct.

1. We replace get_ino() by a function, get_deviceid_inode() that gets the i-number and
device-id for the given �le name. We call this function when the program starts so that we
have the device-id of the current working directory, and pass it to the recursive function,
print_path().

2. We change the test within print_path() for when we have reached the root: we have reached
the root if and only if the parent i-number matches the child i-number and they have the same
device ids, otherwise we are not there yet.

3. We change the way we �nd the name of the current directory in inum_to_name(). We pass
inum_to_name() the device-id and the i-number of the current working directory. inum_to_name()
calls stat() for every entry in the current working directory, trying to match the i-number
and the device-id stored in that entry's i-node against the i-number and device-d it was passed.
If the i-number and device match the pair passed to inum_to_name(), then the d_name mem-
ber of the dirent structure is the name of the current working directory, and this is what is
returned to print_path().

4. To �x the problem with the terminating slash, which should not be at the end of the path, we
can keep a static variable in the recursive function that keeps track of the level of recursion.
The trailing slash will only be printed if we are in a recursive call, not at the top-level call.

All of these changes are incorporated into pwd2.c, whose code is below in Listing 2.

L i s t i n g 2 . pwd2 . c
// same in c l ud e s as be f o r e

#de f i n e MAXPATH BUFSIZ

/∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/
void print_pwd ( char ∗ abs_pathname ) ;

// print_path p r i n t s to s t r the path from / to the f i l e
// s p e c i f i e d by cur_inum on the dev i ce with dev i ce id
// dev_num .
void print_path ( char ∗ s t r , ino_t cur_inum , dev_t dev_num ) ;

// inum_to_name puts the f i l ename o f the f i l e with inode inum
// on dev i ce with dev i c e number dev_num into s t r i n g buf , at
// most l en chars long and 0 terminates i t .
void inum_to_name ( ino_t inum , dev_t dev_num ,

char ∗ buf , i n t l en ) ;

// get_dev_ino ge t s the dev i c e id and the inode number o f
// f i l e fname , i f that fname i s the name o f a f i l e in the
// cur rent working d i r e c t o r y . Returns 0 i f succes s , −1 i f not .
i n t get_device id_inode ( const char ∗ fname , dev_t ∗dev_id ,

ino_t ∗ inum ) ;
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/∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/

i n t main ( i n t argc , char ∗ argv [ ] )
{

char path [MAXPATH] = "\0" ;

print_pwd ( path ) ;
p r i n t f ("%s\n" , path ) ;
r e turn 0 ;

}

/∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/
void print_pwd ( char ∗ abs_pathname )
{

ino_t inum ;
dev_t devnum ;

get_device id_inode ( " . " , &devnum , &inum ) ;
print_path ( abs_pathname , inum , devnum ) ;

}

/∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/
void print_path ( char ∗ abs_pathname ,

ino_t this_inode ,
dev_t this_dev )

// Recur s i ve ly p r i n t s path l ead ing down to f i l e with t h i s
// inode on this_dev Uses s t a t i c i n t he ight to determine
// which r e c u r s i v e l e v e l i t i s in
{

ino_t parent_inode ;
char its_name [BUFSIZ ] ;
dev_t dev_of_node ,

dev_of_parent ;
s t a t i c i n t he ight = 0 ;

// get dev i ce id and inumber o f parent
get_device id_inode ( " . . " , &dev_of_parent , &parent_inode ) ;

// At root i f f parent inum == cur inum & dev i ce i d s
// are same
i f ( ( parent_inode != this_inode )

| | ( dev_of_parent != this_dev ) ) {
chd i r ( " . . " ) ;

inum_to_name( this_inode , this_dev , its_name , BUFSIZ ) ;
he ight++; // about to make r e c u r s i v e c a l l
print_path ( abs_pathname , parent_inode , dev_of_parent ) ;
s t r c a t ( abs_pathname , its_name ) ;

i f ( 1 < he ight )
/∗ Since he ight i s decremented whenever we
∗ l e ave c a l l i t can only be > 1 i f we have not
∗ yet popped a l l c a l l s from the stack
∗/

This work is copyrighted by Stewart Weiss and licensed under the Creative Commons Attribution-
ShareAlike 4.0 International License.

57

http://creativecommons.org/licenses/by-sa/4.0/ 
http://creativecommons.org/licenses/by-sa/4.0/ 


UNIX Lecture Notes
Chapter 3 File Systems and the File Hierarchy

Prof. Stewart Weiss

s t r c a t ( abs_pathname , "/" ) ;
height−−;

}
e l s e // must be at root

s t r c a t ( abs_pathname , "/" ) ;
}
/∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/
void inum_to_name( ino_t inode_to_find , dev_t devnum ,

char ∗name , i n t bu f l en )
{

DIR ∗dir_ptr ;
s t r u c t d i r en t ∗ d i r entp ;
s t r u c t s t a t s t a tbu f ;

i f ( NULL == ( dir_ptr = opendir ( " . " ) ) ) {
pe r ro r ( " . " ) ;
e x i t ( 1 ) ;

}

whi l e ( ( d i r entp = readd i r ( dir_ptr ) ) != NULL ) {
i f ( −1 == ( s t a t ( d irentp−>d_name , &s ta tbu f ) ) ) {

f p r i n t f ( s tde r r , " could not s t a t " ) ;
pe r ro r ( d irentp−>d_name ) ;
e x i t ( 1 ) ;

}
i f ( ( s t a tbu f . st_ino == inode_to_find ) &&

( s ta tbu f . st_dev == devnum) ) {
strncpy ( name , direntp−>d_name , bu f l en ) ;
name [ buf len −1] = ' \ 0 ' ; // j u s t in case
c l o s e d i r ( dir_ptr ) ;
r e turn ;

}
}
f p r i n t f ( s tde r r , "Error l ook ing f o r i−node %d\n" ,

inode_to_find ) ;
e x i t ( 1 ) ;

}

/∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/
i n t get_device id_inode ( const char ∗ fname , dev_t ∗dev_id ,

ino_t ∗ inum )
{

s t r u c t s t a t i n f o ;
i f ( s t a t ( fname , &i n f o ) == −1 ){

f p r i n t f ( s tde r r , "Cannot s t a t " ) ;
pe r ro r ( fname ) ;
r e turn −1;

}
∗ inum = in f o . st_ino ;
∗dev_id = i n f o . st_dev ;
re turn 0 ;

}

This concludes the implementation of the pwd command.

This work is copyrighted by Stewart Weiss and licensed under the Creative Commons Attribution-
ShareAlike 4.0 International License.

58

http://creativecommons.org/licenses/by-sa/4.0/ 
http://creativecommons.org/licenses/by-sa/4.0/ 


UNIX Lecture Notes
Chapter 3 File Systems and the File Hierarchy

Prof. Stewart Weiss

3.15.8 Symbolic Links

Users should be able to create links across �le systems, and they should also be able to make links
to directories. For example, I might have a directory,

/data/c/sweiss/development/sourcecode/c-sources

that I access frequently while working on lecture notes. If my lecture notes are in /data/c/sweiss/classes/notes,
then it would be convenient to have a directory

/data/c/sweiss/classes/notes/c-sources

that is just a link to the c-sources directory under sourcecode. Then if my working directory
were /data/c/sweiss/classes/notes, I could type

$ ls c-sources

and it would display the contents of /data/c/sweiss/development/sourcecode/c-sources.

Similarly, users should not be limited in their ability to make links to �les. The fact that the �le
system depends on the uniqueness of i-numbers within a �le system should not limit a user's ability
to make links that are convenient, even if they span �le systems.

For these reasons, most UNIX systems provide an alternative kind of link called a symbolic link (or
soft link). A symbolic link is a �le that contains a reference to the name of the �le to which it links.
The command ln �s creates a symbolic link instead of a hard link. To illustrate, suppose we have
a directory named temp, and inside it we run the commands

$ who > users

$ ln users whoson # hard link

$ ln -s users ulist # soft link

$ ls -1i

628 lrwxrwxrwx 1 sweiss staff 5 Aug 30 00:22 ulist -> users

614 -rw------- 2 sweiss staff 676 Aug 30 00:22 users

614 -rw------- 2 sweiss staff 676 Aug 30 00:22 whoson

You can see a new notation. First, the "l" in the �le type speci�es that the �le is a symbolic link.
Second, the notation "ulist -> users" indicates that ulist is a symbolic link to the �le users.
The symlink() system call does the same thing.

Symbolic links are actual �les. They have i-nodes, as demonstrated above. But the i-node contains
di�erent information than the i-node of a hard link, and it refers to the name of the �le to which it
is linked. In other words, the actual �lename is stored in the link.

Symbolic links can be broken easily. If I now type
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$ rm users

rm: remove users (yes/no)? y

$ ls -li

total 4

628 lrwxrwxrwx 1 sweiss student 5 Aug 30 00:22 ulist -> users

614 -rw------- 1 sweiss student 676 Aug 30 00:22 whoson

$ more ulist

ulist: No such file or directory

you see that ulist still points to users, even though it does not exist. This is not an error. The
error only occurs when the process tries to access the �le.

3.15.9 System Calls Related to Symbolic Links

The following system calls are related to the use of symbolic links.

#include <unistd.h>

int symlink(const char *oldpath, const char *newpath);

int readlink(const char *path, char *buf, size_t bufsiz);

int lstat(const char *file_name, struct stat *buf);

The system call that creates symbolic links is symlink(). The readlink() call obtains the name
of the �le to which a symbolic link is pointing. The lstat() call obtains a stat structure for a �le
that is a link, not the �le to which it is linked.

3.16 Tree Walks

There are four di�erent ways that we can visit all of the nodes in a given subtree of the hierarchy:

• Write our own recursive function to traverse the tree;

• Write a non-recursive function to traverse the tree;

• Use the nftw() POSIX library function;

• Use the fts() function available in systems including the 4.4BSD API.

Commands such as grep, chmod, chown, rm, cp, and chgrp use the fts() functions to perform their
recursive tree traversals. The GNU version of the ls command, written by Richard Stallman and
David MacKenzie, uses internal stacks and queues to recurse the tree. The GNU find command,
originally written by Eric Decker, uses mutually recursive functions whereas the versions on BSD
systems use the fts() functions. In this section we describe the functions provided by the libraries,
beginning with the POSIX nftw() function and following with fts().
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3.16.1 The nftw() Tree Walk Function

nftw() replaces the older ftw() function, which still exists, but is deprecated. Its prototype is

#include <ftw.h>

int nftw(const char *path,

int (*fn)(const char *, const struct stat *, int, struct FTW *),

int fd_limit, int flags);

The nftw() function recursively descends the directory hierarchy rooted in path. For each object
in the hierarchy, it calls the function pointed to by fn, passing it

• a pointer to a null-terminated character string containing the pathname of the object (e.g. a
�le's path from the root of the walk),

• a pointer to a stat structure containing information about the object, �lled in as if stat()
or lstat() had been called to retrieve the information,

• an integer that gives more information about the object, whose value is one of the following
prede�ned constants:

FTW_D The object is a directory.

FTW_DNR The object is a directory that cannot be read. The fn function shall not be called
for any of its descendants.

FTW_DP The object is a directory and subdirectories have been visited. (This condition
occurs if the FTW_DEPTH �ag is included in flags.)

FTW_F The object is a �le.

FTW_NS The stat() function failed on the object because of lack of appropriate permission.
The stat bu�er passed to (*fn) is unde�ned. Failure of stat() for any other
reason is considered an error and nftw() returns -1.

FTW_SL The object is a symbolic link. (This condition occurs if the FTW_PHYS �ag is
included in flags.)

FTW_SLN The object is a symbolic link that does not name an existing �le. (This condition
shall only occur if the FTW_PHYS �ag is not included in flags.)

• a pointer to an FTW structure, which is de�ned as

struct FTW {

int base;

int level;

};

The FTW structure gives syntactic information about the �lename and depth information about
its place in the search. Speci�cally, the value of base is the o�set of the object's �lename in the
pathname passed as the �rst argument to (*fn). This makes it possible to extract the �lename from
the pathname easily. The value of level indicates depth relative to the root of the walk, where the
root level is 0. For example, if the pathname of the �le is documents/pictures/2012/january/nyc,
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and nyc is the �le object being processed by the call to (*fn), then base would be the length of
the string �documents/pictures/2012/january/� and level would be 4, since nyc is at level 4 in
the tree rooted at documents.

The (*fn) function is a programmer-de�ned function that is called for every object that ntfw()
visits in the tree. It can have any semantics provided that has the prototype described above. The
function has access to the information returned by a call to stat() as well as information contained
in the integer �ag. It can be designed to extract and utilize this information, but the problem,
which is a big one, is that the function has no hooks to pass in user-supplied data or pointers, so
that it is not possible to use this function to modify any variables unless they are globally scoped.
For example, to do something relatively simple such as computing the total number of bytes used by
all objects in the subtree rooted at a given directory, and printing that value when it is totaled, we
would either have to make it a static variable within (*fn) and do a post-order traversal, printing
only when we return to the root directory, or declare the variable outside of the function with �le
scope and do any printing in the function that calls nftw() when the call terminates. It is expected
that the programmer will use global variables when using this function. This will be clear when we
look at the example code below. We will have more to say about this below.

The third parameter to the nftw() function itself is an integer fd_limit that sets the maximum
number of �le descriptors that should be used by nftw() while traversing the �le tree. Only one
descriptor is needed for each level of the tree. If fd_limit is smaller than the depth of the tree, then
performance will be degraded because the function will have to keep opening and closing directories.

The last parameter is a �ag consisting of a bitwise-OR of zero or more of the following constants,
which control how ntfw() handles mount points and soft links and what it uses as its current working
directory, and whether it follows a pre-order or post-order traversal of the tree. Speci�cally,

FTW_CHDIR If set, nftw() changes the current working directory to each directory as it reports �les
in that directory. If clear, nftw() does not change the current working directory.

FTW_DEPTH If set, nftw() reports all �les in a directory before reporting the directory itself. If clear,
nftw() reports any directory before reporting the �les in that directory.

FTW_MOUNT If set, nftw() reports �les only in the same �le system as path.

FTW_PHYS If set, nftw() performs a physical walk and does not follow symbolic links. If it is
clear, it follows symbolic links but does not visit any �le twice. If FTW_PHYS is clear
and FTW_DEPTH is set, nftw() follows soft links but does not report on any directory
that would be a descendant of itself. If both FTW_PHYS and FTW_DEPTH are clear, nftw()
follows soft links but does not report on the contents of any directory that would be a
descendant of itself.

There is one other �ag that not in the above list, FTW_ACTIONRETVAL, only available with _GNU_SOURCE
set, which we ignore for now.

The nftw() function runs until the �rst of the following conditions occurs:

• an invocation of (*fn) returns a non-zero value, in which case nftw() returns that value;

• it detects an error other than EACCES, in which case it returns -1 and sets errno to indicate
the error; or
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• the tree is exhausted, in which case it returns 0.

As usual, we will look at an example to see how it is used. The following program displays the
size and name of every �le in the tree rooted at its argument. It indents the name in proportion
to its depth in the tree, and prints the total size in bytes of all �les visited. It lets the user control
whether to cross mount points with the -m option, to do a post-order in stead of a pre-order with
the -d option, and does not follow symbolic links unless the -p option is provided.

L i s t i n g nftwdemo . c
#de f i n e _XOPEN_SOURCE 500
#inc lude <ftw . h>
#inc lude <s td i o . h>
#inc lude <s t d l i b . h>
#inc lude <s t r i n g . h>
#inc lude <s td i n t . h>
#inc lude <l im i t s . h>

#de f i n e TRUE 1
#de f i n e FALSE 0
#de f i n e MAXDEPTH 20

/∗ For getopt ( ) we need to use t h i s f e a tu r e t e s t macro ∗/
#i f ( _POSIX_C_SOURCE >= 2 | | _XOPEN_SOURCE )

s t a t i c i n t d i sp lay_in fo ( const char ∗ fpath , const s t r u c t s t a t ∗sb ,
i n t t f l a g , s t r u c t FTW ∗ f twbuf )

{
char blanks [PATH_MAX] ;
const char ∗ f i l ename = fpath + ftwbuf−>base ;
i n t width = 4∗ ftwbuf−>l e v e l ;

/∗ f i l l b lanks with a s t r i n g o f 4∗ l e v e l b lanks ∗/
memset ( blanks , ' ' , width ) ;
b lanks [ width ] = ' \ 0 ' ;

/∗ pr in t out blanks then f i l ename ( not f u l l path ) ∗/
p r i n t f ("%s%s " , blanks , f i l ename ) ;

/∗ Check f l a g s and pr in t a message i f need be ∗/
i f ( t f l a g == FTW_DNR )

p r i n t f (" ( unreadable d i r e c t o r y ) " ) ;
e l s e i f ( t f l a g == FTW_SL )

p r i n t f (" ( symbol ic l i n k )" ) ;
e l s e i f ( t f l a g == FTW_SLN )

p r i n t f (" ( broken symbol ic l i n k )" ) ;
e l s e i f ( t f l a g == FTW_NS )

p r i n t f (" s t a t f a i l e d " ) ;

p r i n t f ("\n " ) ;
r e turn 0 ; /∗ To t e l l nftw ( ) to cont inue ∗/

}

i n t main ( i n t argc , char ∗argv [ ] )
{
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i n t f l a g s = 0 ;
i n t s t a tu s ;
i n t ch ;
char opt ions [ ] = " : cdpm" ;
opte r r = 0 ; /∗ turn o f f e r r o r messages by getopt ( ) ∗/

whi l e (TRUE) {
/∗ c a l l getopt , pas s ing argc and argv and the opt ions s t r i n g ∗/
ch = getopt ( argc , argv , opt ions ) ;

/∗ i t r e tu rn s −1 when i t f i n d s no more opt ions ∗/
i f ( −1 == ch )

break ;
switch ( ch ) {
case ' c ' :

f l a g s |= FTW_CHDIR;
break ;

case 'd ' :
f l a g s |= FTW_DEPTH;
break ;

case 'p ' :
f l a g s |= FTW_PHYS;
break ;

case 'm' :
f l a g s |= FTW_MOUNT;
break ;

d e f au l t :
f p r i n t f ( s tde r r , "Bad opt ion found . \ n " ) ;
r e turn 1 ;

}
}

i f ( opt ind < argc ) {
whi l e ( opt ind < argc ) {

s t a tu s = nftw ( argv [ opt ind ] , d i sp lay_info ,
MAXDEPTH, f l a g s ) ;

i f ( −1 == sta tu s ) {
pe r ro r (" nftw " ) ;
e x i t (EXIT_FAILURE) ;

}
e l s e

opt ind++;
}

}
e l s e {

s t a tu s = nftw ( " . " , d i sp lay_info , MAXDEPTH, f l a g s ) ;
i f ( −1 == sta tu s ) {

pe r ro r (" nftw " ) ;
e x i t (EXIT_FAILURE) ;

}
}
e x i t (EXIT_SUCCESS) ;

}
#end i f
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Notes.

• The main program allows multiple �lename arguments .

• The display() function uses memset() to set the string blanks to the correct number of
blanks.

• To print the �le name without the leading path, it prints the string starting at fpath+ftwbuf->base.

• It also displays information about whether the object is a symbolic link, broken or otherwise,
or an unreadable directory, or if the stat() call failed on the object.

This was a warm-up exercise. In general, the nftw() is challenging to use if the task requires
changing state information that must be preserved across calls to the (*fn) function. We must use
variables that are either static and locally scoped or global. To see what the problem is, we will try
to implement a simple version of the du command.

3.16.2 The du Command

The du command in its simplest form is invoked with

$ du file file ...

The du command estimates disk usage for each �le it is given, and if any are directories, it does this
recursively on each. In other words, when it is given a directory as an argument, it traverses the
tree rooted at that directory, and for each directory that it visits, it prints its disk usage. The disk
usage of a directory is the sum of the usage required for the directory �le itself together with all
�les in its tree. It seems like an ideal candidate for a command to be implemented using nftw(),
and a good exercise in using nftw() for a realistic application.

The du command has several options, but we will write a simple version of it that accepts no options.
The actual du command by default displays the total number of blocks that each �le uses. Rather
than displaying block usage, ours will display the actual number of bytes. This is equivalent to the
command du -b. Also, du by default does not display the usage of all �les; to do that it needs the
-a option. Therefore, we will write the equivalent of the command

$ du -ab file file ...

The du command should not follow symbolic links, otherwise it may double count �les or count
�les that are not within the directory argument. For this �rst version, we will also disable crossing
mount points, so that it measures usage only within a single �le system. It is easy enough to provide
an option to let it cross mount points.

Obviously it has to do a post-order traversal of the tree, because otherwise when it visits a directory
it will not have the total usage of that directory's children. Thus, in Figure 3.10, assuming a left-
to-right traversal of the children of a single node (since we can draw them in any order we wish,
we can assume it is always left-to-right), the �les visited will be srcs, cpy, bin, pics, stuff, data,
work, ideas, projects, file2, garbage, misc, A. Henceforth it is convenient to assume that the
children of a node are always visited in a left-to-right order.
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cpy ideas

Figure 3.10: Sample tree hierarchy.

The interesting problem is how to recursively accumulate the sizes of the �les that it visits. It has
to be able to print out the size of each �le that it visits, and when it reaches a directory, to print
out that directory's total usage. Thus, in Figure 3.10, when it reaches data, it has to print out the
sum of the sizes of pics, stuff, and data, but it also has to add the sizes of srcs, and the current
accumulation in bin to a running total to pass up to work when it reaches it. This suggests that
if we keep a set of running totals indexed by level in the tree, it should su�ce to record total size,
provided that we do this carefully.

Because the only way to share data between the main program and the function argument to nftw()
is by making it global, we will declare the array

#define MAXDEPTH 50

static uintmax_t totalsize[MAXDEPTH];

in �le scope. uintmax_t is a type de�ned in <stdint.h>. It is the largest unsigned integer type
available on the machine. It is often equivalent to unsigned long long int. We will assume that
the depth of the tree is never greater than 50 in out implementation. This array must be made
global because the main program zeroes it initially and the function that we pass to nftw(), which
we will call file_usage(), must be able to modify it and access it. The prototype for this function
is

int file_usage(const char *fpath, const struct stat *sb,

int tflag, struct FTW *ftwbuf)

At any instant of time, file_usage() will be visiting a speci�c �le in the tree. Let us call this the
current �le, and its level, the current level, and let us use the variable cur_level to represent this.
We call the level of the �le processed immediately before the current �le the previous level and we
will use the variable prev_level to store that level. Both of these take on values up to MAXDEPTH

and no larger. The current �le has a size which we will store in the variable cur_size. This is the
size of the actual �le, not the sum of the sizes of any children it may have. Even directories have
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size � they are usually allocated a single block (4096 bytes these days on most machines). We can
obtain this value from the stat structure passed into the function; it is sb->st_size.

The action that file_usage() must take depends on the values of cur_level and prev_level

and nothing else. This is what we will now justify. The following invariant will be maintained by
file_usage() after it has processed a �le:

totalsize[cur_level] is the sum of the sizes of all subtrees in the tree whose roots
are at level cur_level and are siblings to the left of the currently processed node plus
the size of the subtree rooted at the current node.

Suppose �rst that prev_level < cur_level. This implies that we just descended from a node
closer to the root of the tree. There is only one way in which this can happen during a post-order
traversal: when we reach a leaf node that is leftmost in its tree. For any other node, either the
previous node will be at the same level or will be below it. Thus, we have just reached a bottom
level and we must set totalsize[cur_level] to 0 and add the current �le's size to it. Equivalently,

cur_size = sb->st_size;

totalsize[cur_level] = cur_size;

Notice that totalsize[cur_level] satis�es the invariant in this case.

Suppose instead that prev_level == cur_level. In this case we are visiting a �le that is a sibling
of the one previously visited and it cannot be a directory, otherwise the previous node would have
been at a lower level. This implies that we have visited all siblings to the left of the current �le and
that it has no children. Therefore, we need to update totalsize[cur_level] by adding the �le's
size (i.e., cur_size) to it:

cur_size = sb->st_size;

totalsize[cur_level] += cur_size;

Assuming that the invariant was true prior to entering file_usage(), it remain true as a result of
adding cur_size to it in this case since cur_size is the size of the subtree rooted at this �le.

The last case to consider is when prev_level > cur_level. This can only mean one thing � we
have just returned in the post-order traversal to a directory all of whose children have just been
visited. It can only be the case that prev_level == cur_level+1 but we do not need this fact to
do what needs to be done. This is where the transfer of sizes between levels takes place. First, the
size that we have to report for this �le is not the directory size itself, but the directory size plus the
sum of the sizes passed up the tree to each of its children.

We take advantage of the invariant regarding totalsize[prev_level]. What we know is that,
since the last node processed was the rightmost node in the subtree rooted at the current directory,
and its level is prev_level, totalsize[prev_level] must be the sum of the sizes of all subtrees of
this directory. Therefore the size to display for it is its own size plus totalsize[prev_level]:

cur_size = totalsize[prev_level] + sb->st_size;
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To maintain the invariant, we add to totalsize[cur_level] the new value of cur_size. You can
verify that it will hold for the current level in so doing. The last step is the less obvious one, and it
will need explanation. We must set totalsize[prev_level] to 0. All together, the actions in this
case are

cur_size = totalsize[prev_level] + sb->st_size;

totalsize[cur_level] += cur_size;

totalsize[prev_level] = 0;

To see why we must zero totalsize[prev_level], consider what will happen when file_usage()

exits and is called for the next �le. Using the �le tree in Figure 3.10, suppose the current �le is the
directory work, and file_usage() just processed the directory named data. cur_level = 1 and
prev_level = 2. The next �le that file_usage() will process is ideas, and then projects. After
it visits ideas and returns to projects, totalsize[1] must start with the value 0, otherwise the
size of projects will include the sizes of srcs, bin, and data. In other words, every time that we
�nish a row of siblings in a subtree, having reached the rightmost sibling, and return to the parent,
we must zero out the entry in the totalsize[] array for that level. The only chance to do this is
when we have recorded its value in the parent and are �nished with that node. Doing this preserves
the invariant, as no nodes are currently being visited in that level anymore.

We put all of this together in the following listing, which is our initial version of a simple du

command. Our command will print a message next to a �le name if that �le had a problem such
as being a broken link or an unreadable directory. We could do instead what the real du does and
print the message to the standard error stream. Comments are omitted to reduce the size of the
listing.

L i s t i n g simpledu . c
#de f i n e _XOPEN_SOURCE 500
#inc lude <ftw . h>
#inc lude <s td i o . h>
#inc lude <s t d l i b . h>
#inc lude <s t r i n g . h>
#inc lude <s td i n t . h>
#inc lude <l im i t s . h>

#de f i n e TRUE 1
#de f i n e FALSE 0
#de f i n e MAXDEPTH 200

/∗ For getopt ( ) we need to use t h i s f e a tu r e t e s t macro ∗/
#i f ( _POSIX_C_SOURCE >= 2 | | _XOPEN_SOURCE )

s t a t i c uintmax_t t o t a l s i z e [MAXDEPTH] ;

i n t f i l e_usage ( const char ∗ fpath , const s t r u c t s t a t ∗sb ,
i n t t f l a g , s t r u c t FTW ∗ f twbuf )

{
s t a t i c i n t prev_leve l = −1;
i n t cur_leve l ;
uintmax_t cur_s ize ;

cur_leve l = ftwbuf−>l e v e l ;
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i f ( cur_leve l >= MAXDEPTH ) {
f p r i n t f ( s tde r r , "Exceeded maximum depth . \ n " ) ;
r e turn −1;

}

i f ( prev_leve l == cur_leve l ) {
cur_s ize = sb−>st_s i z e ;
t o t a l s i z e [ cur_leve l ] += cur_s ize ;

}
e l s e i f ( prev_leve l > cur_leve l ) {

cur_s ize = t o t a l s i z e [ prev_leve l ] + sb−>st_s i z e ;
t o t a l s i z e [ cur_leve l ] += cur_s ize ;
t o t a l s i z e [ prev_leve l ] = 0 ;

}
e l s e {

cur_s ize = sb−>st_s i z e ;
t o t a l s i z e [ cur_leve l ] = cur_s ize ;

}

p r i n t f ("%ju \ t%s " , cur_size , fpath ) ;
prev_leve l = cur_leve l ;

i f ( t f l a g == FTW_DNR )
p r i n t f (" ( unreadable d i r e c t o r y ) " ) ;

e l s e i f ( t f l a g == FTW_SL )
p r i n t f (" ( symbol ic l i n k )" ) ;

e l s e i f ( t f l a g == FTW_SLN )
p r i n t f (" ( broken symbol ic l i n k )" ) ;

e l s e i f ( t f l a g == FTW_NS )
p r i n t f (" s t a t f a i l e d " ) ;

p r i n t f ("\n " ) ;

r e turn 0 ;
}

i n t main ( i n t argc , char ∗argv [ ] )
{

i n t f l a g s = FTW_DEPTH | FTW_PHYS | FTW_MOUNT;
i n t s t a tu s ;
i n t i = 1 ;

i f ( argc < 2 ) {
memset ( t o t a l s i z e , 0 , MAXDEPTH∗ s i z e o f ( uintmax_t ) ) ;
s t a tu s = nftw ( " . " , f i l e_usage , 20 , f l a g s ) ;
i f ( −1 == sta tu s ) {

f p r i n t f ( s tde r r , "nftw ex i t ed abnormally . \ n " ) ;
e x i t (EXIT_FAILURE) ;

}
}
e l s e

whi l e ( i < argc ) {
memset ( t o t a l s i z e , 0 , MAXDEPTH∗ s i z e o f ( uintmax_t ) ) ;
s t a tu s = nftw ( argv [ i ] , f i l e_usage , MAXDEPTH, f l a g s ) ;
i f ( −1 == sta tu s ) {
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f p r i n t f ( s tde r r , "nftw ex i t ed abnormally . \ n " ) ;
e x i t (EXIT_FAILURE) ;

}
e l s e {

i++;
}

}
e x i t (EXIT_SUCCESS) ;

}
#end i f

If you run this and compare the output to du -ab, you might discover that it is not always the
same. But try comparing it to the output of du-alb and you will see it is the same. Consult the
manpage and you will see that the -l option tells du to count sizes multiple times for �les that have
multiple links. What is the problem?

This version of du, as it stands, counts �les with multiple links as many times as they have links.
If a �le has two names in two di�erent subdirectories of our root directory, each will be counted.
What is the way to prevent this? The stat structure has both the i-number of the �le and the
number of links. We can inspect the number of links for non-directory �les. If it is greater than
one, then it has another name somewhere. We do not know where, but we can store the i-number
in a lookup table and set its count to the number of links-1. Each time that we �nd a �le whose
link count is greater than one, we can look up its i-number in the table. If it is there with a positive
link count, we decrement the link count in the table and do not add the �le's size to the running
total, and do not even print its name. If the link count reaches zero, we remove it from the table.
If the �le is not there, we add it to the table with its link count.

Exercise 1. Write an implementation of du that does not count �les with multiple links more than
once.

Exercise 2. Write an implement ion of du that has the option to count either 512-byte blocks or
bytes.

3.16.3 The fts File Hierarchy Traversal Functions

Unlike nftw(), fts is a family of functions, in much the same way that opendir(), readdir(),
rewinddir(), and closedir() are inter-related functions, which conform to 4.4BSD but are not
POSIX functions. The fts set of functions includes fts_open(), fts_read(), fts_set(), fts_children(),
and fts_close(). Just as opendir() creates a directory stream object and returns a pointer to
it, fts_open() creates a handle that is used by the other functions. A handle is a pointer to an
FTS structure. Unlike nftw(), which does not allow the application to control the order in which
�les are searched other than whether it is pre-order or post-order, fts allows the calling program
to specify this order. We begin by looking at the manpage for fts. The synopsis is as follows:

#include <sys/types.h>

#include <sys/stat.h>

#include <fts.h>

FTS *fts_open(char * const *path_argv, int options,

int (*compar)(const FTSENT **, const FTSENT **));
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FTSENT *fts_read(FTS *ftsp);

FTSENT *fts_children(FTS *ftsp, int options);

int fts_set(FTS *ftsp, FTSENT *f, int options);

int fts_close(FTS *ftsp);

The paradigm for using fts is that we begin by calling fts_open(), passing an array of strings
representing the roots of trees that we wish to traverse, an integer encoding options, and a function
to be used for determining the order in which �les are visited. It returns a handle, i.e., a pointer
to an FTS structure that is then passed to fts_read(). Each time that fts_read() is called, it
visits a �le. Each �le in the tree is visited just once, except for directories, which are visited before
and after their children. fts_read() returns a pointer to an FTSENT structure for each �le that
it visits. Files and FTSENT structures are in one-to-one correspondence. FTSENT structures have a
member that allows them to be linked together; the function fts_children() returns a pointer to
a linked list of these, representing all of the children in a directory, exactly which will be explained
below. The fts_set() function allows a �le to be reprocessed after it has been returned by a call to
fts_read(). When one is completely �nished processing the directory tree passed to fts_open(),
it should be closed with fts_close().

There is no need to know the internal structure of a DIR structure because the application should
treat it opaquely. However, we do need to know the content of the FTSENT structure, because that
is what characterizes each visited �le. The two structures are de�ned in the header �le <fts.h>,
found in the standard directory, /usr/include. Their de�nitions (omitting some macros here) are

typedef struct {

struct _ftsent *fts_cur; /* current node */

struct _ftsent *fts_child; /* linked list of children */

struct _ftsent **fts_array; /* sort array */

dev_t fts_dev; /* starting device # */

char *fts_path; /* path for this descent */

int fts_rfd; /* fd for root */

int fts_pathlen; /* sizeof(path) */

int fts_nitems; /* elements in the sort array */

int (*fts_compar) (const void *, const void *); /* compare fn */

int fts_options; /* fts_open options, global flags */

} FTS;

typedef struct _ftsent {

unsigned short fts_info; /* flags for FTSENT structure */

char *fts_accpath; /* access path */

char *fts_path; /* root path */

short fts_pathlen; /* strlen(fts_path) */

char *fts_name; /* filename */

short fts_namelen; /* strlen(fts_name) */

short fts_level; /* depth (-1 to N) */

int fts_errno; /* file errno */

long fts_number; /* local numeric value */

void *fts_pointer; /* local address value */

struct ftsent *fts_parent; /* parent directory */

struct ftsent *fts_link; /* next file structure */
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struct ftsent *fts_cycle; /* cycle structure */

struct stat *fts_statp; /* stat(2) information */

} FTSENT;

The FTSENT structure has many members, and they all need to be understood to use the fts

functions to their maximum extent, but for relatively simple applications it is not necessary to
understand them all. The most important members, with brief descriptions are

fts_info An integer that encodes information about the type of object represented by this struc-
ture.

fts_accpath A path for accessing the �le from the current directory.

fts_path The path for the �le relative to the root of the traversal. This path contains the path
speci�ed to fts_open() as a pre�x.

fts_name The �le name.

fts_errno Upon return of a FTSENT structure from the fts_children() or fts_read() functions,
with its fts_info �eld set to FTS_DNR, FTS_ERR or FTS_NS, the fts_errno �eld contains
the value of the external variable errno specifying the cause of the error. Otherwise, the
contents of the fts_errno �eld are unde�ned.

fts_number This �eld is provided for the use of the application program and is not modi�ed by
the fts functions. It is initialized to 0.

fts_pointer This �eld is provided for the use of the application program and is not modi�ed by
the fts functions. It is initialized to NULL.

fts_parent A pointer to the FTSENT structure referencing the �le in the hierarchy immediately
above the current �le, i.e. the directory of which this �le is a member. A parent
structure for the initial entry point is provided as well, however, only the fts_level,
fts_number and fts_pointer �elds are guaranteed to be initialized.

fts_link Upon return from the fts_children() function, the fts_link �eld points to the next
structure in the NULL-terminated linked list of directory members. Otherwise, the con-
tents of the fts_link �eld are unde�ned.

fts_statp A pointer to a stat structure for the �le.

The fts_info �eld can have any of the following values:

FTS_D A directory being visited in pre-order.

FTS_DC A directory that causes a cycle in the tree. (The fts_cycle �eld of the FTSENT structure
will be �lled in as well.)

FTS_DEFAULT Any FTSENT structure that represents a �le type not explicitly described by one of
the other fts_info values.

FTS_DNR A directory which cannot be read. This is an error return, and the fts_errno �eld will
be set to indicate what caused the error.
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FTS_DOT A �le named �.� or �..� which was not speci�ed as a �le name to fts_open() (see
FTS_SEEDOT).

FTS_DP A directory being visited in post-order. The contents of the FTSENT structure will be
unchanged from when it was returned in pre-order, i.e. with the fts_info �eld set to
FTS_D.

FTS_ERR This is an error return, and the fts_errno �eld will be set to indicate what caused the
error.

FTS_F A regular �le.

FTS_NS A �le for which no stat information was available. The contents of the fts_statp �eld
are unde�ned. This is an error return, and the fts_errno �eld will be set to indicate
what caused the error.

FTS_NSOK A �le for which no stat information was requested. The contents of the fts_statp

�eld are unde�ned.

FTS_SL A symbolic link.

FTS_SLNONE A symbolic link with a non-existent target. The contents of the fts_statp �eld refer-
ence the �le characteristic information for the symbolic link itself.

Some immediate observations from the above information are that:

• The fts_info member has information similar to that found in the integer passed to the
(*fn) function by nftw().

• Unlike the nftw() function, fts provides hooks for the application to use. In particular,
fts_number and fts_pointer are two members of the returned structure that can be used
for application speci�c data, making it possible to change state and data among di�erent
invocations of the fts_read() function.

• The fts_parent �eld provides a means to access the parent node, unlike ntfw().

• It has stat information for the returned �le in the fts_statp member, unless fts_info is
either FTS_NS or FTS_NSOK.

• The name of the �le is in the fts_name member. The fts_path member has the pathname
of the �le relative to the root of the search. For all practical purposes, this is the same path
as fts_accpath.

It is also to important to know that a single bu�er is used for the various path members of all FSTENT
structures of all �les in �le hierarchy. Because of this, there is no guarantee that the fts_path and
fts_accpath members of a previously returned FTSENT structure are still properly null-terminated,
because they might have been written over already. Only the fts_path and fts_accpath members
of the �le most recently returned by fts_read().are guaranteed to be null-terminated. To use these
�elds to reference any �les represented by other FTSENT structures will require that the path bu�er
be modi�ed using the information contained in that FTSENT structure's fts_pathlen �eld. Any
such modi�cations should be undone before further calls to fts_read() are attempted. In contrast,
the fts_name �eld is always null-terminated.
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Our �rst example illustrates the basic concepts. It is derived from a program from RosettaCode.org.
The program, named ftsdemo, is given the name of a directory and a shell-style regular expression,
enclosed in single quotes to prevent shell expansion of it, and it displays the names of all �les in
the given directory's hierarchy that match the expression. For example, '*.c' will cause all �les
ending in '.c' to be matched. The listing and an explanation follow.

L i s t i n g ftsdemo . c
#inc lude <sys / types . h>
#inc lude <sys / s t a t . h>
#inc lude <e r r . h>
#inc lude <errno . h>
#inc lude <fnmatch . h>
#inc lude <f t s . h>
#inc lude <s t r i n g . h>
#inc lude <s td i o . h>
#inc lude <uni s td . h>
#inc lude <s t d l i b . h>

/∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
Ut i l i t y Function Prototypes

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/
/∗∗ usage ( )
∗ Print usage message on standard output
∗/

void usage ( char ∗ progname ) ;

/∗∗ entcmp ( )
∗ Compare f i l e s by name .
∗/

i n t entcmp ( const FTSENT ∗∗ s1 , const FTSENT ∗∗ s2 ) ;

/∗∗ pmatch ( )
∗ Print a l l f i l e s in the d i r e c t o r y t r e e that match the glob pattern .
∗ Example : pmatch ("/ usr / s r c " , "∗ . c " ) ;
∗/

void pmatch ( char ∗dir , const char ∗ pattern ) ;

/∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
Main Program

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/
i n t main ( i n t argc , char ∗ argv [ ] )
{

i f ( argc < 3 ) {
usage ( argv [ 0 ] ) ;
e x i t ( 1 ) ;

}
pmatch ( argv [ 1 ] , argv [ 2 ] ) ;
r e turn 0 ;

}

/∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/
i n t entcmp ( const FTSENT ∗∗ s1 , const FTSENT ∗∗ s2 )
{

re turn ( s t r c o l l ( (∗ s1)−>fts_name , (∗ s2)−>fts_name ) ) ;
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}

/∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/
void usage ( char ∗ progname )
{

p r i n t f (" usage : %s d i r e c t o r y pattern \n" , progname ) ;
}

/∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/

void pmatch ( char ∗dir , const char ∗ pattern )
{

FTS ∗ t r e e ; /∗ po in t e r to f i l e t r e e stream returned by fts_open ∗/
FTSENT ∗ f ; /∗ po in t e r to s t r u c tu r e returned by fts_read ∗/
char ∗argv [ ] = { dir , NULL } ;

/∗ Cal l fts_open (0 with FTS_LOGICAL to f o l l ow symbol ic l i n k s
∗ i n c l ud ing l i n k s to other d i r e c t o r i e s . S ince i t d e t e c t s cyc l e s ,
∗ we do not have to worry about i n f i n i t e l oops .
∗/

t r e e = fts_open ( argv , FTS_LOGICAL , entcmp ) ;
i f ( t r e e == NULL)

per ro r (" fts_open " ) ;

/∗ Repeatedly get next f i l e , sk ipp ing " ." and " . . " because
∗ FTS_SEEDOT was not s e t .
∗/

whi l e ( ( f = fts_read ( t r e e ) ) ) {
switch ( f−>f t s_ in f o ) {
case FTS_DNR: /∗ Cannot read d i r e c t o r y ∗/

f p r i n t f ( s tde r r , "Could not read %s\n" , f−>fts_path ) ;
cont inue ;

case FTS_ERR: /∗ Misce l l aneous e r r o r ∗/
f p r i n t f ( s tde r r , "Error on %s\n" , f−>fts_path ) ;
cont inue ;

case FTS_NS: /∗ s t a t ( ) e r r o r ∗/
/∗ Show error , then cont inue to next f i l e s . ∗/
f p r i n t f ( s tde r r , "Could not s t a t %s \n" , f−>fts_path ) ;
cont inue ;

case FTS_DP:
/∗ Returned to d i r e c t o r y f o r second time as part o f

post−order v i s i t to d i r e c to ry , so sk ip i t . ∗/
cont inue ;

}

/∗
∗ Check i f the name matches pattern , and i f so , p r i n t out i t s
∗ path . This check uses FNM_PERIOD, so "∗ . c" w i l l not
∗ match " . i n v i s i b l e . c " .
∗/
i f ( fnmatch ( pattern , f−>fts_name , FNM_PERIOD) == 0)

p r i n t f ("%s\n" , f−>fts_path ) ;

This work is copyrighted by Stewart Weiss and licensed under the Creative Commons Attribution-
ShareAlike 4.0 International License.

75

http://creativecommons.org/licenses/by-sa/4.0/ 
http://creativecommons.org/licenses/by-sa/4.0/ 


UNIX Lecture Notes
Chapter 3 File Systems and the File Hierarchy

Prof. Stewart Weiss

/∗
∗ A cyc l e happens when a symbol ic l i n k ( or perhaps a
∗ hard l i n k ) puts a d i r e c t o r y i n s i d e i t s e l f . Te l l user
∗ when t h i s happens .
∗/
i f ( f−>f t s_ in f o == FTS_DC)

f p r i n t f ( s tde r r , "%s : c y c l e in d i r e c t o r y t r e e " ,
f−>fts_path ) ;

}

/∗ f t s_read ( ) s e t s er rno = 0 un l e s s i t has an e r r o r . ∗/
i f ( e r rno != 0)

pe r ro r (" fts_read " ) ;

i f ( f t s_c l o s e ( t r e e ) < 0)
pe r ro r (" f t s_c l o s e " ) ;

}

The main program does very little; it checks usage and if the usage is correct, it calls pmatch(),
passing the name of the directory and the expression to be matched.

pmatch() begins by constructing a proper �rst argument for the call to fts_open(). The �rst
argument must be a NULL-terminated list of directory names. If we want to traverse just a single
directory, we therefore have to create a list of the form {dirname, NULL}, where dirname is a
NULL-terminated string.

It then calls fts_open(), setting the FTS_LOGICAL �ag so that it can follow symbolic links. A nice
feature of fts is that it detects when it is about to complete a cycle caused by symbolic links, and it
sets the fts_info member of the returned structure to FTS_DC in this case, so that the application
can handle it. The third argument to fts_open() is a pointer to the comparison function that will
be used for sorting the �les. If a NULL pointer is supplied, the directory traversal order is in the
order listed in the argv array passed as argument one for the root paths, and in the order listed in
each directory for everything else.. The function prototype must be

int compare(const FTSENT **, const FTSENT **));

and it must return a negative value, zero, or a positive value to indicate if the �le referenced by its
�rst argument comes before or after, the �le referenced by its second argument. The fts_accpath,
fts_path and fts_pathlenmembers of the FTSENT structures may never be used in this comparison.
If the fts_info member is set to FTS_NS or FTS_NSOK, the fts_statp �eld may not be used either.
If fts_open() fails, it returns a NULL pointer.

In this program, �les will be sorted by the default collating order, which is accomplished by calling
strcoll() with the two �le names:

int entcmp(const FTSENT **s1, const FTSENT **s2)

{

return (strcoll((*s1)->fts_name, (*s2)->fts_name));

}
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After getting the FTS pointer, tree, it uses this to repeatedly call fts_read(). For each �le that
it visits, fts_read() returns a pointer to an FTSENT structure as long as there are �les remaining
and no error occurred. If an error occurred it returns NULL and sets errno to some error value,
and if there are no more �les left, it returns NULL and sets errno to zero. The program checks
the fts_info member of the structure to determine whether an error occurred, and if it matters,
whether it is a directory or a �le. In this case it does not matter what type of �le it is, but only
whether some type of error occurred. If no error occurred, it calls the fnmatch() library function,
whose prototype is

#include <fnmatch.h>

int fnmatch(const char *pattern, const char *string, int flags);

The fnmatch() function checks whether its string argument matches its pattern argument, which
must be a valid shell pattern, and returns zero if it matches, FNM_NOMATCH if it does not match,
and some other value if there is an error. The third argument can be used to pass various �ags
that control how it behaves. In our program, we want the shell pattern to explicitly use a period
character if the �le is supposed to have a leading period. For example, the pattern '*.h' should
not match the �le .foo.h. The �ag FNM_PERIOD tells fnmatch() to match only if that period is the
�rst character in the string. Every �le that matches the pattern is printed on standard output.

When the loop terminates, it checks errno to see if there was an error, and it calls fts_close() to
cleanup and release resources.

This program was relatively simple. We now show a slightly more interesting application of fts
that uses the fts_children() function and two di�erent methods of ordering the tree traversal.

As noted above, the fts_children() function returns a pointer to a linked list of FTSENT structures
that represent the �les of a single directory in the hierarchy. The burning question is, which
directory? The answer is not simple. If fts_read() was never called at all after fts_open()

was called, then fts_children() returns a pointer to the list of top-level directories passed to
fts_open() in its argv array. If fts_read() was called prior to calling fts_children() and the
last object returned by a call to fts_read() was a directory, then it is this directory whose children
are delivered in the linked list returned by fts_children(). But if the last call to fts_read()

returned a non-directory �le, then fts_children() returns a NULL pointer and sets errno to zero.
This return value is indistinguishable from what it will do if the last object returned by a call
to fts_read() was an empty directory. In this case also, fts_children() will return a NULL

pointer and set errno to zero. So this �nal state implies that either the last object was an empty
directory or a non-directory �le. In either case it has no children. Lastly, if an error condition arises,
fts_children() will return a NULL pointer but set errno to some non-zero value.

To demonstrate the use of fts_children(), we will use it to implement our ls command once
more, but this time we will allow the user to specify a few di�erent orderings in which to list the
�les. Speci�cally, the user can list by collating order, by time of last modi�cation, or by �le size, in
all cases ascending. To make this possible, the program will implement three di�erent compare()
functions; which one is used will depend on the command line option supplied by the user. The
program's usage is

ls_fts [-l] [-m | -s ] [file file ...]
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The -m option sorts by modi�cation time, -s, by size, and -l turns on long listings. The program
listing below omits the helper functions already displayed in previous versions of ls, as well as
almost all comments.

L i s t i n g l s_ f t s . c
#inc lude <sys / types . h>
#inc lude <e r r . h>
#inc lude <errno . h>
#inc lude <fnmatch . h>
#inc lude <f t s . h>
#inc lude <s t r i n g . h>
#inc lude <s td i o . h>
#inc lude <s t d l i b . h>
#inc lude <uni s td . h>
#inc lude <sys / s t a t . h>
#inc lude <pwd . h>
#inc lude <grp . h>
#inc lude " u t i l s . h"

#de f i n e BYTIME 1
#de f i n e BYNAME 2
#de f i n e BYSIZE 3
#de f i n e HERE " ."
#de f i n e TRUE 1
#de f i n e FALSE 0

in t entcmp ( const FTSENT ∗∗a , const FTSENT ∗∗b)
{

return s t r c o l l ( (∗ a)−>fts_name , (∗b)−>fts_name ) ;
}

i n t mtimecmp( const FTSENT ∗∗ s1 , const FTSENT ∗∗ s2 )
{

re turn ( i n t ) ( ( (∗ s1)−>ft s_sta tp)−>st_mtime − ( (∗ s2)−>ft s_sta tp)−>st_mtime ) ;
}

i n t szcmp ( const FTSENT ∗∗ s1 , const FTSENT ∗∗ s2 )
{

re turn ( i n t ) ( ( (∗ s1)−>ft s_sta tp)−>st_s i z e − ( (∗ s2)−>ft s_sta tp)−>st_s i z e ) ;
}

void l s ( char d i r [ ] , i n t do_long l i s t ing , i n t s o r t f l a g )
{

FTS ∗ t r e e ;
FTSENT ∗ f ;
char ∗argv [ ] = { dir , NULL } ;

switch ( s o r t f l a g ) {
case BYTIME:

t r e e = fts_open ( argv , FTS_LOGICAL , mtimecmp ) ;
break ;

case BYNAME:
t r e e = fts_open ( argv , FTS_LOGICAL , entcmp ) ;
break ;
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case BYSIZE :
t r e e = fts_open ( argv , FTS_LOGICAL , szcmp ) ;
break ;

}

i f ( t r e e == NULL)
per ro r (" fts_open " ) ;

f = fts_read ( t r e e ) ;
i f ( NULL == f ) {

pe r ro r (" f ts_read " ) ;
r e turn ;

}

f = f t s_ch i l d r en ( t ree , 0 ) ;
i f ( NULL == f )

i f ( e r rno != 0 )
pe r ro r (" f t s_ch i l d r en " ) ;

e l s e
f p r i n t f ( s tde r r , "empty d i r e c t o r y \n " ) ;

whi l e ( f != NULL ) {
switch ( f−>f t s_ in f o ) {
case FTS_DNR: /∗ Cannot read d i r e c t o r y ∗/

f p r i n t f ( s tde r r , "Could not read %s\n" , f−>fts_path ) ;
cont inue ;

case FTS_ERR: /∗ Misce l l aneous e r r o r ∗/
f p r i n t f ( s tde r r , "Error on %s\n" , f−>fts_path ) ;
cont inue ;

case FTS_NS: /∗ s t a t ( ) e r r o r ∗/
f p r i n t f ( s tde r r , "Could not s t a t %s \n" , f−>fts_path ) ;
cont inue ;

case FTS_DP:
/∗ Returned to d i r e c t o r y f o r second time as part o f

post−order v i s i t to d i r e c to ry , so sk ip i t . ∗/
cont inue ;

}
i f ( do_ long l i s t i ng )

p r i n t_ f i l e_s t a tu s ( f−>fts_name , f−>ft s_sta tp ) ;
e l s e

p r i n t f ("%s\n" , f−>fts_name ) ;

f = f−>f t s_ l i nk ;
}
i f ( e r rno != 0)

pe r ro r (" fts_read " ) ;

i f ( f t s_c l o s e ( t r e e ) < 0)
pe r ro r (" f t s_c l o s e " ) ;

}

/∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ Main Program ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/

i n t main ( i n t argc , char ∗ argv [ ] )
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{
i n t l o n g l i s t i n g = 0 ;
i n t howtosort = BYNAME;
i n t ch ;
char opt ions [ ] = " : lms " ;
opte r r = 0 ;

whi l e (TRUE) {
ch = getopt ( argc , argv , opt ions ) ;
i f ( −1 == ch )

break ;
switch ( ch ) {
case ' l ' :

l o n g l i s t i n g = 1 ;
break ;

case 'm' :
i f ( howtosort != BYSIZE )

howtosort = BYTIME;
e l s e {

p r i n t f (" usage : %s [− l ] [−m|− s ] [ f i l e s ] \ n" , argv [ 0 ] ) ;
r e turn 1 ;

}
break ;

case ' s ' :
i f ( howtosort != BYTIME )

howtosort = BYSIZE ;
e l s e {

p r i n t f (" usage : %s [− l ] [−m|− s ] [ f i l e s ] \ n" , argv [ 0 ] ) ;
r e turn 1 ;

}
break ;

case ' ? ' :
p r i n t f (" I l l e g a l opt ion ignored . \ n " ) ;
break ;

d e f au l t :
p r i n t f ("?? getopt returned charac t e r code 0%o ??\n" , ch ) ;
break ;

}
}

i f ( opt ind == argc ) /∗ no arguments ; use . ∗/
l s ( HERE, l o n g l i s t i n g , howtosort ) ;

e l s e
/∗ f o r each command l i n e argument , d i sp l ay f i l e ∗/
whi l e ( opt ind < argc ) {

l s ( argv [ opt ind ] , l o n g l i s t i n g , howtosort ) ;
opt ind++;

}
return 0 ;

}
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Notes.

• The main program does the option parsing and prevents the user from choosing to sort by
both size and modi�cation time, because sorting by both implies having to resort the linked
list returned by fts_children().

• The main program calls ls() for each command line argument rather than assembling them
into an array of strings, because ls() is designed to display a single directory's contents only.

• The mtimecmp() and szcmp() functions use arithmetic rather than conditional evaluation.
This makes them faster, but on a non-POSIX system, the time subtraction may not work.
Both work by accessing the stat structure pointed to by the FTSENT structure's fts_statp
member. No check is made that it is NULL.

• ls() begins by calling fts_open(). It then calls fts_read() so that the directory object will
be the last object read by a call to fts_read(), ensuring that fts_children() will return a
pointer to the list of children of that directory, if it is non-empty.

• Unlike the previous program, this does not repeatedly call fts_read(). It traverses the linked
list of FTSENT structures until it reaches a NULL link and then terminates.

This is just a short overview of the fts functions. It does not show how to use the hooks provided
to the application inside the FTSENT structure.

Exercise. A good exercise would be to implement the du command using fts, taking advantage of
the members of the FTSENT structure available to the application, and the parent pointers.
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Appendix A

A.1 Useful Command-Line Options for ls

Some of the most useful command-line options for ls are listed below, with brief descriptions.

Option Description

-a show dot-�les (i.e. hidden �les)
-l display a long listing, with �le type, permissions, number of

links, owner, group, size in bytes, time of last modi�cation
-lu same as ls -l, except uses the last time the �le was read

instead of modi�ed.
-s show the �le size in blocks
-t sort the �les by timestamp speci�ed (u for access,

modi�cation by default)
-F show �le types
-i show the i-number of the �le
-d if ls has a directory argument, show the attributes of the

directory, instead of its contents
-R recursively descend any directories or their subdirectories,

applying any other options listed

As you can see, several of these options can be extremely useful when searching for things in the
�le system. A "dot-�le" is not a �le �lled with dots. It is a �le whose name begins with a dot,
such as ".bashrc" or ".login" or ".evolution". You read the �rst as "dot-bash-R-C", and the
second as "dot-login". Dot-�les are thought of as hidden �les because the plain ls command does
not display �les whose names begin with a dot, and ls is the only command to view the content of
a directory. Even in desktop environments, the default settings of a browser like Nautilus will hide
these �les. In your home directory, if you type "ls �a" you will see all of the �les and directories
whose names begin with a dot. In this list you will see "." and "..". Recall that these refer to
the directory itself and its parent. Note that unlike Windows, the UNIX kernel has no concept of
a hidden �le.

A.1.1 Bit Masks

Suppose we want to extract the value of bit 8 of some 16-bit number named flags. If we perform a
bitwise AND of flags and the binary number that has 0's everywhere except in bit 8, called mask8

here, as illustrated:

0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 mask8

b15 b14 b13 b12 b11 b10 b9 b8 b7 b6 b5 b4 b3 b2 b1 b0 flags

0 0 0 0 0 0 0 b8 0 0 0 0 0 0 0 0 mask8 & flags
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then the result, mask8 & flags, will have 0's everywhere and the value of bit 8 of flags in bit 8.
Therefore mask8 & flags == 0 if and only if bit 8 in flags is 0. I can represent the value of this
16-bit mask variable as the octal number 000400. Octal numbers in C and C++ must begin with
a leading 0, so this would be written 0000400, and the bitwise AND would be written as

flags & 0000400

in a program. We can then test the bit and take action accordingly with code like

if (flags & 0000400 ) ...

A.2 The find Command

In addition to the commands you have seen in previous chapters that can recursively traverse the
�le hierarchy, there are a few UNIX commands that are designed to traverse the entire tree at a
given directory, without having to specify any special recursive option. The most useful of these is
the find command. The du command also does this:

find searches for �les in a tree structure rooted at the given directory.

du displays the disk usage of all �les in a given directory tree

The �nd command is a very powerful command. its basic usage is

find [options] path ... expression

where path ... means one or more directories, and expression is composed of options, tests, and
actions joined by various operators. Unless the expression explicitly prunes the tree with the use
of the -prune option, the entire tree rooted at each directory argument will be traversed. Options
are expressions that always return true. Actions are expressions that can return true or false. The
operators that combine expressions are boolean operators, and, or, not, and a list operator. If no
operator is present between expressions, operator and is used instead. The best way to see how
find can be used is by some examples.

$ find . -name '*.c' -print

searches for all �les in the tree rooted at '.' matching the pattern *.c, printing out the matching
pathnames. The -print action can be omitted because -print is the default action. The -name

test will return true if a �le matches the given pattern. When the test is true, the next action will
be applied, which is how the �le name is printed.

$ find . -amin -30

searches for all �les in the tree rooted at '.' that have been accessed within the past 30 minutes
and prints them.
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$ find . -mmin -120

searches for all �les in the tree rooted at '.' that have been modi�ed within the past 120 minutes
and prints them.

find / -links +1 ! -type d

searches through the entire �le system looking for all �les whose link count is greater than 1 and
which are not directories ( ! -type d).

find . -samefile myfile

searches for all �les that are hard links to myfile

find / -name core -exec /bin/rm -f '{}' \;

searches for all �les named core in the �le hierarchy and runs /bin/rm -f on each one, which
deletes them. The notation {} means the currently matched �le name. To protect the braces from
being interpreted by the shell, they are enclosed in single quotes. The command that �nd runs must
be terminated by a semi-colon, but again it must be escaped so that the shell does not interpret it
as the end of the �nd command itself. We could write \; or ';'.

find . -perm /o=w

�nds all �les in the current directory and below that others can write.

This is just a handful of search options that are possible. There are options to test �le size, check
ownership. permissions, group ownership, compare two �les, and so on. It is well worth learning
how to use this command.
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Chapter 4 Control of Disk and Terminal I/O

Concepts Covered

File structure table, open �le table,
�le status �ags, auto-appending,
device �les, terminal devices,
device drivers, line discipline,
termios structure, terminal settings,

canonical mode, non-canonical modes,
IOCTLs, fcntl, ttyname, isatty, ctermid,
getlogin, gethostname,tcgetattr,
tcsetattr,tc�ush, tcdrain, ioctl,

4.1 Overview

This chapter begins by examining how a program can exercise some control over the connections
that it makes with disk �les. It describes the data structures used by the kernel to manage open
�les, and explains how processes can interact with these �les. It then explores device �les and how
they are used and structured, and device drivers and their roles and structures. From there it looks
at block and character device �le di�erences, after which it turns to terminals. The remainder of
the chapter is then devoted to controlling terminals.

4.2 Open Files

The programs that we have studied so far operate on disk �les, which are �les that reside, of course,
on disks1. You are by now well-acquainted with the general model of �le I/O: open the �le, access
it, and close it. Remember that this model works for any kind of �le, not just disk �les. Here
though, we are interested only in disk �les.

In this model of �le I/O, opening a �le returns a reference to an object that can be used to access
the �le, either for reading or writing. When you use the open() system call, you get a �le descriptor
in return; when you use the fopen() C standard I/O library call, you get a FILE pointer in return.
Either way, you are getting a scalar object (i.e., a small integer or a pointer) that is associated with
a hidden (kernel) data structure that allows you to access the �le. Here, we will explore how much
control we can exercise over the way in which the program is connected to the �le.

When a process opens a disk �le using the open() system call, the kernel creates a data structure
that represents the connection between the process and the �le. The returned �le descriptor can be
used by the process to access the �le. A �le descriptor is simply an index into a per-process table2

that the kernel uses to locate that speci�c data structure. Di�erent versions of UNIX call this data
structure di�erent things, and the data structure may have slightly di�erent members from one
UNIX variant to another, but the basic members and purpose of the structure are invariant: its
most important member is the �le pointer, and its purpose is to store the position in the �le from
which the next operation will take place (whether it is a read or a write.)

1This is in contrast to device �les, which are very di�erent from disk �les.
2A "per-process" table is a table of which each process has its own instance.
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Figure 4.1: Per-process open �le table

This data structure is called a �le entry in BSD UNIX and a �le structure in Linux. I will call it a �le
structure in these notes. The connection between a process and a �le is completely characterized by
the information contained in the �le structure. Aside from the �le pointer, the kinds of information
it typically contains include:

• whether or not the �le is open for reading, writing, reading and writing, or appending,

• whether or not the I/O is bu�ered or unbu�ered, and

• whether or not the access is exclusive or whether other processes also access the �le.

as well as other information that is required by the kernel. The information contained in the �le
structure characterizes the connection between the open �le and the process; it is speci�c to this
single connection. Other processes might have this �le open with di�erent attributes. Many of the
attributes of the connection can be changed by the process; others cannot. Which can and which
cannot, and how is it done? These are the questions we will answer.

Let us begin by examining all of the data structures related to open �les. Each process has a table
that is usually called the open �le table. ( In 4.4BSD, this table was called the descriptor table, and
each entry was called a �ledesc structure.) In Linux, this table is the fd array, which is part of a
larger structure called the �les_struct. The �le descriptor returned by the open() system call is
actually an index into the open �le table of the process making the call. Recall that every process is
given three �le descriptors when it is created: 0, 1, and 2, respectively, for standard input, output,
and error. These are the �rst three indices in this table, as shown in Figure 4.1.

When a process issues the open() system call, the kernel creates a new �le structure and �lls the
lowest-numbered available slot in the process's open �le table with a pointer to that �le structure.
The �le structures for all open �les are contained in a table called the �le structure table. which
resides in the address space of the kernel. See Figure 4.2.

The left side of the �gure contains the per-process open �le tables, one for each process. These
tables, although in the virtual address space of the processes, are accessible only by the kernel. The
right side of the table contains the �le structure table, in kernel memory. The gray region at the
bottom is on disk; everything above the gray area is memory-resident. You will notice in the �gure
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Figure 4.2: Kernel data structures related to open �les.

that some processes' �le descriptors point to the same �le structure for the same open �le, whereas
others' descriptors point to separate �le structures for the same �le. Sometimes processes share a
connection and other times, even though two or more processes may have the same �le open, they
access it through di�erent connections. When di�erent processes are connected to the same �le
through di�erent �le structures, the �le pointers are di�erent. When a �le structure is shared by
processes, they share the �le pointer. You will see in the chapter on process management how these
situations arise.

The �le structures in the �le structure table point to the active i-nodes for the open �les. These
i-nodes are maintained in the active i-node table in kernel memory. The active i-node table contains
copies of the i-nodes on disk. If the i-nodes change in memory, the changes are written to the i-nodes
on disk.

4.2.1 Using fcntl() to Control File Descriptor Attributes

The �le structure contains a set of �ags that control I/O with respect to the �le. These �ags are
called �le status �ags, and they are shared by all processes that share that �le structure. The �le
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descriptor is the means by which the process can modify those �ags and alter the behavior of that
connection to the �le. The method of modifying the �ags of an existing �le structure is a three-step
procedure:

1. The process gets a copy of the current attributes of the connection from the kernel, storing it
in its own address space;

2. The process modi�es the current attributes in its copy;

3. The process requests the kernel to write its copy back to the kernel's in-memory structures.

The system call that performs steps 1 and 3 is the fcntl() call. You can pronounce fcntl as "f
control", short for �le control. fcntl() is a function that operates on open �les. Depending upon
its arguments, fcntl() will either get the attributes of a �le connection or set them. It has a very
long man page that starts as follows:

NAME
f c n t l − manipulate f i l e d e s c r i p t o r

SYNOPSIS
#inc lude <uni s td . h>
#inc lude <f c n t l . h>

in t f c n t l ( i n t fd , i n t cmd , . . . /∗ arg ∗/ ) ;

DESCRIPTION
f c n t l per forms one o f va r i ous mi s c e l l aneous ope ra t i on s
on fd . The opera t i on in ques t i on i s determined by cmd .
. . .

Remarks

• The �rst parameter is the �le descriptor of an already open �le.

• The second parameter is an integer that fcntl() interprets as a command. Names for these
integers are de�ned in <fcntl.h>; the names that are relevant to getting or setting �le status
�ags are:

� F_GETFL which tells fcntl() to return a copy of the set of �ags;

� F_SETFL which tells fcntl() to expect a third integer parameter that contains a new
�ag set to replace the current one.

Some of the other commands that fcntl() can perform include

� F_DUPFD which duplicates an existing �le descriptor

� F_GETFD, F_SETFD which get and set �le descriptor �ags (see below)

� F_GETOWN, F_SETOWN which get and set the ownership of the SIGIO signal (see below)
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� F_GETSIG, F_SETSIG which get and set the signal that is sent when using asynchronous
I/O

� F_GETLK, F_SETLK, F_SETLKW which acquire, release, and test for the existence of record
locks.

• Each control �ag is a single bit in a long integer. To turn on an attribute, you need to set
the bit. To turn it o�, you need to zero it. The <fcntl.h> header �le contains de�nitions of
masks that can be used for this purpose. To set a bit, you can do a bitwise-or of the particular
mask with the �ag variable; to unset it, you can do a bitwise-and of the complement of the
mask with the control �ag variable. The masks are de�ned in /usr/include/bits/fcntl.h,
which is included in the <fcntl.h> header �le. They are also de�ned in the man page for
<fcntl.h>.

File status �ags reside in the �le structure, which may be shared by multiple processes. File
descriptor �ags are part of the entry in a process's open �le table and are associated with the actual
�le descriptor. At present there is only one such �ag, FD_CLOEXEC, the close-on-exec �ag. This �ag
is not relevant to anything that we cover in this chapter. The F_GETOWN and F_SETOWN commands
will be explained when we cover asynchronous I/O, and we ignore them for now.

Similarly, commands related to record locking ( F_GETLK, F_SETLK, F_SETLKW ) will be covered when
we turn to the topic of �le sharing.

Not all �le status �ags can be changed after a �le is opened. For example, if a �le is opened for
writing with the O_WRONLY �ag, you cannot use fcntl() to change its access mode to reading. The
�ags that can be changed after a �le has already been opened are a subset of the �le status �ags.
The most important of them, and their mnemonic masks are:

O_APPEND Append mode. Before each write() operation, the �le pointer is positioned at the end
of the �le, as if with lseek(), atomically. This may not work on remotely mounted �le
systems. Setting O_APPEND is done to eliminate race conditions.

O_ASYNC Asynchronous writes. Generate a signal when input or output becomes possible on
this �le descriptor. This feature is only available for terminals, pseudo-terminals, and
sockets, not for disk �les!

O_NONBLOCK or O_NDELAY Non-blocking mode. No subsequent operations on the �le descriptor will
cause the calling process to wait. This is strictly for FIFOs (also known as named
pipes) and may not have any e�ect on �les other than FIFOs. POSIX speci�es the mask
O_NONBLOCK, but some systems expect O_NDELAY instead. Many systems patch their
header �les so that they are the same. In Linux O_NONBLOCK may not be equivalent to
O_NDELAY. Check the man page for your system.

O_SYNC Synchronous I/O. Any writes on the �le descriptor will block the calling process until
the data has been physically written to the underlying hardware. In Linux this attribute
cannot usually be modi�ed by fcntl(), and it may or may not be implemented.

From the above descriptions. you can see that there is little that we can actually do through fcntl()

in Linux for disk �les. The O_ASYNC �ag will be important when we study terminal connections.
The O_NONBLOCK �ag often has no e�ect. The O_APPEND �ag is useful, and this is one we will explore.
The O_SYNC �ag turns on synchronous writing. Synchronous writing is writing in which the process
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is blocked until the data is actually written to the device, rather than to the kernel bu�ers. In other
words, it turns o� kernel bu�ering for this connection. There are very few reasons why a process
should want to do this, as it slows down its execution signi�cantly. If a process wants to force disk
writes, it can always use fsync() periodically.

Remember that, in order to modify either the �le descriptor �ags or the �le status �ags, you cannot
just issue an F_SETFD or an F_SETFL command through fcntl(), as this could turn o� �ag bits that
were previously set. Instead you have to follow the three-step procedure outlined above. A typical
code sequence to set a �ag such as O_APPEND, given that fd is the �le descriptor of a �le that is
open for writing, is

i n t f l a g s , r e s u l t ;
f l a g s = f c n t l ( fd , F_GETFL) ;
f l a g s |= (O_APPEND) ;
r e s u l t = f c n t l ( fd , F_SETFL, f l a g s ) ;
i f ( −1 == r e s u l t )

pe r ro r (" Error s e t t i n g O_APPEND")
return 0 ;

Notice that the mask is bitwise-or-ed with the �ag variable. To turn o� a bit, you would bitwise-and
the complement of the mask, as in the sequence:

i n t f l a g s , r e s u l t ;
f l a g s = f c n t l ( fd , F_GETFL) ;
f l a g s &= ~(O_APPEND) ;
r e s u l t = f c n t l ( fd , F_SETFL, f l a g s ) ;
i f ( −1 == r e s u l t )

pe r ro r (" Error unse t t ing O_APPEND" ) ;
r e turn 0 ;

Although we are limited in which �ags we can set in Linux for disk �les, we can use fcntl() to
check the values of all �ags. The following function demonstrates how to check the state of various
�ags. The function requires inclusion of the <fcntl.h> header �le. The macro O_ACCMODE is a mask
that can be used to check which of O_WRONLY, O_RDONLY, or O_RDWR is set. These values are stored
in the low-order two bits of the integer �agset returned by fcntl() and are de�ned below. These
are not independent bits, which is why you need the two-bit mask.

#define O_ACCMODE 0003

#define O_RDONLY 00

#define O_WRONLY 01

#define O_RDWR 02

We put these ideas together in a function named check_file_status() which, when given the �le
descriptor of an open �le, prints its access mode and which status �ags are set on that descriptor.
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i n t check_f i l e_status ( i n t fd )
{

i n t f l a g s = f c n t l ( fd , F_GETFL ) ;
i f ( −1 == f l a g s ) {

pe r ro r ( "Could not get f l a g s . " ) ;
r e turn ( −1 ) ;

}

switch ( f l a g s & O_ACCMODE ) {
case O_WRONLY:

p r i n t f (" write−only \n " ) ;
break ;

case O_RDONLY:
p r i n t f (" read−only \n " ) ;
break ;

case O_RDWR:
p r i n t f (" read−wr i t e \n " ) ;
break ;

}

i f ( f l a g s & O_CREAT ) p r i n t f ("O_CREAT f l a g i s s e t \n " ) ;
i f ( f l a g s & O_EXCL ) p r i n t f ("O_EXCL f l a g i s s e t \n " ) ;
i f ( f l a g s & O_NOCTTY ) p r i n t f ("O_NOCTTY f l a g i s s e t \n " ) ;
i f ( f l a g s & O_TRUNC ) p r i n t f ("O_TRUNC f l a g i s s e t \n " ) ;
i f ( f l a g s & O_APPEND ) p r i n t f ("O_APPEND f l a g i s s e t \n " ) ;
i f ( f l a g s & O_NONBLOCK ) p r i n t f ("O_NONBLOCK f l a g i s s e t \n " ) ;
i f ( f l a g s & O_NDELAY ) p r i n t f ("O_NDELAY f l a g i s s e t \n " ) ;

#i f de f i ned (O_SYNC)
i f ( f l a g s & O_SYNC ) p r i n t f ("O_SYNC f l a g i s s e t \n " ) ;

#end i f
#i f de f i ned (O_FSYNC)

i f ( f l a g s & O_FSYNC ) p r i n t f ("O_FSYNC f l a g i s s e t \n " ) ;
#end i f

i f ( f l a g s & O_ASYNC ) p r i n t f ("O_ASYNC f l a g i s s e t \n " ) ;
p r i n t f ("\n " ) ;
r e turn 0 ;

}

As O_SYNC and O_FSYNC are not necessarily de�ned on all UNIX systems, the tests for these �ags
are conditionally compiled. You can embed this function into a main program such as

i n t main ( i n t argc , char ∗argv [ ] )
{

i n t f l a g s , fd ;

i f ( argc != 2 ) {
p r i n t f (" usage : %s <de s c r i p t o r#>\n" , argv [ 0 ] ) ;
e x i t ( 1 ) ;

}
i f ( ( fd = a t o i ( argv [ 1 ] ) ) < 0 ) {

p r i n t f (" usage : %s <de s c r i p t o r#>\n" , argv [ 0 ] ) ;
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e x i t ( 1 ) ;
}
check_f i l e_status ( fd ) ;
r e turn 0 ;

}

and run the program redirecting standard input, output and error. In the process you will discover
some surprising results. For example, if the above program is named checkstatus, try to predict
the output of

$ ./checkstatus 1 > out1

$ cat out1

and of

$ ./checkstatus 0

$ ./checkstatus 2 2>errs

The point is to determine, when input or output is redirected, how the status �ags for the three
standard devices, standard input, output, and error, are changed.

4.2.2 Appending and Race Conditions

The O_APPEND �ag controls append mode. Consider the following problem. A shared log �le is used
to record various system activities. Each of several di�erent processes adds its own entry to the end
of the log �le to record its activity.

Let us make this concrete. Recall that UNIX uses the wtmp �le to record each and every login and
logout. Each login must be recorded at the end of this �le when it occurs. When UNIX starts up,
init() creates a getty() process for each terminal, or some other comparable process in the case of
network logins, and when a user logs in at a terminal, the getty() or other similar process spawns
a login() process for that terminal. As a consequence, multiple login() processes might exist at
any time. Imagine that two users login on di�erent terminals at the exact same time. The two
login() processes each have to add an entry to the end of the table. To add an entry to the end
of a �le, the �le must be opened for writing, using O_WRONLY, or reading and writing, using O_RDWR.
Thus, a process that needs to add a record to the end of the �le must perform the following steps:

1. Open the �le in read/write mode.

2. Seek to the end of the �le.

3. Write a login record at the position obtained by the seek.

In terms of system calls, this would look something like the following:
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fd = open(_PATH_WTMP, O_RDWR);

// error check the open() and if successful then

// create the wtmp record to write ... and then

lseek(fd, 0, SEEK_END);

write(fd, &record, len);

The lseek() call obtains the �le pointer for the �le and sets it to the end of the �le at the time the
call is made. This pointer is stored in the �le structure for the this process's connection to the �le.
When the process calls write(), the data will be written at the position of this �le pointer.

Imagine now that two di�erent processes, identi�ed here as login1 and login2, execute this same
sequence of instructions independently and simultaneously. For simplicity, suppose that they run
on a one-processor machine and they are time-sliced onto the processor. In particular, suppose
the processor executes the following sequence of instructions. The leftmost integer represents the
current time in some �xed time unit. login1 executes instructions in the left column; login2, in
the right.

time login1 login2

0 fd = open(_PATH_WTMP, O_WRONLY);

1 ...

5 lseek(fd, 0 SEEK_END);

6 fd = open(_PATH_WTMP, O_WRONLY);

7 ...

10 lseek(fd, 0 SEEK_END);

11 write(fd, &record, len);

12 write(fd, &record, len);

login1 sets the �le pointer at time 5. It is removed from the CPU and login2 sets the �le pointer
to the same position as login1 did, at time 10. It writes to the �le at time 11. Then login1 writes
to the same position, overwriting the data just written by login2; the record written by login1

replaces the one just written by login2. This is a classic example of a race condition.

Race conditions are removed by using some type of mechanism that will allow a sequence of instruc-
tions to be executed as an atomic operation, which simply means that once the �rst instruction is
started, no other process can execute any instruction that accesses any of the shared data until the
last instruction is completed. UNIX solves this particular problem by providing write connections
with an optional auto-append mode. When auto-append mode (O_APPEND) is enabled, every write
operation is preceded immediately and atomically by a seek to the end of the �le. This guarantees
that each write occurs at the end of the �le, regardless of how many other processes are trying to
do the same thing simultaneously. Therefore the login and logout processes simply have to open
the �le in auto-append mode, or enable it after the �le is opened with fcntl(). The preceding code
would be reduced to the following:

fd = open(_PATH_WTMP, O_WRONLY | O_APPEND);

// create the record to write ...

write(fd, &record, len);
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4.2.3 Controlling the Connection When Opening a File

Rather than using fcntl() to adjust the attributes of the connection to a previously opened �le,
one can open the �le with the desired attributes in the �rst place. These attributes can be passed
as parameters in the open() system call, by bitwise-or-ing them in the second argument to the call.
For example, to open a �le with name foobar with the write-only, auto-append, and synchronous
I/O bits set, you would write

fd = open(foobar, O_WRONLY | O_APPEND | O_SYNC);

You can read the open() man page or the <fcntl.h> header �le for a list of the �ags that can be
set in the open() call. A �le must be opened either read-only, write-only, or read-write. Therefore,
the bitwise-or must always contain exactly one of O_RDONLY, O_WRONLY, or O_RDWR. Other �ags can
be bitwise-or-ed to it. Which �ags are appropriate depend upon the mode in which it is opened. In
general, �ags fall into two categories: �le creation �ags and �le status �ags.

The �le creation �ags are O_NOCTTY, O_TRUNC, O_CREAT, and O_EXCL. These are only relevant when
the �le is opened in a mode that allows writing, either write-only or read-write. Understanding
the O_NOCTTY �ag requires more knowledge of terminals and processes; this will be explained in the
chapter on processes. The semantics of the remaining three are worthy of discussion.

O_CREAT When no �ags are set, if a �le is opened for writing and it does not exist, open() will
return -1 and fail. The O_CREAT �ag prevents the failure: when it is set, if a �le is
opened for writing and it does not exist, open() will create it. The ownership of the �le
is determined by the e�ective userid of the process, and the �le's mode will be whatever
mode is speci�ed in the open() call, with the umask applied. If the �le already exists,
this �ag has no e�ect, meaning that the �le will be opened with the �le pointer set to
the start of the �le.

O_EXCL This �ag is intended to be used in conjunction with the O_CREAT �ag. If a �le is opened
for writing with the O_CREAT �ag by itself, and the �le exists already, the contents of the
�le can be overwritten, depending on where the writes occur. To prevent this possibility,
the O_EXCL can be bitwise-or-ed to the �agset. When both O_CREAT and O_EXCL are set,
if the �le exists, the open will fail. In contrast, if the �le does not exist, it will be created
just as if O_EXCL were not set. If this �ag is used without O_CREAT, the results are the
same as if no �ags were set.

O_TRUNC Without this �ag, if a �le is opened for writing and it already exists, the contents of the
�le are not necessarily destroyed; it depends whether O_APPEND is set and whether the
process seeks to speci�c places in the �le prior to writing. If the program just opens a �le
for writing and starts writing without seeking and without appending, the �le contents
will be replaced, but opening for writing does not automatically zero the contents of the
�le. The purpose of the O_TRUNC �ag is to force the �le to be zeroed before any writes.
When it is set, and the open() allows writing and the �le exists, the �le is truncated to
zero length. This �ag will have no e�ect unless all of these conditions are true. It will
also have no e�ect if the �le is anything but a regular �le. If all of O_TRUNC, O_EXCL,

and O_CREAT are set, O_EXCL will override this one � if the �le exists, open() will fail
and it if does not exist, it will be created.
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The table below summarizes the e�ects of the possible combinations of these three �ags when a �le
is opened for writing using the call

open( �file�, O_WRONLY | flags );

flags If the �le exists If the �le does not exist

0 opens for writing and sets
pointer to �rst byte

fails

O_CREAT opens for writing and sets
pointer to �rst byte

creates ��le�

O_EXCL opens for writing and sets
pointer to �rst byte

fails

O_TRUNC opens for writing and zeroes
its contents

fails

O_CREAT | O_EXCL fails creates ��le�

O_CREAT | O_TRUNC opens for writing and zeroes
its contents

creates ��le�

O_TRUNC | O_EXCL opens for writing and zeroes
its contents

fails

O_CREAT | O_TRUNC | O_EXCL fails creates ��le�

The program wrflagtest.c in the demos directory for Chapter 5 can be used to test the e�ects of
all combinations of these �ags.

4.3 Device Files

Not only is every physical device in a UNIX system associated with a device special �le, but every
logical device is as well. Logical devices are devices that exist as abstractions of real physical
devices3. Although UNIX does not require this, it has been the convention that all of the device
�les are located in the /dev directory.

4.3.1 Naming and Organizing Device Files

Di�erent versions of UNIX use di�erent methods of organizing and naming device �les. For example,
under Solaris 9, you will �nd that almost all of the terminal �les contained there are symbolic links
to �les in the directory /devices/pseudo, and that the targets of these symbolic links have names
such as pts@0:2.

In contrast, in Linux 2.6, instead of a /devices/pseudo directory there is a directory /dev/pts,
and all of the device �les within /dev/pts have small numbers such as 1,2,3, ... that correspond to
the terminals of active connections4.

3Sometimes, for example, there may be more than one name for a given physical device, such as a port or a disk.
A logical device is another name for that device.

4At installation time, Linux can be con�gured so that its support of pseudo terminal devices is the same as that
of systems such as Solaris 9 by using the CONFIG_UNIX98_PTYS and CONFIG_DEVPTS_FS �ags. The Unix98 standard
speci�es how /dev/pts is used for pseudo-terminal support.
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Hard disks are represented by device �les as well. Their names vary from one system to another.
In Linux, the names may look like /dev/hd1a or /dev/hd2c. If the hard disks are attached via a
SCSI or SATA bus, then their device �les may have names such as /dev/sda1. In Solaris 9, on the
other hand, /dev/dsk/c0t3d0s5 would be a device �le for a �le system attached to Controller 0
("c0"), at target position 3 ("t3") for that controller, on logical unit 0 ("d0") since that controller
may have several identical units di�ering only by number, and in partition or "slice" 5 ("s5") on
that disk. Thus, the device �le name reveals much information about the device.

4.3.2 Accessing Devices Via Device Files

All device �les support the pertinent system calls. For example, a device such as a magnetic tape
that can be read and written will have a device �le whose name might be /dev/rst0 and which
will support the open(), read(), write(), lseek(), and close() system calls. Input-only devices
such as mice and keyboards will not support write() or lseek() since it would make no sense, and
similar common sense reasoning applies to all devices in general.

In previous chapters you saw how you could access your terminal using its device �le. For example,
to write a message to the terminal device /dev/pts/4 you would write:

$echo "Where are you?" > /dev/pts/4

If you had permission to write to this terminal, the message "Where are you?" would appear on
the screen in the corresponding terminal window.

If you do not know the name of the device �le for the terminal in which your shell is running, the
shell command tty will provide it to you. tty displays on standard output the absolute pathname
of the device �le representing the terminal from which the command is issued:

$ tty

/dev/pts/4

At the programming level, the library function ttyname() serves the same purpose, returning the
full pathname of the terminal device whose �le descriptor is passed to it.

NAME
ttyname − f i nd pathname o f a te rmina l

SYNOPSIS
#inc lude <uni s td . h>
char ∗ ttyname ( i n t fd ) ;

DESCRIPTION
The func t i on ttyname ( ) r e tu rn s a po in t e r to the nu l l−
terminated pathname o f the te rmina l dev i ce that i s open on
the f i l e d e s c r i p t o r fd , or NULL on e r r o r ( f o r example , i f
fd i s not connected to a te rmina l ) . The return value may
point to s t a t i c data whose content i s ove rwr i t t en by the
next c a l l .

. . .

This work is copyrighted by Stewart Weiss and licensed under the Creative Commons Attribution-
ShareAlike 4.0 International License.

12

http://creativecommons.org/licenses/by-sa/4.0/ 
http://creativecommons.org/licenses/by-sa/4.0/ 


UNIX Lecture Notes
Chapter 4 Control of Disk and Terminal I/O

Prof. Stewart Weiss

To �nd the name of the terminal device connected to standard input, for instance, a program
can call ttyname(0), The following program prints the name of its control terminal5. The macro
STDIN_FILENO is de�ned in <unistd.h> and is simply the number 0.

#inc lude <s td i o . h>
#inc lude <uni s td . h>
in t main ( )
{

p r i n t f (" Terminal i s %s \n" , ttyname (STDIN_FILENO) ) ;
r e turn 0 ;

}

If you name this program show_tty and run it, you will see something like:

$ show_tty

Terminal is /dev/pts/2

On the other hand, try running it as follows:

$ ls | show_tty

and you will see

Terminal is (null)

The problem is that in the second example, standard input was redirected, so �le descriptor 0
was attached to a pipe instead. The ttyname() function returns the NULL string when there is
no terminal attached to the descriptor. The same thing will happen if you try calling it with �le
descriptor 1 while standard output has been redirected. You can therefore use ttyname(0) as a test
for whether or not standard input or output is redirected , as in

if ( ttyname(0) )

// not redirected

else

// is redirected

There is a function speci�cally for testing whether a �le descriptor is attached to a terminal or not
:

5The control terminal for a process is the terminal device from which keyboard-related signals may be generated.
For example, if the user presses a Ctrl-C or Ctrl-D on terminal /dev/pts/2, all processes that have /dev/pts/2 as
their control terminal will receive this signal.
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NAME
i s a t t y − does t h i s d e s c r i p t o r r e f e r to a te rmina l

SYNOPSIS
#inc lude <uni s td . h>
in t i s a t t y ( i n t desc ) ;

DESCRIPTION
re tu rn s 1 i f desc i s an open d e s c r i p t o r connected to a
te rmina l and 0 otherw i se .

The isatty() function is useful for testing descriptors in this way. We can use it together with
ttyname() as follows.

#inc lude <s td i o . h>
#inc lude <uni s td . h>

in t main ( )
{

i f ( i s a t t y ( 0 ) )
p r i n t f ("%s \n" , ttyname ( 0 ) ) ;

e l s e
p r i n t f (" not a te rmina l \n " ) ;

r e turn 0 ;
}

If you run this program you will see something like

$ mytty

/dev/pts/1

and when input is redirected, you will see this:

$ ls | mytty

not a terminal

When you are writing a program that expects the standard output device to be a terminal, you
can use either isatty() or ttyname() to check whether any standard stream has been redirected.
However, both of these functions can only be used with an open �le, since they need a �le descriptor,
and �le descriptors exist only for open connections. In contrast, the ctermid() standard I/O library
function will always display the pathname of the controlling terminal.
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NAME
ctermid − generate path name f o r c o n t r o l l i n g te rmina l

SYNOPSIS
#inc lude <s td i o . h>
char ∗ ctermid ( char ∗ s ) ;

DESCRIPTION
The ctermid ( ) func t i on gene ra t e s the path name o f the
c o n t r o l l i n g te rmina l f o r the cur r ent p roce s s and s t o r e s i t
in a s t r i n g . I f s i s a nu l l po inter , the s t r i n g i s s to r ed
in an i n t e r n a l s t a t i c area whose address i s returned and
whose contents are ove rwr i t t en at the next c a l l to ctermid ( ) .

. . .
BUGS

The path returned may not unique ly i d e n t i f y the c o n t r o l l i n g
te rmina l ; i t may , f o r example , be /dev/ tty .

The problem is that on Linux, it will only display /dev/tty, just as the man page's BUGS section
notes, so if the program needs the actual �lename, using ctermid() is not the solution. It does
work correctly in Solaris 9.

4.3.3 Device Drivers and the /dev Directory

Device �les provide an interface between processes and devices. They are like regular �les in the
following ways: they have a mode, they have owners and groups, times of access, modi�cation,
and status change, and they have names and links to them. But they di�er in one signi�cant way.
Unlike disk �les, they are not storage containers; rather than storing data, they provide access to
the entry points of functions. Because they are not containers, they do not have size. Because they
are really just interfaces, they are associated with executable code that manages a connection to a
device.

The code that manages the connection between a process and a device is inside a device driver.
A device driver is a program that provides an interface between a device and the processes that
communicate with it. Device �les are the means in UNIX for a process to communicate with device
drivers.

If you type ls -l in the /dev directory, you will see output such as this:

total 0

crw-rw---- 1 root root 4, 0 Feb 6 11:07 tty0

crw------- 1 root root 4, 1 Feb 6 16:09 tty1

crw-rw---- 1 root tty 4, 10 Feb 6 11:07 tty10

crw-rw---- 1 root tty 4, 11 Feb 6 11:07 tty11

crw-rw---- 1 root tty 4, 12 Feb 6 11:07 tty12

crw-rw---- 1 root tty 4, 13 Feb 6 11:07 tty13

crw-rw---- 1 root tty 4, 14 Feb 6 11:07 tty14

If you type ls -l in the /dev/pts directory, you will see something like this:
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total 0

crw--w---- 1 root tty 136, 1 Oct 14 14:46 1

crw--w---- 1 lsmarque tty 136, 10 Sep 12 13:13 10

crw--w---- 1 lsmarque tty 136, 11 Sep 12 18:39 11

crw--w---- 1 chays tty 136, 12 Sep 13 20:02 12

crw--w---- 1 chays tty 136, 13 Sep 13 20:02 13

crw--w---- 1 lsmarque tty 136, 14 Oct 3 13:22 14

crw--w---- 1 lsmarque tty 136, 15 Sep 12 13:13 15

crw--w---- 1 shixon tty 136, 19 Oct 14 15:19 19

crw--w---- 1 sweiss tty 136, 20 Oct 14 15:23 20

Notice that the �rst line, which always reports the total number of blocks used by the �les in the
directory, shows that these �les do not use any storage.

Next observe that the type designator of each �le listed above is 'c', which represents the type
character special �le. The c indicates that this is a character device, as opposed to a block device.
Every I/O device is accessed through either a block I/O interface or a character I/O interface. One
major di�erence between them is that block I/O uses kernel bu�ering whereas character I/O does
not. When a character I/O interface is used, the data �ows in a character stream between the
device and connected processes without using system bu�ers. In contrast, block devices use the
kernel bu�ering system and transfer large chunks of data at a time. Some devices, such as disk
partitions, may be accessed in block or character mode. Because each device �le corresponds to a
single access mode, devices that have more than one access mode have more than one device �le.

Recall that the write command lets one user write to the terminal of another user, provided that
the group write bit is set on the recipient's pseudo-terminal device �le. As a warm-up exercise, we
will eventually write an implementation of write. First we will examine how device drivers work.

Notice in the listings of the /dev and /dev/pts directories that the size �eld consists of a pair of
numbers. The �rst number is called the major device number and the second, the minor device
number. For example, /dev/pts/12 has major device number 136 and minor device number 12.
The major device number identi�es the type of device, e.g., SCSI disk, pseudo-terminal, or mouse;
the minor device number speci�es which particular instance of this type of device is represented by
the �le, or the action associated with this particular interface to the device.

Each major device number is an index into the block or character device table maintained in the
kernel. This table is used by the kernel to access the device drivers. Basically the table contains the
address inside the kernel of the entry point into the device driver code. When a system call such as
read() is invoked and the �le descriptor passed to the read() system call is the �le descriptor of a
device �le, the read() code ( inside the kernel) �nds the i-node belonging to that descriptor. The
i-node contains the type of the �le, which will indicate that it is a device special �le, and whether it
is block or character. The kernel will look up the major and minor device numbers from inside the
i-node. It will then use the major device number to locate the device driver code for the particular
kind of device. For example, if the device �le has major number 136 and is a character device �le, it
will search the character device table for index 136. An attempt to access /dev/pts/12 with major
number 136 and minor number 12 will therefore result in execution of the driver whose index is
1366. There is usually a �le in the �le system that contains the mapping of major and minor device

6This is true in BSD and SunOs at least. In the Ext2 �le system of Linux, there is more indirection, and the code
that is executed might reside in a separate module. The device drivers are not necessarily part of a large executable
image, but are instead in separate executable �les, more like Windows, and the kernel contains stubs that are resolved
dynamically at the time of the call, depending upon the type of �le system on which the i-node resides.
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numbers to devices. On many Linux systems, you can often �nd this mapping at

/usr/share/doc/kernel-doc-<kernel-version>/Documentation/devices.txt

where <kernel-version> is to be replaced by the version number, such as 2.6.9, as in

/usr/share/doc/kernel-doc-2.6.9/Documentation/devices.txt

If it is not there, then you can read the �le /proc/devices, which contains the major device numbers
for the various groups of devices.

Every I/O device with the same major device number uses the same driver. The minor device
number is passed as a parameter to the device driver. The driver may use this number to select
which unit of the device to use. Notice, for instance, that each of the pseudo-terminals in use in the
above listing has the same major device number, 136, and a minor device number that corresponds
to the name of the device �le. As another example, if there are multiple disks, the minor device
number would specify which disk is being accessed.

Sometimes the minor device number is used to distinguish di�erent actions for the device to take.
It is up to the device driver to decide how it will use the minor device number. The use of device
numbers as indices into an array of drivers simpli�es the customization of each system for the
particular hardware con�guration.

The device drivers in BSD UNIX, like the kernel itself, are divided into three sections:

1. Initialization and con�guration routines

2. Routines to handle I/O service requests (upper half of the driver)

3. Interrupt service routines (lower half of the driver)

The lower half runs in an uninterruptible mode. The upper half runs synchronously and can block
itself. They communicate through work queues. In Linux, although the terms "upper half" and
"lower half" are not used explicitly, the device drivers work in a similar way. Sometimes they are
called "master" and "slave" drivers.

4.3.4 Disk Drivers

An especially important group of drivers are the disk drivers. A disk driver is a software module
that manages and controls the I/O that passes between a disk �le and processes that have requested
I/O to or from that �le. This section brie�y describes the role of disk drivers in handling I/O.

The purpose of a disk driver is to process requests for disk I/O. These requests are represented by
transaction records, each of which consists of

1. a �ag indicating whether to read or write data,

2. a primary memory address,

3. a secondary memory address, and
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4. a count of the number of bytes to transfer.

The driver maintains these records in a queue. An I/O request causes the upper half of the driver
to run. When the upper half is entered, it creates a transaction record and puts it into its work
queue. It usually sorts the requests to reduce the latency for the particular device. (This is device
dependent code designed to minimize seek time to particular cylinders. In 4.4BSD, for example,
the elevator algorithm is used to sort the requests.)

When an I/O request has been satis�ed or some other event occurs that warrants intervention by
the kernel, the disk sends an interrupt to the processor. The interrupt service routine handles these
interrupts; after saving the appropriate portion of the processor state, if the event was an I/O
completion, it searches the queue to �nd the transaction that was completed, de-queues it, changes
the state of the requesting process to indicate that it is no longer blocked on that I/O, and selects
the next record to service.

Disk drivers are general enough that they can implement block I/O devices, character I/O devices,
and swapping devices. To implement block I/O, the block I/O interface passes the address of a
system bu�er in �eld (2). To implement character I/O, the character I/O interface passes in �eld
(2) an address that is in the user area, and it ensures that the process is not swapped out during the
transfer. To implement a swapping device, the driver is tailored to make requests to the swapping
device's controller.

4.3.5 Pseudo-Terminals

A terminal is a hardware device that emulates the old Teletype machines. Up until the early 1980's,
most users connected to a mainframe computer through terminals. The terminals were connected to
the computer via RS-232 lines, into terminal multiplexers, which were special-purpose devices that
multiplexed multiple terminal lines into the computer7. The computer had device drivers whose role
was to communicate with these multiplexed terminals. The terminal driver had to control all aspects
of the communication path, including modem control, hardware �ow control, echoing of characters,
bu�ering of characters, and so on. When microprocessors were invented and personal computers
became a�ordable, personal computers replaced terminals as the front ends to mainframes. Special
terminal emulation software could be installed on a personal computer to make it appear to be a
"dumb terminal" to the mainframe. One of the earliest such programs was Kermit, developed at
Columbia University. Terminal emulation software interposed a terminal interface between the user
on his or her local computer and a remote computer on a local area network or the Internet.

Whether you are working on a Linux machine or some other UNIX system locally or remotely
via some remote login facility such as Telnet or SSH, if you are using the traditional command-
line interface to UNIX, you are using a pseudo-terminal. A pseudo-terminal is a software-emulated
terminal. When you open a terminal window in a desktop environment such as Gnome or KDE, you
are using a pseudo-terminal. When you connect via an SSH client you are using a pseudo-terminal.
The device �les in the /dev directory that have names of the form pts* or pty* are pseudo-terminal
device �les. The device drivers for these �les manage pseudo-terminals. Pseudo-terminals and how
they work are described in more detail later.

7Terminals were just one of a class of devices called serial devices. RS-232 lines were serial lines, on which
characters were sent one bit at a time. Modern UNIX systems, including Linux, continue to support many di�erent
types of serial lines.
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4.3.6 Character I/O Interfaces

Almost all I/O devices have a character I/O interface, even if they are block devices. For example,
the hard disk has a character interface to allow reads and writes of unstructured byte streams.
The character interface is needed for programs such as fsck, which performs checks of �le system
integrity. The character interface translates these requests into block requests for the hardware
but presents a character stream to the client. Printers, and modems have character interfaces, and
these would have entries such as /dev/tty0a, /dev/lp0, /dev/cua0. Even physical memory has a
character interface to allow memory to be treated like a RAM �le. The device �le for memory is
/dev/mem.

The character I/O interface to block devices such as disks or tapes is called the raw interface because
it allows access to the device and ignores its structure. A disk partition such as sda1 may have
two device �les in /dev: the block interface and the character interface. The block interface is
usually /dev/sda1 in Linux but because individual partitions do not have character interfaces and
only disks do, the character interface will be the "SCSI generic" device /dev/sg1. The sg interface
allows byte by byte access to the entire drive. In Solaris 9, raw device names are of the form
/dev/rdsk/c0t3d0s5.

Character device drivers do not use system bu�ers, except for terminal drivers, which use a linked
list of very small (typically 64 byte) bu�ers. Character device drivers transfer characters directly to
or from the user process's virtual address space. Because the transfers are directly to user memory
and use DMA, the drivers must lock the memory to prevent the physical pages from being replaced
during the transfer.

4.3.7 Other Character Devices

Some devices have character interfaces even though they do not �t the byte stream model of I/O.
An example is a high-speed graphics display, which has such a fast transfer rate that it requires
bu�ers in its own address space to handle the volume of data. These devices would swamp a driver
that passed one character at a time, and are handled as special cases in the kernel.

4.3.8 Writing to a Device File

As an exercise in writing to a device �le, we will write our own, somewhat simpli�ed, version of the
write command. The write command writes messages to terminals. The write man page begins
as follows:

NAME
wr i t e − wr i t e to another user

SYNOPSIS
wr i t e user [ t e rmina l ]

DESCRIPTION
Write a l l ows you to communicate with other users , by copying
l i n e s from your te rmina l to t h e i r s .
When you run the wr i t e command , the user you are wr i t i ng to ge t s
a message o f the form : :

Message from yourname@yourhost on yourtty at hh :mm. . .
Any fu r t h e r l i n e s you ente r w i l l be copied to the s p e c i f i e d
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user ' s t e rmina l . I f the other user wants to reply , they must run
wr i t e as we l l .
When you are done , type an end−of− f i l e or i n t e r r up t cha rac t e r .
The other user w i l l s e e the message EOF ind i c a t i n g that the
conve r sa t i on i s over .

. . .
I f the user you want to wr i t e to i s logged in on more than one
terminal , you can s p e c i f y which te rmina l to wr i t e to by
s p e c i f y i n g the te rmina l name as the second operand to the wr i t e
command . A l t e rna t i v e l y , you can l e t wr i t e s e l e c t one o f the
t e rmina l s − i t w i l l p ick the one with the s ho r t e s t i d l e time .
This i s so that i f the user i s logged in at work and a l s o d i a l ed
up from home , the message w i l l go to the r i gh t p lace .

Our �rst version of write will ignore the optional line argument and will not try to pick the terminal
with the smallest idle time. The main program follows. It calls two functions, get_user_tty() and
create_message(), which follow thereafter.

i n t main ( i n t argc , char ∗argv [ ] )
{

i n t fd ;
char buf [BUFSIZ ] ;
char ∗user_tty ;
char eo f [ ] = "EOF\n " ;

i f ( argc < 2 ){
f p r i n t f ( s tde r r , " usage : wr i t e1 username\n " ) ;
e x i t ( 1 ) ;

}

i f ( ( user_tty = get_user_tty ( argv [ 1 ] ) ) == NULL ) {
f p r i n t f ( s tde r r , "User %s i s not logged in . \ n" , argv [ 1 ] ) ;
r e turn 1 ;

}

s p r i n t f ( buf , "/dev/%s " , user_tty ) ;
fd = open ( buf , O_WRONLY ) ;
i f ( fd == −1 ){

pe r ro r ( buf ) ; e x i t ( 1 ) ;
}
create_message ( buf ) ;

i f ( wr i t e ( fd , buf , s t r l e n ( buf ) ) == −1 ) {
pe r ro r (" wr i t e " ) ;
c l o s e ( fd ) ;
e x i t ( 1 ) ;

}
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whi le ( f g e t s ( buf , BUFSIZ , s td in ) != NULL )
i f ( wr i t e ( fd , buf , s t r l e n ( buf ) ) == −1 )

break ;
wr i t e ( fd , eof , s t r l e n ( eo f ) ) ;
c l o s e ( fd ) ;
r e turn 0 ;

}

The most important part of the main program is the loop. The while-loop looks exactly like a loop
to read from one �le and write to another. The only di�erence is that it is using fgets() instead
of a read() system call, and it "hard-wires" stdin into the code. The fgets() function reads from
any FILE stream until it sees an end-of-line (EOL) or end-of-�le (EOF) mark. Therefore, you can
see that reading from the keyboard and writing to a terminal is essentially the same as reading from
one �le and writing to another.

The get_user_tty() function searches through the utmp �le for entries that match the given login
name, returning a pointer to a static string containing the line. This could have been allocated on
the stack and later freed, but for demonstration purposes, this is easier.

char ∗ get_user_tty ( char ∗ logname )
{

s t a t i c s t r u c t utmp utrec ;
i n t u t r ec_s i z e = s i z e o f ( u t r ec ) ;
i n t utmp_fd ;
i n t namelen = s i z e o f ( u t r ec . ut_name ) ;
char ∗ r e t v a l = NULL ;

i f ( (utmp_fd = open ( UTMP_FILE, O_RDONLY )) == −1 )
re turn NULL;

whi l e ( read ( utmp_fd , &utrec , u t r ec_s i z e ) == utrec_s i z e )
i f ( strncmp ( logname , ut r ec . ut_name , namelen ) == 0 ) {

r e t v a l = utrec . ut_l ine ;
break ;

}

c l o s e (utmp_fd ) ;
r e turn r e t v a l ;

}

The create_message() function constructs the message to display on the user's console. It uses the
getlogin() function to get the real username of the owner of the calling process, the gethostname()

function to get the hostname of the host on which the sender process is running, the ttyname()

function to get the terminal device name of the controlling terminal of the sending process, and the
time() function to get the current time, which it converts to a struct tm using localtime().

void create_message ( char buf [ ] )
{

char ∗ sender_tty , ∗sender_name ;
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char sender_host [ 2 5 6 ] ;
time_t now ;
s t r u c t tm ∗ t imeval ;

sender_name = ge t l o g i n ( ) ;
sender_tty = ttyname (STDIN_FILENO) ;
gethostname ( sender_host , 2 56 ) ;
time(&now ) ;
t imeval = l o c a l t ime (&now ) ;
s p r i n t f ( buf , "Message from %s@%s on %s at %2d:%02d:%02d . . . \ n" ,

sender_name , sender_host , 5+sender_tty ,
t imeval−>tm_hour , t imeval−>tm_min , t imeval−>tm_sec ) ;

}

This version is relatively easy to construct. The next version must allow the user to enter a terminal
device name in the form "pts/n" and try to open that speci�c terminal for writing, if possible. If it
fails it must return an error message. The changes to allow the optional terminal name are minor:

1. The main program has to check the command line arguments (not shown below).

2. The get_user_tty() function needs a second argument that it compares to the ut_line �eld
whenever the ut_name �eld matches.

char ∗ get_user_tty ( char ∗ logname , char ∗termname )
{

s t a t i c s t r u c t utmp utrec ;
i n t u t r ec_s i z e = s i z e o f ( u t r ec ) ;
i n t utmp_fd ;
i n t namelen = s i z e o f ( u t r ec . ut_name ) ;
char ∗ r e t v a l = NULL ;

i f ( (utmp_fd = open ( UTMP_FILE, O_RDONLY )) == −1 )
re turn NULL;

/∗ l ook f o r a l i n e where the user i s logged in ∗/
whi l e ( read ( utmp_fd , &utrec , u t r e c_s i z e ) == utrec_s i z e )

i f ( strncmp ( logname , ut r ec . ut_name , namelen ) == 0 )
i f ( ( termname == NULL ) | |

( strncmp ( termname , ut r ec . ut_line ,
s t r l e n ( termname ) ) == 0 ) )

{
r e t v a l = utrec . ut_l ine ;
break ;

}
c l o s e (utmp_fd ) ;
r e turn r e t v a l ;

}

This version of the write command still does not choose the terminal line with the smallest idle
time, for a given username, when the terminal line is not speci�ed. How would you go about �nding
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the terminal line that has been idle the least amount of time? (Hint: the least idle terminal line
has been accessed most recently.)

In addition, if you experiment with the real write command, you will discover that this version is
still lacking other functionality:

• It does not check that the sender's terminal does not have I/O redirected.

• It does not check whether the sender's messaging is turned on (which it must be for the write
program to write back to it.)

• It does not check whether the receiver is actually logged in, and whether messaging is enabled
on the receiver's line.

• It does not check whether the sender is trying to send to him or herself.

Although none of these checks are di�cult, and this program is easy to write, in general, com-
municating through the terminal interface is much more complicated than this; remember that we
failed to write a good version of the more command because we could not suppress echoing, we had
trouble getting input accepted without the Enter key press, and we did not suppress the scrolling
of the prompt.

4.4 Terminals and Terminal I/O

Terminal I/O is probably the messiest and most disorganized part of any operating system. This
is partly due to the way that I/O interfaces have developed over the years, in an ad hoc fashion,
responding to changes in hardware and user demands, partly due to the wide variety of I/O devices
that have to be accommodated under the aegis of a single I/O system, and partly due to the general
lack of standards that governed how terminal I/O should be handled.

In UNIX, part of the problem is the result of the rift between the BSD versions and System V versions
of the operating system, which had very di�erent sets of terminal I/O routines. The POSIX standard
provided a uni�cation of the two sets of interfaces, and modern systems provide POSIX compliant
routines. However, there are still many parts of the I/O interface that are platform-speci�c.

If you understand how terminals work, then you will have a better understanding of which routines
you need to use to achieve various objectives as well as how to use those routines. The kinds of
questions that will be answered here include:

• Why is it that we have to press the Enter key in order for the typed characters to be received
by a program, and is there a way to avoid this?

• Some program suppress the echoing of characters as they are typed. How can we do this?

• Some programs are able to time-out while waiting for user input. How does that happen?

• Some programs, such as vi and emacs, override the meaning of various control sequences such
as Ctrl-D and Ctrl-C. How can we do that?

• Terminals have a �xed number of rows and columns. How can a program get that number
dynamically and control how it wraps its output?
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• Why is it that sometimes the backspace key erases characters and sometimes the delete key
does, and sometimes neither does? How does the terminal erase?

Adding to the problem of understanding terminals and terminal I/O is the fact that the C Standard
I/O Library adds another layer of complexity, including various forms of bu�ering. We have to
�gure out what the terminal does and what the library does.

4.4.1 An Experiment

We begin by rewriting the simple I/O program from Chapter 1 so that it does not use C FILE

streams. This way, whatever we observe is independent of that library's semantics. Unlike the
simple I/O program there, this uses the kernel's read() and write() system calls.

L i s t i n g copychars . c
#inc lude <s t r i n g . h>
#inc lude <s t d l i b . h>
#inc lude <uni s td . h>

in t main ( i n t argc , char ∗argv [ ] )
{

char inbu f ;
char prompt [ ] =

"Type any cha ra c t e r s f o l l owed by the ' Enter ' key . "
"Use Ctrl−D to ex i t . \ n " ;

i f ( −1 == wr i t e (1 , prompt , s t r l e n ( prompt ) ) ) {
wr i t e (1 , " wr i t e f a i l e d \n" , 1 3 ) ;
e x i t ( 1 ) ;

}

whi l e ( read (0 , &inbuf , 1) > 0 )
wr i t e ( 1 , &inbuf , 1 ) ;

r e turn 0 ;
}

Assume this has been compiled into an executable named copychars. The copychars program
reads one character at a time and writes one character at a time until it receives an end-of-�le
indication, which is that read() returns 0. If the user types a Ctrl-D, provided that the terminal
has the default settings, the read() on the standard input stream will return 0.

When you run this program you will notice that, even though the main loop reads a single character
and immediately writes that character, nothing gets written on the screen until you press the Enter
key. As we are not using the C Library's streams, we cannot attribute this behavior to the library's
bu�ering. The terminal is responsible for this. Somehow the characters that we type are stored,
but where, and how many can be stored before they are lost?

We could answer these questions by doing a bit of research in the manpages, but this time we will
begin with an experimental answer. We can determine the maximum number of characters that the
terminal bu�ers by supplying larger and larger sequences of characters before pressing the Enter
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key and counting the number of characters output on the screen to make sure none were lost. We
are not allowed to redirect input to copychars to facilitate this because redirecting input will imply
that the terminal is not involved in supplying characters to the program, so we have to do this
in a more tedious way. We do not have to type the characters one at a time, but can create �les
containing the required number of characters on a single line, and if our terminal emulator supports
copy and paste, we can paste them into the terminal window and then press the Enter key. We are
free to redirect output to the wc command to count the number of characters written to standard
output.

We can create a �le named a_N containing N consecutive 'a' characters with the command

$ ( for i in `seq 1 1 N` ; do echo -n 'a' ; done ) > a_N

where N is replaced by the desired number. Suppose we create such �les of sizes 128, 256, 512,
1024, 2048, 4096, 8192 characters. We can open each �le in a text editor, copy the sequence to the
clipboard and paste it into the window after running the command

$ copychars | wc

We will see the following sequence of numbers output by wc

2 13 198

2 13 326

2 13 582

2 13 1094

2 13 2118

2 13 4165

2 13 4165

As you can see, the maximum number of characters reported by wc is 4165. Subtract the length of
the prompt and the following newline, 70 characters, and you see that 4095 characters seems to be
the maximum size of the bu�er on the system used for this experiment. We will see shortly that this
number is much larger than the documentation states. Where these characters are stored cannot
be answered experimentally. That question requires some research.

Try one other thing. Run copychars, but this time, use your backspace key to change some of the
characters. When you press the Enter key this time, there is no trace of that backspace character.
It is not part of the stream of characters that the program received. The characters seem to be
stored in the bu�er in such a way that we can use editing keys to remove them from the set of
characters delivered to the program.

Before we go further, and as a sort of advance peek at what we are about to do, try running the
program as follows. Type the commands as they appear below:

$ stty -icanon ; copychars

When you are �nished observing what happens, type the command
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$ stty icanon

What you should have observed was that the program behaved as the code suggests � that each
time you typed a character, it was immediately echoed on the screen. The stty command allows us
to control terminal characteristics. What we just did in part disabled bu�ering of input characters
in the terminal. Repeat this and try deleting characters and you will see that editing seems to be
disabled. We will return to this later.

Now we will look at a second example. The following program does use the C Standard I/O Library,
and so we will need to understand how that library confounds the picture, but that will happen a
bit later. In the program below, named listchars.c, getchar() is used to obtain characters typed
on the keyboard and printf() is used to display each character as an actual character (a glyph)
with its character code in the current encoding (ASCII).

#inc lude <s td i o . h>
in t main ( i n t argc char ∗ argv [ ] )
{

i n t ch ;

p r i n t f ("Type any cha ra c t e r s f o l l owed by the ' Enter ' key . " ) ;
p r i n t f (" Use Ctrl−D to ex i t . \ n " ) ;

whi l e ( ( ch = f g e t c ( s td in ) ) != EOF )
p r i n t f (" char = '%c ' code = %03d\n" , ch , ch ) ;

r e turn 0 ;
}

Notice that ch is declared as an int. This is because fgetc() returns an int rather than a char,
because it returns -1 to indicate EOF. In fact EOF has the value -1, which means that whatever
variable is assigned the return value must be a signed int. The char type is unsigned, so we
cannot use it. Notice too that printf() will display an integer whose value is a legal character
value as a glyph if the %c format speci�cation is used, and as an integer if the %d format speci�cation
is used, so that printf() can conveniently print the character code and the character itself.

When you run this program you will again see that the program does not display any characters
until the Enter key is pressed. If we build it and name it listchars, and run it and type abcde

followed by Enter, and Ctrl-D to quit, we will see the following output:

$ listchars

Type any characters followed by the 'Enter' key. Use Ctrl-D to exit.

abcde

char = 'a' code = 097

char = 'b' code = 098

char = 'c' code = 099

char = 'd' code = 100

char = 'e' code = 101

char = '

' code = 010

$
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First, notice that no output took place until the Enter key was pressed. Once again, this means
that the characters that were typed before the Enter key was pressed had to be stored in a bu�er.

Second, unlike our copychars program, this lets us see the character codes of the characters that
we enter. It seems that there was a character after the 'e' but before the ^D, and that this character
caused a new line to appear on the screen and then caused "code = 10" to appear after it. But
we pressed the Enter key after the 'e'. The fact that the second quote is in the �rst column on the
next line implies that two characters were transmitted: a linefeed, ASCII 10, was transmitted to the
screen to advance output to the next line, and a carriage return, ASCII 13, was transmitted, which
forced the next character to appear in column 1 of that line. The ASCII code that was printed is
decimal 10, which is the linefeed character, also known as newline. Therefore, only one ASCII code
was generated, so even though both a newline and a carriage return were sent to the screen, only
a newline character was seen by the program. Therefore, our pressing the Enter key caused only a
newline code to be sent to the program. Usually, when you type the Enter key, it causes both the
linefeed and the carriage return to be inserted in a document, but here you can see that only the
linefeed is transmitted. ( If you do not remember your ASCII codes, type man ascii for the listing.
)

Third, in the printf() statement, the program sent a "\n" (newline) character to the terminal,
but this seems to cause both a linefeed and a carriage return to be placed on the terminal. The
linefeed character, by de�nition, should cause the cursor to move down to the next line in the same
"column" on the screen, whereas a carriage return should move the cursor to column one, the left
margin, without moving it down one line. But somehow both things happen even though a single
character is transmitted.

What we can conclude from this is that the terminal driver must be doing some character processing
on the inputs it receives from the keyboard and on the outputs that the processor sends to the display
device. (Remember that the terminal driver is controlling a logical input/output device.) We now
explore what the terminal driver does and how we can control its behavior.

4.4.2 Terminal Devices: An Overview

The preceding experiment showed that the default input mode of a terminal includes assembling the
input into lines, processing various special characters such as backspace, and delivering the input
lines to the process after they have been processed. This mode of operation is called canonical input
mode. Terminals can be operated in various non-canonical input modes as well. In a non-canonical
mode, some part of this processing of input is turned o�. Programs like emacs, vi, and less put
the terminal into a non-canonical mode8.

The behavior of a terminal device is controlled entirely by a piece of software called a terminal
driver. A terminal driver is not the same thing as a terminal device driver. A terminal driver
consists of two components:

1. a terminal device driver, and

2. a line discipline.

8System 7 and BSD systems supported three di�erent input modes: cooked, raw, and cbreak. POSIX.1 does not
support these, although many systems still provide support for them.
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The terminal device driver is usually a part of the kernel and its main function is to transfer
characters to and from the terminal device; it is the software that talks directly with the hardware
at one end, and the line discipline at the other. The line discipline is the software that does the
processing of input and output. It maintains an input queue and an output queue for the terminal.
The relationship between these queues, the process using the terminal, and the terminal itself,
is illustrated in Figure 4.3. The terminal driver is the sum of the parts in this �gure; it is the
combination of line discipline and device driver. Notice that

• When echoing of characters is on, characters are copied from the input queue to the output
queue.

• The size of the input queue is MAX_INPUT. If characters are typed faster than they are removed
for processing, and the queue �lls, UNIX systems typically ring the bell character and discard
any extra characters.

In the experiment that we performed with the copychars program, we saw that the in-
put queue was able to store 4095 characters, which would suggest that 4095 is the value of
MAX_INPUT. MAX_INPUT is one of many system limits that are de�ned in <limits.h>. Its value
can also be obtained by calling pathconf(ttyname(0), _PC_MAX_INPUT) within a program.
If we do either, we will see that MAX_INPUT is 255. The documentation states that MAX_INPUT
may be smaller than the actual value. In fact, the terminal driver is con�gured to allow 4095
characters to be queued, even though the system limit is 255.

• Even though the output queue is also �nite, if a process tries to write to it faster than the
driver can transfer characters to the device, the kernel will simply block the process until the
queue has more room.

The �gure does not display all of the data structures used by the line discipline. Another queue is not
shown, the canonical input queue. This is the queue in which input characters are processed when
the terminal is in canonical mode. The canonical processing center is part of the line discipline. The
�gure does not show the internal data structure that the line discipline uses to control the terminal.
The kernel provides an interface to access this structure, and UNIX provides a command, stty, to
access and modify the various attributes of the terminal that are stored in this structure. The name
of the interface to this structure, in POSIX.1 compliant systems, is the termios struct9.

Almost all of the terminal device characteristics that can be examined and changed are contained
in this termios structure, which is de�ned in the header �le <termios.h>. That structure is a
collection of four �agsets, and an array of character codes:

s t r u c t termios {
t c f l ag_t c_ i f l a g ; /∗ input f l a g s ∗/
t c f l ag_t c_of lag ; /∗ output f l a g s ∗/
t c f l ag_t c_cf lag ; /∗ c on t r o l f l a g s ∗/
t c f l ag_t c_ l f l a g ; /∗ l o c a l f l a g s ∗/
cc_t c_cc [NCCS ] ; /∗ c on t r o l cha r a c t e r s ∗/

} ;

9In System V, the structure used for controlling terminals was the termio struct, and its header �le was the
termio.h �le. POSIX added an 's' to the name to distinguish the new structure from theirs. A single 's' !
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Figure 4.3: Terminal data structures

The type tcflag_t is an unsigned integer. The four �agsets are just four integers:

• The input �agset, c_iflag, controls the input of characters by the terminal device driver.

• The output �agset c_oflag, controls the driver output.

• The control �agset c_cflag controls the behavior of asynchronous serial transmission lines
(such as RS-232); it may not have meaning for other kinds of terminal ports (such as pseudo-
terminals).

• The local �agset c_lflag a�ects the interface between the driver and the user (echo, erase
characters, etc.)

The c_cc array de�nes the special characters that can be changed. The array elements are of type
unsigned char (cc_t is typedef-ed to unsigned char.)

Figure 4.3 shows the relationship between the terminal device and the terminal driver and its
components. When you type on the keyboard, the character codes are transmitted to the device
driver, which in turn passes them to the line discipline, placing them in its input queue. The line
discipline, under the normal circumstances, copies the typed characters into the output queue, to
be displayed on the console as you type. The line discipline is responsible for processing of input,
including processing of special characters. It passes the processed characters to the kernel's read()
routine10, which passes them to the process that requested the read operation. When a process
issues a write request, the kernel's write function passes the characters to the line discipline, which
performs any processing that is supposed to be performed, and then puts the characters in the

10Technically, to the sys_read() function, which is the actual function within the kernel, as opposed to read(),
which is a wrapper for it.
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output queue. The device driver retrieves the characters from the front of the queue and displays
them on the console.

Before we explore the termios structure at the programming level, we will look at how we can
change it from the command level.

4.4.3 The stty Command

A user can use the stty command to view and alter terminal characteristics. stty without options
or arguments displays a selection of the current settings of the terminal connected to the shell in
which the command is invoked. Di�erent systems will display di�erent amounts of information. To
see the complete list of terminal settings, use "stty -a". The output will look something like the
following (rearranged and labeled ):

$ stty -a

speed 38400 baud; rows 24; columns 80; line = 0;

cchars: intr = ^C; quit = ^\; erase = ^?; kill = ^U; eof = ^D;

eol = M-^?; eol2 = M-^?; start = ^Q; stop = ^S; susp = ^Z;

rprnt = ^R; werase = ^W; lnext = ^V; flush = ^O;

min = 1; time = 0;

control flags: -parenb -parodd cs8 -hupcl -cstopb cread

-clocal -crtscts

input flags: -ignbrk -brkint -ignpar -parmrk -inpck -istrip

-inlcr -igncr icrnl ixon -ixoff -iuclc ixany imaxbel

output flags: opost -olcuc -ocrnl onlcr -onocr -onlret -ofill

-ofdel nl0 cr0 tab0 bs0 vt0 ff0

local flags: isig icanon iexten echo echoe echok -echonl -noflsh

-xcase -tostop -echoprt echoctl echoke

It is important to understand that these settings are associated to the device �le for the terminal,
not to the connection between the shell or another process and the terminal. To convince yourself
of this, perform the following experiment. To perform the experiment, we will play with the erase
character. stty can be used to change the erase character used by the terminal, by typing the
following, but don't do it yet:

$ stty erase x

where x is the character that you wish to use for erasing a single character on the command line.
The default is usually either Ctrl-H or Ctrl-?, denoted ^H and ^? respectively. The backspace key
sometimes generates ^H and the delete key, ^?, but not always. This experiment will not work in
all shells, because some of them are designed to allow command line editing. In other words, the
shell itself provides the functionality, overriding the terminal settings. If bash is your shell, then
turn o� command line editing by entering a non-editing bash subshell with the command line

$ bash --noediting
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Then check which key is the erase character on your terminal by seeing which one actually erases,
and then type

$ stty -a | egrep -o '\<erase = ...'

This will produce a line like

erase = ^?

Change the erase key to something else. For simplicity, make it the character 'X' and then verify
that the change took place as follows:

$ stty erase X

$ stty -a | egrep -o '\<erase = ...'

erase = X;

Verify that it works by typing some random characters and using the X to erase them. Now invoke
another new shell process by typing "bash --noediting" and then run

$ stty -a

in the new shell. You will see that the erase character is still X. Next, in the new shell, change the
erase character back to the original, or to something else. To make it a control character, you can
type the caret ('^') followed by the character.

$ stty erase ^H

$ stty -a | egrep -o '\<erase = ...'

erase = ^H;

Exit the current shell with the exit command and view the terminal settings again. You will see
that the erase character is the one you set it to be in the shell that you just killed. This proves that
you are really changing the device �le settings, not those of the process's connection to it. It is not
like the connection to a disk �le. You can now exit the �rst bash subshell and check yet again that
in your �rst shell the erase key is the last one you chose.

Finally note that if you have two di�erent windows open, and one is pseudo-terminal pts/3 and the
other is pts/4, these may have di�erent settings; the settings "stick" to devices (or pseudo-devices
in this case), not processes.

Returning to the details of terminal settings, notice that there are two kinds of variables that are
listed in the output of stty -a: those listed in the form

1. var = value; or var value; and

2. var or -var
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The �rst type are non-Boolean variables. The second are Boolean. The Booleans are called switches
or �ags. I prefer the term switch, because they act like switches: a switch pre�xed with a minus
sign (-) is o�, and a switch that is not pre�xed with a minus sign is on. Examples of switches are
echo, inlcr, icanon, and icrnl. To change the value of a switch you type

stty [-]switch

where switch is replaced by the name of the switch, and the minus sign is present to turn it o�,
absent to turn it on. Thus,

$ stty -echo

will turn o� echo on the screen. Try it now but remember that to turn it back on you will have
to type "stty echo" without being able to see your typing. An alternative is to open a second
terminal window, and in that window, type w to see the which device �les are associated with your
two logins. Suppose that the �rst terminal, in which you turned o� echoing, is /dev/pts/2. Then
in the second terminal, you can type

$ stty --file=/dev/pts/2 echo

and this may turn echo on in the �rst terminal. (Remember that the tty command will display
your terminal device �lename.) In general, the --file option lets you specify an alternate device
�le for the stty command, provided you have permission to modify it. It may not always work,
and not all systems support the --file option.

Non-Booleans are displayed in one of two forms

• variable = value;

• variable value;

For example, the line

speed 38400 baud; rows 24; columns 80; line = 0;

means that the baud rate is 38400, the number of rows in the terminal is 24 and the number of
columns is 80. The "line = 0" refers to the line discipline. There are certain prede�ned combina-
tions of settings that are collectively known as the line discipline. Many of these are derived from
the early UNIX implementations of terminal devices; setting the line discipline to 0 means that the
default behavior is the typical one wanted by most users.

The characteristics of the terminal that can be controlled via the stty command fall into six classes:
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Class Description

Special Characters Characters that are used by the driver to cause speci�c actions to
take place, such as sending signals to the process, or erasing
characters or words or lines. Special characters include the erase,
werase, and kill characters, as examples. Characters used to send
signals include Ctrl-C, which sends the interrupt signal, and
Ctrl-\, which sends the quit signal. Signals are covered in a later
chapter, but for now it su�ces to know that signals such as the
interrupt and quit signal usually terminate the process that receives
them.

Special Settings Variables that control the terminal in general, such as its input and
output speeds and dimensions. These include the rows, cols, min,
and time values. rows and cols are the numbers of rows and
columns in the window. min and time are used when the terminal is
in non-canonical mode to control how characters are returned by
read() calls; these will be discussed later. Many of these variables
do not apply to pseudo-terminals.

Input Settings Operations that process characters coming from the terminal. This
includes changing their case, converting carriage returns to newlines,
and ignoring various characters like breaks and carriage returns.

Output Settings Operations that process characters sent to the terminal. Output
operations include replacing tab characters by the appropriate
number of spaces, converting newlines to carriage returns, carriage
returns to newlines, and changing case.

Control Settings Operations that control character representation such as parity and
stop bits, hardware �ow control. Several of these do not apply to
pseudo-terminals.

Local Settings Operations that control how the driver stores and processes
characters internally. For example, echo is a local operation, as is
processing erase and line-kill characters.

Combination Settings Combinations of various settings that de�ne modes such as cooked
mode or raw mode.

Input settings start with 'i' and output settings start with 'o'. One input setting of interest is
icrnl. This is the switch that, when set, causes input carriage returns to be converted to newline
characters. Read it as i for input, cr for carriage return, nl for newline. This switch explains why
the Enter key is converted to a newline character. Try running the following:

$ stty -icrnl ; listchars

and typing 'abc' followed by Enter then Ctrl-D. The Enter will appear as a ^M on the screen. Then
type Ctrl-C to quit the program. You will see that the code listed for the carriage return is now
ASCII 13. You will also see that the word "char" is not displayed on the screen for that line:

abc^Mchar = 'a' code = 097

char = 'b' code = 098

char = 'c' code = 099

' code = 013

This work is copyrighted by Stewart Weiss and licensed under the Creative Commons Attribution-
ShareAlike 4.0 International License.

33

http://creativecommons.org/licenses/by-sa/4.0/ 
http://creativecommons.org/licenses/by-sa/4.0/ 


UNIX Lecture Notes
Chapter 4 Control of Disk and Terminal I/O

Prof. Stewart Weiss

This is because the carriage return character causes the output to start in column 1 but there was
no linefeed, so the output " code 13" is over-writing the "char = ". To prove this, modify the
program to force a newline just before the '%c' in the printf() call. You will see the word "char"
reappear. Restore your settings by typing

$ stty icrnl

The output setting of interest is the onlcr switch. This is what adds a carriage return to each
newline character sent to the terminal. Try turning it o� and looking at the output:

$ stty -onlcr ; listchars

[stewart@harpo chapter05]$ stty -onlcr; listchars

Type any characters followed by the 'Enter' key; Ctrl-D to exit.

abc

c

har = 'a' code = 097

char = 'b' code = 098

char = 'c' code = 099

char

= '

' code = 010

Notice that each new line starts just below the end of the previous line; there were no carriage
returns inserted into the output stream. To restore your settings, type

$ reset

or

$ stty onlcr

Local settings include whether or not canonical mode and echo are enabled. By default, the terminal
is in canonical mode. The output of the stty command indicates this:

$ stty -a | grep canon

isig icanon iexten echo echoe echok -echonl -noflsh -xcase -tostop -echoprt

In canonical mode, the driver processes the line editing keys:

• character erase (erase),

• word-erase (werase),

• line-kil l (kill), and

• line redraw (rprnt)
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and recognizes the following special input characters11: line delimiter (eol and eol2) and end-of-�le
(eof). The eol and eol2 characters are equivalent. It also bu�ers the input characters until the
Enter key is pressed, at which point it delivers them to the process. Shells that support line editing
natively (by the shell itself) such as bash and tcsh ignore the stty command to turn o� canonical
mode because they process the characters themselves. Canonical mode is turned o�, but within the
shell, there will be no e�ect. To see the e�ect of disabling canonical mode, you have to run bash

with the --noediting command line switch.

In canonical mode, typed characters are processed and placed into the canonical input queue. In
non-canonical mode, they are delivered to the read() system call directly. We will demonstrate
this now. We will run a simple program similar to the copychars program but, just to make it
di�erent, it will display not the typed character, but its transpose, de�ned here by transpose(c) =
islowercase(c)? 'a' + 'z' - c:c. The program is therefore

L i s t i n g t ranspose . c
#inc lude <uni s td . h>
#inc lude <ctype . h>

in t main ( i n t argc , char ∗ argv [ ] )
{

char ch ;
whi l e ( read (0 , &ch , 1) > 0 ) {

i f ( i s l owe r ( ch ) )
ch = 'a ' + ' z ' − ch ;

wr i t e ( 1 , &ch , 1 ) ;
}
re turn 0 ;

}

We turn o� canonical mode with the command, stty -icanon, and run the transpose program
in non-canonical mode. In my terminal, the erase character is the Backspace key, which echos as
"^?" (control-?). As soon as canonical mode is disabled, it will be hard to correct typing mistakes,
so it is easier to turn o� canonical mode and issue the transpose command as a single job. The
interaction is as follows:

$ stty -icanon; transpose

azbycxdw^? ev

^C

For each character that I type, the transpose is printed immediately after, because the character is
given to the transpose program as soon as it is typed. This shows that when canonical mode is
o�, there is no input bu�ering. Also, when I try to erase using the Backspace key, the character
pair "^?" appears on the screen but nothing is erased. Following it is a non-printing character. The
character code for the Backspace key is something that cannot be printed, so some type of symbol

11There are many more special input characters than these. These are just the ones that are processed in canonical
mode.
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will appear after the �^?�, which is what is echoed for Backspace. If you try entering the line-kill
character, Ctrl-U, it will not erase the line. Nor will Ctrl-D send an EOF signal. The program must
be killed with Ctrl-C. Furthermore, when I typed the Enter key, that was echoed and then printed
again, so two newlines were displayed. In a later chapter, we will explore other e�ects of disabling
canonical mode.

Terminals are complex structures. Most of their attributes should not be changed unless you really
understand how they are used. Some are communication characteristics, such as parity, start and
stop bits, handshake methods, hang-up methods, and so on. These are often not relevant to your
terminal settings; they are part of the stty command because it is also a general command for
controlling serial devices and real tty's, for which they are necessary. You can read the man pages
for more detailed explanations of all of these attributes.

4.4.4 Programming the Terminal Driver

The stty command allows you to modify terminal settings from the shell, but it cannot be used
from within a program. To control most of the terminal characteristics from within a program, we
can use the pair of system calls, tcgetattr() and tcsetattr(). These get and set driver attributes
respectively. There is an alternative function, ioctl(), that can be used for controlling terminal
settings, but it is not preferred, because it is not supported by the standard. We will look at
ioctl() later. The ioctl() function is necessary for controlling devices other than terminals.

tcgetattr() and tcsetattr() are not the only functions that operate on the terminal settings.
There are actually 13 di�erent functions in the POSIX standard. The remaining ones are

cfgetispeed() gets input speed
cfgetospeed() gets output speed
cfsetispeed() sets input speed
cfsetospeed() sets output speed
tcdrain() waits for all output to be transmitted
tcflow() suspends transmission
tcflush() �ushes input and/or output queues
tcsendbreak() sends a break character
tcgetpgrp() gets foreground process groupid
tcsetpgrp() sets foreground process groupid
tcgetsid() gets process group ID of session leader for control of tty

Some of these act on the line discipline; others act on the device driver settings. We will only explore
a few of these.

Whereas fcntl() allows you to control disk �le connections, these allow you to program terminal
driver attributes. Unlike fcntl(), which can be used for both getting and setting attributes, the
work of getting terminal attributes is in one function, and setting, in another. The method of
making changes is the same though; you have to

• retrieve the current settings into a structure in the process's address space using tcgetattr(),

• modify that structure locally, and

• write it back to the driver using the tcsetattr() call.
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The attributes are passed back and forth in a termios structure. There is a single man page for
termios, tcgetattr(), and tcsetattr() and all of the other functions listed above except the last
three. The following excerpts the relevant information:

NAME
termios , t c g e t a t t r , t c s e t a t t r , tcsendbreak , tcdra in ,
t c f l u sh , tc f low , cfmakeraw , c fge tospeed , c f g e t i s p e ed ,
c f s e t i s p e ed , c f s e t o sp e ed
get and s e t te rmina l a t t r i bu t e s ,
l i n e cont ro l , get and s e t baud ra t e

SYNOPSIS
#inc lude <termios . h>
#inc lude <uni s td . h>
in t t c g e t a t t r ( i n t fd , s t r u c t termios ∗ termios_p ) ;
i n t t c s e t a t t r ( i n t fd , i n t opt iona l_act ions ,

s t r u c t termios ∗ termios_p ) ;
. . .

DESCRIPTION
The termios f unc t i on s d e s c r i b e a gene ra l t e rmina l i n t e r f a c e
that i s provided to con t r o l asynchronous communications por t s .

Many o f the f unc t i on s de s c r ibed here have a termios_p argument
that i s a po in t e r to a termios s t r u c tu r e . This s t r u c tu r e
conta in s at l e a s t the f o l l ow i n g members :

t c f l ag_t c_ i f l a g ; /∗ input modes ∗/
t c f l ag_t c_of lag ; /∗ output modes ∗/
t c f l ag_t c_cf lag ; /∗ c on t r o l modes ∗/
t c f l ag_t c_ l f l a g ; /∗ l o c a l modes ∗/
cc_t c_cc [NCCS ] ; /∗ c on t r o l chars ∗/

. . .

The tcgetattr() system call is given a �le descriptor and a pointer to a termios structure. The �le
descriptor must refer to a terminal device �le otherwise it is an error12. The tcgetattr() call will
store the attributes of the referenced terminal device in the termios structure. The tcsetattr()

system call is also given a �le descriptor and a pointer to a termios structure, but its second
parameter is a set of optional actions. These optional actions specify when to apply the changes to
the terminal device. There are three possible values for this parameter. From the man page (with
my corrections):

TCSANOW The change occurs immediately.

TCSADRAIN The change occurs after all output written to fd has been transmitted. This function
should be used when changing parameters that a�ect output.

TCSAFLUSH The change occurs after all output written to the object referred to by fd has been
transmitted; furthermore, before the change takes place, all input data that has not
been read is discarded.

12This is yet another way to test whether a particular �le descriptor points to a terminal device, along with
isatty() and ttyname().
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TCSANOW forces the change immediately; this can cause problems if the terminal driver is writing
to the terminal and the changes modify the output �ags. TCSADRAIN forces the changes, but only
after the output queue has been emptied by the driver. This is the action that should be chosen
whenever the changes a�ect output to the terminal. TCSAFLUSH forces the changes only after the
output queues are emptied and after it causes the input data sitting in the queue to be discarded.
It is safest, when restoring the terminal to its original state, to use TCSAFLUSH.

Di�erent versions of UNIX have di�erent de�nitions of the termios structure. The de�nition found
in Solaris 9 complies with the Single UNIX Speci�cation, Version 3, of the Open Group13 (also
known as IEEE Std 1003.1), the most generally accepted UNIX standard. The de�nition found in
the /usr/include/bits/termios.h header �le on Linux 2.6 contains other �elds (which is allowed
by POSIX ):

s t r u c t termios
{

t c f l ag_t c_ i f l a g ; /∗ input mode f l a g s ∗/
t c f l ag_t c_of lag ; /∗ output mode f l a g s ∗/
t c f l ag_t c_cf lag ; /∗ c on t r o l mode f l a g s ∗/
t c f l ag_t c_ l f l a g ; /∗ l o c a l mode f l a g s ∗/
cc_t c_l ine ; /∗ l i n e d i s c i p l i n e ∗/
cc_t c_cc [NCCS ] ; /∗ c on t r o l cha ra c t e r s ∗/
speed_t c_ispeed ; /∗ input speed ∗/
speed_t c_ospeed ; /∗ output speed ∗/

}

The c_line, c_ispeed, and c_ospeed members are not part of the standard, which allows the
structure to contain additional members. Although tcflag_t is an integer whose individual bits
are �ags, you do not need to know the individual bit positions of the �ags, because the header �le
de�nes masks for each one. The order of the bits may vary from one implementation to another.
POSIX speci�es one set of �ags, XOpen another, Open Source yet another, and so on.

The �agsets are illustrated in Figure 4.4 Each box is a single integer �agset. The names inside
each are the names of the individual bit masks. Each of these �ags is described in the man page
for termios. The c_iflag member contains �ags that de�ne input processing. The c_oflag

member contains �ags that de�ne output processing. The c_cflag has �ags that de�ne control
characteristics, and the c_lflag member has �ags that de�ne how characters are processed locally,
i.e., internally in the driver. The c_cc array is an array that stores control character assignments.
This is where the map of erase key, backspace key, and so on, is stored. POSIX requires that the
following subscript names must exist:

13You can download version 3, the latest version, from http://www.unix.org/version3.
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IGNBRK

BRKINT

IGNPAR

PARMRK

INPCK

ISTRIP

INLCR

IGNCR

ICRNL

IUCLC

IXON

IXANY

IXOFF

IMAXBEL

IUTF8

c_iflag

OPOST

ONLCR

OLCUC

OCRNL

ONLRET

OFILL

OFDEL

NLDLY

CRDLY

TABDLY

BSDLY

FFDLY

VTDLY

c_oflag

CSIZE

CSTOPB

CREAD

PARENB

PARODD

HUPCL

CLOCAL

CRTSCTS

CIBAUD

PAREXT

CBAUDEXT

c_cflag c_lflag

ISIG

ICANON

ECHO

ECHOE

ECHOK

ECHONL

NOFLSH

TOSTOP

ECHOCTL

ECHOPRT

ECHOKE

DEFECHO

FLUSHO

PENDIN

Figure 4.4: Flagset bitmasks of the termios struct

Canonical Mode Non-Canonical Mode Description

VEOF EOF character
VEOL EOL character
VERASE ERASE character
VINTR VINTR INTR character
VKILL KILL character

VMIN MIN value
VQUIT VQUIT QUIT character
VSTART VSTART START character
VSTOP VSTOP STOP character
VSUSP VSUSP SUSP character

VTIME TIME value

The size of the c_cc array is de�ned to be NCCS, which is a macro de�nition exposed by the
<termios.h> header �le.

You can change individual bits in the �agsets with bitwise operations. If MASK represents an arbitrary
bit mask, then the following test, set, and clear the bits in a �agset:

if ( flagset & MASK ) ... //tests the masked bit

flagset |= MASK //sets the masked bit

flagset &= ~MASK //clears the masked bit

For example, to turn o� terminal echo, assuming flagset is a local copy of the c_lflags �agset
from the termios structure, we would use

flagset = flagset & ~ECHO;
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Following is a program that prompts the user to enter a password and makes the typing invisible
when the password is entered, as the login program does. The program turns o� the echo switch
and resets it afterward.

L i s t i n g l o g i n . c
#inc lude <s td i o . h>
#inc lude <s t d l i b . h>
#inc lude <termios . h>

in t main ( i n t argc , char ∗ argv [ ] )
{

s t r u c t termios in fo , o r i g ;
char username [ 3 3 ] ;
char passwd [ 3 3 ] ;
FILE ∗ fp ;

/∗ get a FILE∗ to the con t r o l t e rmina l −− don ' t assume s td in ∗/
i f ( ( fp = fopen ( ctermid (NULL) , " r+")) == NULL)

return ( 1 ) ;

p r i n t f (" l o g i n : " ) ; /∗ d i sp l ay message ∗/
f g e t s ( username , 32 , s td in ) ; /∗ get user ' s typing ∗/

/∗ Now turn o f f echo ∗/
t c g e t a t t r ( f i l e n o ( fp ) , &i n f o ) ; /∗ Get cur rent te rmina l s t a t e ∗/
o r i g = i n f o ; /∗ Save a copy o f i t ∗/
i n f o . c_ l f l a g &= ~ECHO ; /∗ Turn o f f echo b i t ∗/
t c s e t a t t r ( f i l e n o ( fp ) ,TCSANOW,& in f o ) ; /∗ Set s t a t e in l i n e d i s c i p l i n e ∗/

p r i n t f (" password : " ) ;
f g e t s ( passwd , 32 , s td in ) ; /∗ Get user ' s non−echoed typing

∗/
t c s e t a t t r ( f i l e n o ( fp ) ,TCSANOW,& or i g ) ; /∗ Restore saved s e t t i n g s

∗/

p r i n t f ("\n " ) ; /∗ Print a fake message
∗/

p r i n t f (" Last l o g i n : Tue Apr 31 21 : 29 : 54 2088 from the tw i l i g h t zone . \ n " ) ;
r e turn 0 ;

}

Comments

• This is the standard procedure: use the tcgetattr() to get the old state, save a copy, make
the change, set it with tcsetattr(), do the work, and then restore.

• We read from and write to only the control terminal and return an error if we can't open this
device for reading and writing. We can get the name of the control terminal with ctermid(),
and get the �le descriptor from the name with the fileno() function. This is more secure.

• We don't use "/dev/tty" ; it is not as reliable as calling ctermid().
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4.4.5 Implementing stty: showtty

Implementing a user-friendly, perhaps more verbose, version of stty is a good exercise in using the
termios structure. We will write a POSIX compliant version, so it should display the correct values
of any �ags that it does attempt to display.

The basic idea is very straightforward: tcgetattr() is used to retrieve the settings of the �agsets.
The show_flagset() function prints the status of each �ag in the four �agsets and the show_cc_array()
function prints the mapping of control characters to character codes. Their designs are similar and
are based on the use of an array of structures that contain a value and a textual description or name
associated with that value:

/∗ Mapping o f f l a g b i t p o s i t i o n to name ∗/
typede f s t r u c t _ f l a g i n f o f l a g i n f o ;
s t r u c t _ f l ag i n f o
{

i n t f l_va lue ; // f l a g value
char ∗ fl_name ; // s t r i n g d e s c r i b i n g f l a g

} ;

/∗ Mapping o f index to d e s c r i p t i o n ∗/
typede f s t r u c t _cc_entry cc_entry ;
s t r u c t _cc_entry {

i n t index ;
char ∗ d e s c r i p t i o n ;

} ;

A single �agset is then represented by an array of flaginfo structures, and the array of control
character codes is represented in a similar way by an array of cc_entry structures. For example,
the input �ags are de�ned by the constant array

f l a g i n f o input_f lags [ ] = {
{IGNBRK , " Ignore break cond i t i on " } ,
{BRKINT , " S igna l i n t e r r up t on break" } ,
{IGNPAR , " Ignore chars with pa r i t y e r r o r s " } ,
{PARMRK , "Mark pa r i t y e r r o r s " } ,
{INPCK , "Enable input pa r i t y check" } ,
{ISTRIP , " S t r i p cha rac t e r " } ,
{INLCR , "Map NL to CR on input " } ,
{IGNCR , " Ignore CR" } ,
{ICRNL , "Map CR to NL on input " } ,
{IXON , "Enable s t a r t / stop output con t r o l " } ,
{IXOFF , "Enable s t a r t / stop input con t r o l " } ,
{−1 , NULL }

} ;

and the control characters, by the constant array
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cc_entry cc_values [ ] = {
{ VEOF, "The EOF charac t e r "} ,
{ VEOL, "The EOL charac t e r "} ,
{ VERASE, "The ERASE charac t e r "} ,

#i f de f i ned VWERASE
{ VWERASE, "The WERASE charac t e r "} ,

#end i f
{ VINTR, "The INTR charac t e r "} ,
{ VKILL, "The KILL charac t e r "} ,
{ VQUIT, "The QUIT charac t e r "} ,
{ VSTART, "The START charac t e r "} ,
{ VSTOP, "The STOP charac t e r "} ,
{ VSUSP, "The SUSP charac t e r "} ,
{ VMIN, "The MIN value "} ,
{ VTIME, "The TIME value "} ,
{ −1, NULL}

} ;

Notice that each array is terminated by a sentinel value -1. Notice too that the VWERASE code is
only conditionally compiled, because POSIX does not de�ne it. The logic in processing either array
is similar. The function to display the character codes for the c_cc array is

void show_cc_array ( s t r u c t termios t ty i n f o ,
cc_entry con t r o l cha r s [ ] )

{
i n t i = 0 ;

whi l e ( −1 != con t r o l cha r s [ i ] . index ) {
p r i n t f ( "%s i s " , c on t r o l cha r s [ i ] . d e s c r i p t i o n ) ;
p r i n t f ( "Cntl−%c\n" ,

t t y i n f o . c_cc [ c on t r o l cha r s [ i ] . index ] −1 +'A' ) ;
i++;

}
}

For each character code in the array whose index is not -1, it prints the description from the structure
and the value of the code as a "control-something" name. These �control-something� names, e.g.,
�Ctrl-A�, �Ctrl-B�, and so on, through �Ctrl-_�, derived from the fact that on a keyboard, it is
often possible to generate a control code using the control (Ctrl) key and a normal key. By adding
the code for 'A', less one, to the index stored in the c_cc array, we get the keyboard key that should
be typed to enter that code from the keyboard.

The show_flagset() function is similar. It is called by a function, show_flags(), that simply calls
show_flagset() for each di�erent �agset.

void show_flagset ( i n t f l a g , f l a g i n f o bitnames [ ] )
{
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i n t i = 0 ;

whi l e (−1 != bitnames [ i ] . f l_va lue ) {
p r i n t f ( "%s i s " , bitnames [ i ] . fl_name ) ;
i f ( f l a g & bitnames [ i ] . f l_va lue )

p r i n t f ("ON\n " ) ;
e l s e

p r i n t f ("OFF\n " ) ;
i++;

}
}

The main program calls a function, show_baud_rate(), that when given the termios structure
ttyinfo, converts the symbolical values of the baud rate into numerical values. The show_baud_rate()
function calls cfgetospeed() to extract the baud rate from the structure. The main program is
below.

i n t main ( i n t argc , char ∗ argv [ ] )
{

s t r u c t termios t t y i n f o ;
FILE ∗ fp ;

i f ( ( fp = fopen ( ctermid (NULL) , " r+")) == NULL )
e x i t ( 1 ) ;

i f ( t c g e t a t t r ( f i l e n o ( fp ) , &t t y i n f o ) == −1 ){
pe r ro r ( "Cannot get i n f o about t h i s t e rmina l . " ) ;
e x i t ( 1 ) ;

}

show_baud_rate ( t t y i n f o ) ;
p r i n t f ("\n " ) ;
show_cc_array ( t t y i n f o , cc_values ) ;
p r i n t f ("\n " ) ;
show_flags ( t t y i n f o , input_f lags , output_flags , l o c a l_ f l a g s ) ;
r e turn 0 ;

}

4.4.6 Non-Canonical Terminal Modes

Recall that in canonical mode, the terminal driver assembles input into lines, interpreting various
special characters such as backspace, and then delivering it to the process. Above we noted that in
non-canonical mode, input bu�ering is turned o� and typed characters are delivered immediately to
the reading process. Here we will explore the features of the line discipline that allow us to control
more precisely how many characters are delivered to the process and when they are delivered. We
will use the transpose program for demonstrating this.

When canonical mode is turned o�, the min option to stty controls the minimum number of
characters that must be typed before they are transmitted to the program. For example
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$ stty -icanon min 4

puts the terminal into non-canonical mode and sets the minimum number of characters that must
be typed before anything is transmitted to the program to 4. Try typing the following:

$ stty -icanon min 3; transpose

abczyxdefwvu

^C

Notice that three characters at a time are sent to the program, and that until you type three
characters, none will be sent. This shows that although there is no bu�ering until an EOL is entered,
a read operation is not considered to be complete unless the minimum number of characters is
present in the driver.

Within the termios structure, the MIN member of the c_cc array (c_cc[VMIN]) speci�es the mini-
mum number of bytes before a read() call returns. MIN can be zero or positive. The TIME member
of the c_cc array (c_cc[VTIME]) speci�es the number of tenths of a second that a read() call must
wait for data to arrive. It too can be zero or positive. There are thus four combinations of values
for this pair of variables, each with di�erent semantics. Assume in the following that the call to
read() is

read(STDIN_FILENO, buf, numbytes_to_read);

Case 1. MIN > 0, TIME > 0

The read() call will block (and hence the calling process will block) until it receives
the �rst byte. TIME speci�es an inter-byte timer that is activated only when the �rst
byte is received. In other words, until the user types, the timer is inactive. After each
byte is received, the timer is reset to 0. Once the user starts to type, if the lesser of
numbytes_to_read and MIN bytes are received before the timer expires, read() returns
that many bytes. Remember that the timer is reset after each byte. If the timer expires
before MIN bytes are received, read() returns whatever bytes it received. (At least one
byte is returned if the timer expires, because the timer is not started until the �rst byte
is received.) If data is already available when read() is called, it is as if the data had
been received immediately after the read(). This means that the read() can return
immediately if enough data was in the input queue of the line discipline (inside the
terminal driver).

Case 2. MIN > 0, TIME == 0

The read() does not return until MIN bytes have been received. Setting TIME to zero
means that the timer is turned o�. It is given an in�nite amount of time, in e�ect
and so this can cause a read() to block inde�nitely, waiting for input. The lesser of
numbytes_to_read and MIN bytes are returned to the user process. This means that if
numbytes_to_read < MIN, then read() is not satis�ed until MIN bytes are received, but
it only gives numbytes_to_read to the caller. If numbytes_toread > MIN, then read()

returns when MIN bytes are received and MIN bytes are given to the caller.
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Case 3. MIN == 0, TIME > 0

Unlike Case 1, TIME speci�es a timer that is started when read() is called. It is not
an inter-byte timer. In this case, read() returns when a single byte is received or
when the timer expires. If the timer expires, read() returns 0, otherwise it returns the
number of bytes read. If there are characters in the terminal's input queue before the
read() call is processed, the minimum of the number of characters in the queue and
numbytes_to_read bytes will be delivered to read() immediately, satisfying the call,
and read() will return the number of bytes actually read.

Case 4. MIN == 0, TIME == 0

The minimum of either the number of bytes requested, i.e. numbytes_to_read, or the
number of bytes currently available is returned to the caller without waiting for more
bytes to be input. If no characters are available, read() returns 0, having read no data.
Otherwise the number of bytes actually read is returned. In both cases, read() returns
immediately.

To demonstrate, �rst, in non-canonical mode we will set min = 0 and time = 30. What you will see is
that if a character is typed within 3 seconds ( 30 tenths of a second), it will be delivered immediately,
but if no character is typed within 3 seconds, the read will return with an EOF character. Type some
characters with 3 seconds each and then let 3 seconds elapse. You will see the program terminate.

$ stty -icanon min 0 time 30 ; transpose

You may also discover that your shell terminates. Before you do this, make sure that you set the
IGNOREEOF environment variable so that you do not lose your shell. If you see repeated messages of
the form "Use exit to logout" then turn o� the terminal settings with reset.

Next, test the e�ect of setting min and time to be non-zero. Type the following command sequence:

$ stty -icanon min 4 time 30 ; transpose

Wait at least 3 seconds and notice that nothing happens. The program is waiting for input. There
is no timeout and the read has not returned. Now type a single character and wait several seconds.
You will see its transpose after 3 seconds, demonstrating that the read returned with only 1 character
after a delay of 30 time units. Now type 4 characters and see how quickly the program prints their
transposes. The driver is waiting 3 seconds for the minimum number of characters to be entered;
if they are entered before 3 seconds, it returns, otherwise it returns after 3 seconds with as many
characters as were entered. Kill the process with Ctrl-C and turn canonical mode back on.

These experiments demonstrate that with canonical mode o�, you can control input precisely. So
far we have been using the stty command to control the terminal driver. In a program you can
use tcgetattr() and tcsetattr() instead. The following listing is of a program that allows you
to test the e�ects of various combinations of terminal settings, giving speci�c values to the MIN and
TIME parameters in non-canonical mode.
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L i s t i n g canon_mode_test . c
#inc lude <s td i o . h>
#inc lude <s t d l i b . h>
#inc lude <termios . h>
#inc lude <f c n t l . h>
#inc lude <s t r i n g . h>
#inc lude <uni s td . h>

#de f i n e SLEEPTIME 2

/∗∗
Gets input under the mode s p e c i f i e d by the va lue s o f iscanon , vmin , and
vtime . See the notes or the termios man page f o r the meaning o f the vmin
and vtime parameters .

∗/
void get_response ( i n t iscanon , i n t vmin , i n t vtime ) ;

/∗ Sets the VMIN value to vmin , VTIME to vtime , turns o f f icanon ∗/
void set_non_canonical ( i n t vmin , i n t vtime ) ;

/∗ i f how == 0 th i s saves the termios s t a t e f o r l a t e r r e s t o r i n g ∗/
/∗ i f how == 1 th i s r e s t o r e s the termios s t a t e from the saved s t a t e ∗/
/∗ CANNOT CALL with how == 1 be f o r e f i r s t c a l l i n g with how == 0 ∗/
void tty_mode ( i n t how ) ;

i n t main ( i n t argc , char ∗ argv [ ] )
{

i n t bNoCanon = 1 ; /∗ de f au l t i s non−canon i ca l mode ∗/
i n t vmin = 1 ; /∗ de f au l t i s one char ∗/
i n t vtime = 0 ; /∗ de f au l t i s to f o r c e reads to wait f o r vmin chars ∗/
i n t ch ;
char op t s t r i n g [ ] = " :hcm : t : " ;

whi l e (1 ) {
ch = getopt ( argc , argv , op t s t r i n g ) ;
i f ( −1 == ch )

break ;
switch ( ch ) {
case 'h ' :

p r i n t f ("Usage : %s [−hbc ] [ −m MIN ] [ −t TIME ]\ n" , argv [ 0 ] ) ;
p r i n t f (" −h : he lp \n " ) ;
p r i n t f (" −c : turn on canon i ca l mode\n " ) ;
p r i n t f (" −m : s e t VMIN value \n " ) ;
p r i n t f (" −t : s e t VTIME value \n " ) ;
e x i t ( 0 ) ;

case ' c ' :
bNoCanon = 0 ; /∗ meaning canon i ca l mode i s ON ∗/
break ;

case 'm' :
vmin = s t r t o l ( optarg , ' \ 0 ' , 0 ) ;
break ;

case ' t ' :
vtime = s t r t o l ( optarg , ' \ 0 ' , 0 ) ;
break ;

This work is copyrighted by Stewart Weiss and licensed under the Creative Commons Attribution-
ShareAlike 4.0 International License.

46

http://creativecommons.org/licenses/by-sa/4.0/ 
http://creativecommons.org/licenses/by-sa/4.0/ 


UNIX Lecture Notes
Chapter 4 Control of Disk and Terminal I/O

Prof. Stewart Weiss

case ' ? ' :
break ;

case ' : ' :
break ;

d e f au l t :
f p r i n t f ( s tde r r , " " ) ;

}
}

/∗ Report on s t a t e that we w i l l put te rmina l in ∗/
i f ( bNoCanon )

p r i n t f (" Canonical mode o f f \n " ) ;
e l s e

p r i n t f (" Canonical mode on\n " ) ;

p r i n t f ("VMIN se t to %d\n" , vmin ) ;
p r i n t f ("VTIME se t to %d\n" , vtime ) ;

/∗ save cur rent te rmina l s t a t e ∗/
tty_mode ( 0 ) ;

/∗ i f c anon i ca l mode f l ag , unset icanon ∗/
i f ( bNoCanon )

set_non_canonical ( vmin , vtime ) ;

/∗ c a l l f unc t i on to get input ∗/
get_response ( ! bNoCanon , vmin , vtime ) ;

/∗ r e s t o r e te rmina l s t a t e ∗/
tty_mode ( 1 ) ;

/∗ f l u s h input stream ∗/
t c f l u s h (0 ,TCIFLUSH) ;
re turn 0 ;

}

void get_response ( i n t iscanon , i n t vmin , i n t vtime )
{

i n t num_bytes_read ;
char input [ 1 2 8 ] ;

f f l u s h ( stdout ) ;
s l e e p (SLEEPTIME) ;
i f ( i s canon )

p r i n t f ("About to c a l l read ( ) in canon i ca l mode\n " ) ;
e l s e

p r i n t f ("About to c a l l read ( ) with MIN = %d and TIME = %d\n" ,
vmin , vtime ) ;

p r i n t f (" Enter some cha ra c t e r s or wait to s ee what happens . \ n " ) ;
num_bytes_read = read (0 , input , 10) ;
i f ( num_bytes_read >= 0 ) {

input [ num_bytes_read ] = ' \ 0 ' ;
i f ( num_bytes_read > 0 )
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p r i n t f ("\ nReturn value o f read ( ) i s %d ; chars read are %s \n" ,
num_bytes_read , input ) ;

e l s e
p r i n t f ("\ nReturn value o f read ( ) i s %d ; "

" no chars were read \n" , num_bytes_read ) ;
}
e l s e

p r i n t f (" read ( ) returned −1\n " ) ;
}

void set_non_canonical ( i n t vmin , i n t vtime )
{

s t r u c t termios t t y s t a t e ;

t c g e t a t t r ( 0 , &t t y s t a t e ) ; /∗ read curr . s e t t i n g ∗/
t t y s t a t e . c_ l f l a g &= ~ICANON; /∗ no bu f f e r i n g ∗/
t t y s t a t e . c_cc [VMIN] = vmin ; /∗ get min o f vmin chars ∗/
t t y s t a t e . c_cc [VTIME] = vtime ; /∗ s e t t imeout to vtime ∗/
t c s e t a t t r ( 0 , TCSANOW, &t t y s t a t e ) ; /∗ i n s t a l l s e t t i n g s ∗/

}

void tty_mode ( i n t how)
/∗ i f how == 0 saves the termios s t a t e and fd f l a g s f o r l a t e r r e s t o r i n g ∗/
/∗ i f how == 1 r e s t o r e s the termios s t a t e and fd f l a g s from the saved s t a t e ∗/
/∗ CANNOT CALL with how == 1 be f o r e f i r s t c a l l i n g with how == 0 ∗/
{

s t a t i c s t r u c t termios original_mode ;
s t a t i c i n t o r i g i n a l_ f l a g s = −1;

i f ( 0 == how ){
t c g e t a t t r (0 , &original_mode ) ;
o r i g i n a l_ f l a g s = f c n t l (0 , F_GETFL) ;

}
e l s e {

i f ( −1 == o r i g i n a l_ f l a g s ) {
f p r i n t f ( s tde r r , "tty_mode (1 ) c a l l e d without sav ing f i r s t . \ n " ) ;
e x i t ( 1 ) ;

}
t c s e t a t t r (0 , TCSANOW, &original_mode ) ;
f c n t l ( 0 , F_SETFL, o r i g i n a l_ f l a g s ) ;

}
}

Before we leave this topic, let us see what happens when we disable the ability to process signals
from the terminal. When you type a Ctrl-C at the keyboard, you usually do so to kill the foreground
process. Why does this happen? The answer is a bit deeper than we explain here, but the general
idea is that the Ctrl-C is mapped by the terminal driver to a signal named SIGINT, and that signal is
delivered to the foreground process. This usually results in its being terminated. A similar sequence
takes place when you type other keyboard signals, such as Ctrl-\ and Ctrl-Z. These do not result
in the same signals, but they are delivered to the process nonetheless.

The terminal is aware of three special control characters, known as the interrupt, quit, and suspend
characters, usually Ctrl-C, Ctrl-\, and Ctrl-Z respectively. The isig switch to stty enables
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detection and transmission of these characters. We will experiment with this idea. Have a second
terminal window open before you start this. Make sure you restore the terminal to canonical mode
and type the following:

$ stty -isig ; transpose

You can now type a line of characters and transpose will correctly transpose them. But try to
terminate the program with Ctrl-C and you will be disappointed. Nor can you cannot stop it with
Ctrl-Z or Ctrl-\. The terminal will not interpret these character codes as signals. Now you will
have to issue a kill -9 to terminate the transpose process in the other terminal window. You can
use pkill to do this; for example:

$ pkill -9 transpose

You can remap other characters to these special characters using the terminal driver. It is a good
exercise to try.

4.4.7 Other Terminal Processing Modes

There are a large number of possible combinations of terminal settings that make the terminal
behave somewhere between the extremes of canonical mode and raw mode, in which most, but not
all processing is turned o�. For example, the driver can bu�er characters but not allow editing. It
can bu�er characters, allow editing, but not echo anything. Most of these other modes are nameless.
Raw mode was the name of a mode de�ned in Version 7 UNIX, as was cbreak mode. Programs that
need complete control of their windows or the screen operate in raw mode usually, since they have
to turn o� all processing and do it on their own.

Regardless of the input mode of the terminal, the terminal driver must manage �ow control of
output. A process will typically generate characters faster than the hardware can display them.
The driver has to block the process when the bu�ers are full.

4.5 I/O Control Using ioctl

The fcntl() call accesses disk driver attributes and the tcgetattr() call accesses terminal driver
attributes. UNIX provides a more general-purpose device-control system call, ioctl(), which can
be used to access and control any I/O device for which the manufacturer has provided a device
driver. Although most operations on devices can be achieved with the previously described system
calls, most devices also have some device-speci�c operations that do not �t into the general model,
such as

• changing the character font used on a terminal,

• telling a magnetic tape system to rewind or fast forward14,

• ejecting a disk from a drive,

14Since tapes do not move in byte increments, lseek() cannot do this.
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• playing an audio track from a CD-ROM drive, and

• maintaining routing tables for a network.

The ioctl() function was designed to overcome these problems. It was �rst introduced in Version
7 AT&T UNIX as a general purpose I/O control program, to allow user level programs to access
device drivers, hidden within the depths of the kernel. As time went on, more and more devices were
handled through ioctl() calls. However, POSIX separated out the terminal control functions into
the termios structure and functions, and for the most part, the ioctl() function is used today for
accessing other devices. POSIX does not de�ne ioctl(), but GNU includes the ioctl() function
in its distribution of the C Standard Library.

The various device operations, known as IOCTLs, are assigned code numbers and multiplexed
through the ioctl() function, which is de�ned in <sys/ioctl.h>. The code numbers themselves
are de�ned in many di�erent headers.

The ioctl() system call is given a �le descriptor of a device �le, and an IOCTL, which is an integer
that represents a particular request that ioctl() should execute. If the request requires arguments,
these are included after the command number. The man page begins as follows:

NAME
i o c t l − c on t r o l dev i c e

SYNOPSIS
#inc lude <sys / i o c t l . h>
in t i o c t l ( i n t f i l d e s , i n t request , /∗ arg ∗/ . . . ) ;

DESCRIPTION
The i o c t l ( ) f unc t i on manipulates the under ly ing dev i ce
parameters o f s p e c i a l f i l e s . In pa r t i c u l a r , many operat ing
c h a r a c t e r i s t i c s o f cha rac t e r s p e c i a l f i l e s ( e . g . , t e rm ina l s )
may be c on t r o l l e d with i o c t l ( ) r eque s t s . The argument d
must be an open f i l e d e s c r i p t o r .

The second argument i s a device−dependent r eque s t code . The
th i rd argument i s an untyped po in t e r to memory . . . .

There are over 400 di�erent request types, each de�ned by a di�erent mnemonic code. The
ioctl_list man page contains the list of valid request mnemonics that can be passed to ioctl()

together with their argument types. Each device driver can de�ne its own set of ioctl commands.
The system, however, provides generic ioctl commands for di�erent classes of devices. Generally
speaking, the commands for the di�erent classes have a pre�x that identi�es the type of com-
mand. For example, the magnetic tape commands are of the form MTIOxxx and can be found in
<sys/mtio.h>, and the terminal I/O commands are of the form TIOxxx.

A simple example of an ioctl() is the call to retrieve the size of a terminal window. Terminal
window sizes are de�ned by the winsize structure in the <ioctl-types.h> header �le, which is
included in <sys/ioctl.h>. The winsize structure looks like:
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s t r u c t w in s i z e
{

unsigned shor t i n t ws_row ;
unsigned shor t i n t ws_col ;
unsigned shor t i n t ws_xpixel ;
unsigned shor t i n t ws_ypixel ;

} ;

The pixel width and height are not normally assigned values by the kernel, but the rows and
columns �elds are. Therefore, we can obtain the rows and columns with a simple program such as
the following.

#inc lude <termios . h>
#inc lude <s td i o . h>
#inc lude <s t d l i b . h>
#inc lude <uni s td . h>
#i f n d e f TIOCGWINSZ
#inc lude <sys / i o c t l . h>
#end i f

void get_wins ize ( i n t fd ,
unsigned shor t ∗rows ,
unsigned shor t ∗ c o l s )

{
s t r u c t w in s i z e s i z e ;

i f ( i o c t l ( fd , TIOCGWINSZ, &s i z e ) < 0) {
pe r ro r ("TIOCGWINSZ e r r o r " ) ;
r e turn ;

}
∗ rows = s i z e . ws_row ;
∗ c o l s = s i z e . ws_col ;

}

i n t main ( i n t argc , char ∗ argv [ ] )
{

unsigned shor t i n t rows , c o l s ;

i f ( i s a t t y (STDIN_FILENO) == 0) {
f p r i n t f ( s tde r r , "Not a te rmina l \n " ) ;
e x i t ( 1 ) ;

}
get_wins ize (STDIN_FILENO, &rows , &c o l s ) ;
i f ( rows > 0 )

p r i n t f ("%d rows , %d columns\n" , rows , c o l s ) ;
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r e turn 0 ;
}

In general, one should try to avoid the use of ioctl() if there is an alternative means of performing
the same task, as it is not completely portable. There are many IOCTLs for which alternative
functions exist. For example, there are IOCTLS for the terminal interface. The tty_ioctl manpage
has a complete list of them. Some have equivalents and others do not:

IOCTL argument equivalent to

TCGETS struct termios *argp tcgetattr(fd, argp)

TCSETS const struct termios *argp tcsetattr(fd, TCSANOW, argp)

TCSETSW const struct termios *argp tcsetattr(fd, TCSADRAIN, argp)

TCSETSF const struct termios *argp tcsetattr(fd, TCSAFLUSH, argp)

TCSBRK int arg tcsendbreak(fd, arg)

TIOCINQ int *argp none - counts bytes in the input bu�er
TIOCOUTQ int *argp none - counts bytes in output bu�er
TCFLSH int arg tcflush(fd, arg).

TIOCSTI char *argp none � inserts *argp into input queue

We could rewrite the setecho program to use these IOCTLs instead of using tcgetattr() and
tcsetattr(), simply as an exercise. It is displayed in the listing that follows.

L i s t i n g s e t e cho_ io c t l . c

i n t main ( i n t argc , char ∗argv [ ] )
{

s t r u c t termios i n f o ;
FILE ∗ fp ;

i f ( argc < 2 ) {
p r i n t f (" usage : %s [ y | n ] \ n" , argv [ 0 ] ) ;
e x i t ( 1 ) ;

}

i f ( ( fp = fopen ( ctermid (NULL) , " r+")) == NULL)
return ( 1 ) ;

/∗ r e t r i e v e termios s t r u c t ∗/
i f ( i o c t l ( f i l e n o ( fp ) , TCGETS, &i n f o ) == −1 )

d i e (" i o c t l " , " 1" ) ;

/∗ I f second argument s t a r t s with 'y ' i t i s yes , echo on otherwi se o f f ∗/
i f ( ' y ' == argv [ 1 ] [ 0 ] )

i n f o . c_ l f l a g |= ECHO ;
e l s e

i n f o . c_ l f l a g &= ~ECHO ;

/∗ r ep l a c e termios with the modi f i ed copy ∗/
i f ( i o c t l ( f i l e n o ( fp ) ,TCSETS, &i n f o ) == −1 )

d i e (" i o c t l " , " 2" ) ;
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re turn 0 ;
}

Another use of ioctl() is to manipulate the terminal input queue. One can use the TIOCSTI

IOCTL to insert bytes into a terminal input queue. The following listing demonstrates how one can
insert bytes into the input queue of a pseudoterminal.

It repeatedly inserts a single 'x' into the terminal input queue of the controlling terminal of the
process, BUFFERSIZE-1 times, after which it inserts a newline so that if the terminal is in canonical
mode, a call to read() will deliver the characters. It then removes the characters from the queue
by entering a loop that reads a single character at a time. To allow a second program to be run to
watch the queue size, it sleeps a bit before starting to read from the terminal.

During the read loop, it sleeps enough time so that the second program can watch the queue size
diminish. Without this bit of delay between each read, the watching program would not see the
queue decrease by one character at a time, but would just see it go straight to zero. When it is
�nished reading, it writes it to the standard output.

L i s t i n g i o c t l 2 . c
#inc lude <uni s td . h>
#inc lude <sys / i o c t l . h>
#inc lude <uni s td . h>
#inc lude <sys / i o c t l . h>
#inc lude <s td i o . h>

#de f i n e BUFFERSIZE 30
i n t main ( )
{

i n t i ;
char ch = 'x ' ;
char newl ine = '\n ' ;
char buf [BUFFERSIZE ] ;

/∗ I n s e r t BUFFERSIZE−1 'x ' s i n to the te rmina l input queue ∗/
f o r ( i = 0 ; i < BUFFERSIZE−1; i++ )

i o c t l (0 , TIOCSTI , &ch ) ;

/∗ Because we assume canon i ca l mode i s on , we put a newl ine the re
so that when the read i s i s sued , the cha ra c t e r s w i l l be
t ransmit ted ∗/

i o c t l (0 ,TIOCSTI , &newl ine ) ;

/∗ Delay to a l low queue−read ing demo to s t a r t up ∗/
s l e e p ( 1 0 ) ;

/∗ Read the queue one char at a time ∗/
i = 0 ;
whi l e ( read (0 , &ch , 1) > 0 ) {

buf [ i ] = ch ;
i++;
i f ( ch == '\n ' ) /∗ to e x i t loop ∗/

break ;
/∗ Delay a b i t so other program can see queue s i z e drop ∗/
us l e ep (100000 ) ;
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}

/∗ Write the bu f f e r contents to the te rmina l ∗/
wr i t e (1 , &buf , i ) ;
r e turn 0 ;

}

The last demo program shows how the TIOCINQ IOCTL can be used to query the size of the input
queue. It opens the terminal device �le speci�ed on the command line, and then enters a loop of
�xed duration in which it uses the ioctl() function to query the size of that terminal's input queue.
It writes the size of the queue into a �le named queue_log in the current working directory.

L i s t i n g i o c t l 3 . c
#inc lude <s td i o . h>
#inc lude <uni s td . h>
#inc lude <s t d l i b . h>
#inc lude <termios . h>
#inc lude <f c n t l . h>
#inc lude <sys / i o c t l . h>
#inc lude " u t i l s . h"

i n t main ( i n t argc , char ∗ argv [ ] )
{

FILE ∗ fp ;
i n t count , i ;
i n t fd ;

/∗ Try to open given te rmina l dev i c e f i l e ∗/
i f ( ( fd = open ( argv [ 1 ] , O_RDONLY)) == −1)

d i e (" open " , argv [ 1 ] ) ;

/∗ Open queue log in cur rent working d i r e c t o r y ∗/
i f ( ( fp = fopen (" queue_log " , "w") ) == NULL) {

p r i n t f ("Could not open queue_log\n " ) ;
e x i t ( 1 ) ;

}

/∗ For a f i x ed amount o f time ( f o r s imp l i c i t y ) count queue s i z e ∗/
f o r ( i = 0 ; i < 400 ; i++ ) {

i f ( i o c t l ( fd , TIOCINQ, &count ) == −1 )
d i e ( " i o c t l " , "TIOCINQ" ) ;

f p r i n t f ( fp , "%d chars in queue\n" , count ) ;
/∗ delay to see changes ∗/
us l e ep (100000 ) ;

}

f c l o s e ( fp ) ;
r e turn 0 ;

}
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If you start up ioctl2 and note which terminal it is in, and then start ioctl3 in a di�erent terminal,
specifying the �rst terminal as its argument, when ioctl3 terminates, look at the contents of
queue_log and you will see the queue size diminish with each read.

One could write a program that kept track of the input queue size of all open terminals, with root
privilege, for administrative purposes, using this idea.

4.6 Summary

A process's connnection to a �le is encapsulated in a data structure maintained by the kernel,
invariably called something like a �le structure or a �le entry. That structure contains �ags that
determine how the I/O is performed. A process can set various �ags when it �rst opens the �le,
using the open() system call, and it can modify various �ags using the fcntl() system call.

Terminals and pseudo-terminals are represented by device �les, and as such, fcntl() can also be
used to modify a process's connection to them ,but in addition, there is an API for altering the
characteristics of terminals directly. This chapter explored the ways in which a process could control
the terminal characteristics, both by altering them directly and by altering the process's connection
to terminals. It also showed how the non-POSIX ioctl() function could be used for controlling
terminals and other devices.
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Chapter 5 Interactive Programs and Signals

Concepts Covered

Software tools, daemons,

interactive programs

non-blocking reads, signals,

signal, sigaction, kill, �ush, raise

sigemptyset, sig�llset, sigaddset,

sigdelset,sigprocmask, sleep

5.1 The Di�erent Types of UNIX Programs

Programs that run in a UNIX environment can be classi�ed by their relationship to terminal devices
and by their input/output streams. They generally fall into one of three categories: software tools,
daemons, and interactive user programs.

5.1.1 Software Tools (Filters)

A software tool is a program that

• receives its input from either

� one or more �les given as command-line arguments, or

� from standard input if no �lename arguments are present,

• expects its input to be an unstructured stream of bytes, almost always treated as plain text,
and

• puts its output, which is also a stream of bytes, usually plain text, on standard output.

Because software tools can read from standard input and write to standard output, they can be
connected via shell pipes to form pipelines, like factory assembly lines. UNIX has many software
tools, including awk, cat, cut, du, fold, grep, od, sed, sort, tr, and uniq.

5.1.2 Daemons

Another class of programs are device drivers, which are not even attached to a terminal. A program
that is not attached to a terminal is called a daemon in UNIX. A commonly used, but inaccurate,
de�nition of a daemon is that it is a "background" process. To be precise, it is a process that
executes without an associated terminal or login shell, waiting for an event to occur. The event
might be a user request for a service such as printing or connecting to the Internet, or a clock tick
indicating that it is time to run. The word "daemon" is from Greek mythology, and refers to a lesser
god who did helpful tasks for the people he or she protected. Daemons are like these lesser gods;
they are created at boot time, and exist, in hiding, ready to provide services when called upon.
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Because daemons must not be connected to a terminal, one of their �rst tasks is to close all open �le
descriptors (in particular, standard input, standard output and standard error). They usually make
their working directory the root of the �le system. They then take additional steps to break their
association with any shell or terminal, among which are leaving their process group and registering
their intent to ignore all incoming signals. The concept of process groups will be discussed in
Chapter 8. Signals are covered later in this chapter.

Daemon process names typically end in 'd'. This is one way to identify a daemon process in the
output of the ps -ef command; �nd the names ending in "d" as in ftpd, httpd, lpd, sshd, syslogd,
and telnetd. Daemons will be covered thoroughly in Chapter 8.

5.1.3 Interactive User Programs

Another category of programs are those that are tied to the user terminal in an inextricable way,
because they customize the terminal for their own use. Programs that interact with the user through
the terminal, such as text editors (vi, nano, or emacs), pagers (more and less), terminal-based
administrative tools such as top, games (snake, worm, and chess), and terminal-based mail clients
(pine and mailx), are tightly coupled to the terminal and must control its settings and attributes.
They cannot use the standard input and output streams for communicating with the user because
these lack the types of controls that a terminal has. These types of programs usually need to control

• whether or not characters are echoed,

• the number of characters that are bu�ered, if any,

• the movement of the cursor on the screen,

• whether certain key presses should have their default meaning or have application-de�ned
meaning,

• whether timeouts should occur on input,

• whether signals such as Ctrl-C should be ignored, queued, or handled immediately.

We already saw how to control the state of the terminal using stty at the command level and
the tcgetattr() and tcsetattr() functions at the programming level. Here we will explore the
various modes into which we can put the terminal for the bene�t of creating interactive programs.

5.2 Designing Interactive User Programs

Most interactive user programs are event-driven or menu-driven, which means that they perform
some short task and then wait for user input to do the next task. All window-based applications are
event-driven; they are idle, often blocked on input, while they wait for mouse, keyboard, or other
events to be delivered to them by the window manager.

Here we go through the steps that are necessary to design and develop an interactive, terminal-based
application. We will begin by understanding the problem, and then we will go through successive
stages of making a program more and more responsive to user inputs.

This work is copyrighted by Stewart Weiss and licensed under the Creative Commons Attribution-

ShareAlike 4.0 International License.
2

http://creativecommons.org/licenses/by-sa/4.0/ 
http://creativecommons.org/licenses/by-sa/4.0/ 


UNIX Lecture Notes

Chapter 5 Interactive Programs and Signals

Prof. Stewart Weiss

5.2.1 Two Di�erent Paradigms

Consider the kind of terminal-based program in which the program repeatedly prompts the user
for input and takes an action accordingly. One of the user responses such programs expect is some
type of quit signal, which typically breaks the loop and ends the program. This can be modeled by
a control structure such as the following:

whi l e ( t rue ) {
prompt the user to do something
wait f o r the user to respond
i f user ' s r e sponse i s to qu i t

break the loop and qu i t
handle the re sponse

}

The input part of this loop usually results in the process's being blocked on input, but it does not
have to be designed this way. It might look like

whi l e ( t rue ) {
prompt the user to do something
i f the user responded

handle the re sponse
otherw i s e

do other th ing s
}

In this paradigm, the program checks whether there is input and if there is, it responds to it, and
if not, it does something else. This approach requires the ability to check if there is input without
blocking while waiting for it. In short, it requires a type of input operation known as non-blocking
input, which will be discussed below.

Regardless of which input method is used, programs such as video games, ATM machines, and
text editors respond immediately to user key presses, rather than waiting for the Enter key to be
pressed. They run in non-canonical mode, so they do not bu�er input characters. Usually, they do
not echo the input characters when these characters behave like function keys1. Also, they usually
ignore illegal key presses. Thus, one task in designing interactive programs is to determine how to
control the state of the terminal in this way.

But this is not enough. There is a big di�erence between a video game and a text editor, having to
do with their relationship to time. We can distinguish between two kinds of interactive programs:
those whose state is independent of time, and those whose state depends upon time. Any program
that animates, in any way, is time-dependent; its state changes as a function of time. Programs
that terminate or advance to a di�erent state if the user does not respond within a certain amount
of time are also time-dependent, because their state changes as a function of time. Video games are
time-dependent. In contrast, a text editor is usually time-independent; it has no time-outs and no
animation of any kind.

Programming with time is more complex than programming in a time-independent way because it
requires knowledge of several di�erent parts of the kernel API. Before we tackle this problem, we
will explore a simpler one, namely how to write a text editor.

1Think about vi for example, and how it behaves in Command mode; you type a 'j' and it moves the cursor

without displaying the letter, or more, when you type a space character and it advances a screen's worth of lines.
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5.2.2 A Simple Text Editor: simplevi

The vi text editor is a very complicated piece of software, but we can create an extremely stripped-
down version of it and still learn quite a bit in the process. We will call our editor simplevi.
This simple editor will allow the user to insert characters anywhere in a text document, but it will
not provide a means of deleting characters. This is just a minor extension to the program. Also,
it will not open an existing text �le, but will instead creating a new �le each time it is invoked.
Adding a feature to open a �le does not provide much more insight into the interactive design of
the program, but it does make the program larger. As much as possible, the features that simplevi
does implement will have the same semantics as those in vi.

5.2.2.1 Features of simplevi

The simplevi program allows a user to create a �le in a manner similar to vi. It has only an insert
command and does not presently support deletion. Like vi, it is always in exactly one of three
possible modes:

• input mode

• command mode, and

• last_line mode

Each mode is now described brie�y.

Command Mode The initial mode is command mode. In command_mode one can enter the
following keystrokes/commands:

Key Semantics

i changes to input mode.

: changes to lastline mode.

h, backspace, or
left-arrow key

moves left until the �rst character in the text line. If a line wraps, it
follows the wrapped text backwards.

l, spacebar, or
right-arrow key

moves right until the last character in the text line. If a line wraps, it
follows the wrapped text backwards.

k or up-arrow key moves to the text line above, to the same position relative to the start
of the text line, unless that text line is shorter than the current one, in
which case it is placed at the end of the text line. Scrolling takes place
as necessary.

j or down-arrow
key

moves to the next text line below, using the same rule as for the up
arrow when deciding the horizontal position. Scrolling takes place as
necessary.

Ctrl-D Does nothing except display the message that it was pressed.

Ctrl-C Does nothing except display the message that it was pressed.

Ctrl-H Can be used to display a help screen, but at present just shows a
one-line text message.
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Notes

• Navigation keys use rules similar, but not identical, to vi's rules. The only di�erence is that
vi remembers the last horizontal movement, and when a vertical movement is indicated, the
cursor moves to the position in the new text line that is the same as the last remembered
horizontal movement.

• Because there is only an insert operation, and not an append operation, the cursor is allowed
to be one position to the right of the rightmost character in a line.

Lastline Mode The user can quit the editor in lastline mode, and/or save the current bu�er
contents. The allowed commands are a subset of the commands possible in vi, but the syntax
mimics vi. Speci�cally, in lastline mode one can enter:

w �lename to save the bu�er to a �le named �lename

wq �lename to save the bu�er to a �le named �lename and quit after

q to quit without saving. It does not warn that the bu�er is not saved.

Any amount of white space is allowed before the command and between the command and the
�lename. Any characters other than these generate an error message and terminate lastline mode.

Filenames can be any combination of alphanumeric characters and underscores. Punctuation and
whitespace are not allowed. Typing a command such as

: w q

creates a �le named 'q', as would happen in vi.

Letting S denote a space character, F denote a valid �lename character, parentheses for grouping,
and | for alternation, the language of acceptable newline-terminated strings in lastline mode is

S *(w|wS *q)SS *FF *S * | S *qS *

Input Mode There is only an insert operation, which inserts at the cursor position. The
backspace is not implemented. Typing a backspace has no e�ect. Typing characters other than
graphical characters (those found on the keyboard) has unspeci�ed behavior. Graphical characters
are inserted to the left of the cursor. Lines wrap as necessary, and the screen scrolls as needed as
well.

5.2.2.2 Program Design

It would be much easier to write this program if we used the NCurses library, but as we have not yet
covered the NCurses API, we will do it the hard way, the way it was done before NCurses existed.
This will give you an appreciation of NCurses when we cover it in the next chapter. Here, we will
use the ANSI escape sequences that we covered in Chapter 1.

The design challenge in writing this simple text editor is synchronizing the three major objects that
the program must manage:
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• a behind-the-scenes text bu�er,

• the visible screen, and

• the cursor.

The Bu�er Object The text that the user types must be stored in a bu�er of some kind. There
are many possible ways to organize this bu�er, with time-space trade-o�s associated to each. A
reasonable solution would be to create an array of pointers to the individual lines of the bu�er, each
of which would be a dynamically allocated �xed-size array. The array of pointers could be replaced
by a doubly-linked list of pointers with added programming complexity. The arrays holding the
lines of text could be started smaller and reallocated to larger sizes as the lines grow in size. These
details are not important to us now, as performance is less of a concern than understanding the
principles. Therefore, we take an even simpler approach: the text bu�er is just a large linear array
of characters.

Because vi is a line-oriented editor and cursor movement follows text lines, it is convenient for the
text bu�er to keep track of the starts of each line as well as its length, as well as the number of lines
and the line in which the cursor is currently located and the cursor's o�set from the beginning of
that line. It will also be convenient for the bu�er to store the cursor's position as the o�set from
the beginning of the linear array itself. Thus there is some redundancy in the representation, and
the bu�er object must have functions to synchronize all members. The bu�er object is de�ned as
follows:

typedef struct _buffer

{

char text[BUFSIZ];

int line_len[MAXLINES]; /* lengths of text lines, including newline

characters */

int line_start[MAXLINES]; /* starts of each line */

int num_lines; /* number of text lines in buffer. This

includes lines that have not yet been

terminated with a newline character. It is

the number of newline characters + 1 if the

last character in the buffer is not a

newline. */

int index; /* index of cursor in text buffer */

int size; /* total chars in buffer */

int cur_line; /* current text line, not screen line */

int index_in_cur_line; /* index in current line of cursor */

} Buffer;

The BUFSIZ constant is a system constant, and MAXLINES is de�ned in the application header �le.

The Window Object The window is a display object. The program needs to �nd its dimensions
on start up and store them in the window object. Because the bu�er contents may be larger than
can �t in the window, at any given time, there is a set of text lines that is visible in the window,
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and this is a subsequence of the lines in the bu�er. The smallest index of this sequence is stored as a
member of the window to facilitate redrawing the bu�er during scrolling operations and insertions.
The last line index is recalculated rather than storing it. It could also be stored to save running
time. Finally, because the erase character is a terminal setting, its value is stored within the window
object (a window is really a terminal), and will be determined at program startup by querying the
terminal driver. The window object is de�ned by

typedef struct _window

{

unsigned short rows;

unsigned short cols;

int line_at_top;

char erase_char;

} Window;

The window is divided into two regions: the line at the bottom of the screen and everything above
it. The bottom line is reserved by the application for writing status messages and for lastline mode,
which is explained below. The text is never allowed to be written onto the window's last line.

The Cursor The cursor is simple: it is a structure with a row and column index, representing a
position in a two-dimensional array whose upper-left corner is position (0,0). The cursor is de�ned
by

typedef struct _cursor

{

int r;

int c;

} Cursor;

Although the cursor position is in zero-based two-dimensional coordinates, the ANSI escape se-
quences use a 1-based set of coordinates: the upper-left corner of the screen is (1,1). Therefore, the
cursor functions must account for this di�erence. For example, the function to move the cursor to
a new row and column position is

void moveto ( i n t l i n e , i n t column )
{

char seq_str [ 2 0 ] ;

s p r i n t f ( seq_str , "\033[%d;%dH" , l i n e +1, column+1);
wr i t e (1 , seq_str , s t r l e n ( seq_str ) ) ;

}

Some of the cursor functions are relatively simple. When simplevi is in input mode and a character
is typed on the keyboard, three things must happen:

• the character must be inserted into the text bu�er;
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• the cursor must be advanced to the next insertion point (because echo is controlled by the
application, not by the terminal driver), and

• the window must be redrawn to account for the inserted character.

The function to advance the cursor is in the listing below.

Listing 5.1: advance_cursor

void advance_cursor ( Cursor ∗ cursor , Window win , char ch )
{

i f ( ch == '\n ' ) {
cursor−>r++;
cursor−>c = 0 ;

}
e l s e {

cursor−>c++;
i f ( cursor−>c == win . c o l s ) { /∗ wrap the l i n e ∗/

cursor−>c = 0 ;
cursor−>r++;

}
}

}

The function checks which character was typed. If a newline, it advances the cursor to the next line
at column 0, and if not, it checks whether it has to account for wrapping the line: if the cursor is
at the right margin, it also advances to the next line, column 0.

Inserting a Character When the program is in input mode and the use enters a character to
be inserted into the bu�er, four actions must be taken:

1. physically inserting the character into the bu�er, provided no over�ow occurs,

2. advancing the cursor to the next logical position in the window,

3. redrawing the bu�er contents to the screen, which may cause the cursor's logical position to
change, and

4. physically moving the cursor to the �nal screen position.

The �rst step is implemented by the insert() function in Listing 5.2 below.

Listing 5.2: insert()

i n t i n s e r t ( Buf f e r ∗buf , Window win , char c )
{

i n t i ;

i f ( ( c == '\n ' ) && ( MAXLINES == buf−>num_lines ) )
re turn OUT_OF_LINES;

e l s e i f ( buf−>s i z e == BUFSIZ )
re turn OUT_OF_MEM;
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i f ( c == win . erase_char ) {
/∗ Not implemented −− j u s t i gno re i t ∗/
return UNHANDLEDCHAR;

}

f o r ( i = buf−>s i z e ; i > buf−>index ; i−− )
buf−>text [ i ] = buf−>text [ i −1] ;

buf−>text [ buf−>index ] = c ;
buf−>s i z e++;
buf−>index++;
buf−>l ine_len [ buf−>cur_l ine ]++;

/∗ the f i r s t cha rac t e r s e t s l i n e count to 1 ∗/
i f ( buf−>s i z e == 1 ) buf−>num_lines++;

i f ( c == '\n ' ) {
/∗ Save the l ength o f the l i n e being s p l i t by the newl ine ∗/
i n t temp = buf−>l ine_len [ buf−>cur_l ine ] ;

/∗ The new length o f cur rent l i n e i s the cur rent index po s i t i o n + 1 . ∗/
buf−>l ine_len [ buf−>cur_l ine ] = buf−>index_in_cur_line + 1 ;

/∗ I n c r e a s e number o f l i n e s ∗/
buf−>num_lines++;

/∗ Sh i f t a l l l i n e s t a r t s and l eng th s upwards in the array , but
add 1 to the l i n e s t a r t s s i n c e they are 1 charac t e r f u r t h e r
than be f o r e because o f the new newl ine . Do t h i s from the l a s t l i n e
down to cur_l ine+1, which i s the l i n e j u s t a f t e r the s p l i t
l i n e . ∗/

f o r ( i = buf−>num_lines−1; i > buf−>cur_l ine+1; i−− ) {
buf−>l ine_len [ i ] = buf−>l ine_len [ i −1] ;
buf−>l i n e_s t a r t [ i ] = buf−>l i n e_s t a r t [ i −1]+1;

}
/∗ Set the s t a r t o f the new l i n e c reated here . I t i s the sum of the

s t a r t o f cur_l ine p lus the l ength o f cur_l ine . ∗/
buf−>l i n e_s t a r t [ buf−>cur_l ine+1] = buf−>l i n e_s t a r t [ buf−>cur_l ine ]

+ buf−>l ine_len [ buf−>cur_l ine ] ;

/∗ advance to new l i n e ∗/
buf−>cur_l ine++;
/∗ The length o f the newly c reated l i n e i s the number

o f cha ra c t e r s that were to the r i gh t o f the cur rent
index po s i t i o n . ∗/

buf−>l ine_len [ buf−>cur_l ine ] = temp − buf−>l ine_len [ buf−>cur_line −1] ;
buf−>index_in_cur_line = 0 ;

}
e l s e i f ( i s p r i n t ( c ) ) { /∗ non−newl ine cha rac t e r ∗/

buf−>index_in_cur_line++; // advance index in l i n e
/∗ increment a l l l i n e s t a r t s a f t e r t h i s l i n e ∗/
f o r ( i = buf−>cur_l ine+1; i < buf−>num_lines ; i++ )

buf−>l i n e_s t a r t [ i ]++;
}
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e l s e
re turn UNHANDLEDCHAR;

return 0 ;
}

Skipping some of the details, this function basically shifts all characters upwards in the bu�er and
adjusts the starts of lines for all lines after the current line. It inserts the new character at the index
position, increments the bu�er size, the index position, and the length of the current line. It has to
determine whether the inserted character is a newline character. If so, it has to split the line and
adjust the line starts and line lengths arrays. If not, it checks if it is a printable character, and if
so, adjusts the index in the current line and line starts accordingly.

The second step, advancing the cursor, is shown in Listing 5.1. The third step, redrawing the bu�er,
is handled by the redraw_buffer() function, which is found in Listing 5.3 below.

Listing 5.3: redraw_bu�er()

void redraw_buffer ( Buf f e r bu f f e r , Window ∗win , Cursor ∗ curs )
{

i n t i ;
i n t l a s t l i n e ;
i n t l a s t c h a r ;
i n t f i r s t c h a r ;
i n t l ine_of_cursor ;

/∗ I f the cur rent p o s i t i o n in the bu f f e r , bu f f e r . index , i s not with in the
v i s i b l e l i n e s o f the window , the window must be s h i f t e d . The s h i f t might
be up or down , depending on whether index i s above or below the window .

We f i r s t need to get the number o f the l i n e conta in ing pos . Then we
check whether that l i n e i s between win . l ine_at_top and l a s t l i n e .
We need to c a l c u l a t e the d i f f e r e n c e and s h i f t win . l ine_at_top that
d i f f e r e n c e , and r e c a l c u l a t e l a s t l i n e , a f t e r which we can draw the
bu f f e r . ∗/

/∗ Compute the l a s t v i s i b l e complete t ex t l i n e in the bu f f e r ∗/
get_last l ine_in_win ( bu f f e r , ∗win , &l a s t l i n e ) ;

/∗ Get the index o f the text l i n e conta in ing the i n s e r t i o n po s i t i o n ∗/
l ine_of_cursor = l ine_in_buf f e r ( bu f f e r , ∗win , bu f f e r . index ) ;

/∗ Check i f the window needs to be s c r o l l e d ∗/
i f ( l ine_of_cursor < win−>line_at_top ) {

l a s t l i n e −= (win−>line_at_top − l ine_of_cursor ) ;
curs−>r += (win−>line_at_top − l ine_of_cursor ) ;
win−>line_at_top = l ine_of_cursor ;

}
e l s e i f ( l ine_of_cursor > l a s t l i n e ) {

win−>line_at_top += ( l ine_of_cursor − l a s t l i n e ) ;
curs−>r −= ( l ine_of_cursor − l a s t l i n e ) ;
l a s t l i n e = l ine_of_cursor ;

}

/∗ Get the f i r s t and l a s t cha ra c t e r s o f the v i s i b l e s c r e en . The l a s t c h a r
i s the index o f the l a s t cha rac t e r that can appear in the
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window −− the l a s t cha rac t e r in the l a s t v i s i b l e l i n e . The f i r s t char
i s the s t a r t o f the l i n e at the top o f the s c r e en . ∗/

l a s t c h a r = bu f f e r . l i n e_s t a r t [ l a s t l i n e ] + bu f f e r . l i n e_len [ l a s t l i n e ] ;
f i r s t c h a r = bu f f e r . l i n e_s t a r t [ win−>line_at_top ] ;

/∗ Prepare to redraw the window . F i r s t c l e a r the s c r e en . ∗/
wr i t e (1 ,CLEAR_SCREEN, lCLEAR_SCREEN) ;

/∗ Do the redraw ∗/
moveto ( 0 , 0 ) ;
f o r ( i = f i r s t c h a r ; i < l a s t c h a r ; i++ )

wr i t e (1 ,& bu f f e r . t ex t [ i ] , 1 ) ;
}

The redraw_buffer() function could be more e�cient. It is written for clarity. The problem is
that the line containing the insertion might have grown long enough that it wrapped and part of
it is no longer in the visible region of the window. It could also be that the inserted character is
outside of the visible region because the cursor was at the right margin and the new character is in
the next row of the screen. In these cases, the entire window must be redrawn because the starting
line and ending line have changed. In other cases it is not necessary to redraw the entire window,
but for simplicity, the entire window is always redrawn.

Redrawing the bu�er requires determining whether the current line and the index of the cursor in
that line are outside of the visible region. This is accomplished in a few steps:

1. getting the index of the last visible line in the window,

2. getting the index of the text line containing the insertion position,

3. comparing the line of the insertion point to the top line and last line computed above, and if
out of bounds, resetting the line at the top of the window so that the insertion point is visible,

4. calculating the �rst and last characters of the bu�er that delimit the visible characters in the
window, and

5. moving to the upper left corner and redrawing all characters from the �rst to the last.

Cursor Movement One of the primary challenges in managing the cursor is that, at any given
time, the program must be able to map the cursor position to a position in the text bu�er, and vice
versa.

The program will always make sure that it knows the current line and the current index in the line
as the cursor moves around on the screen. In fact, the cursor movement operations will actually
update these variables, and from those recalculate the cursor position. This needs explanation. Text
lines may be longer than the screen width. When this happens, they wrap onto two or more lines.
In vi, when the cursor is moved upward or downward, it �jumps� over the wrapped lines. In other
words, it moves from one text line to another, not from one screen row to another. Our simplevi
program emulates this behavior. Therefore, when the user presses an arrow key up or down, it will
move to the preceding or following text line. To make this possible, it will increment or decrement
the cur_line member of the bu�er as needed, and possibly adjust the index_in_cur_line variable,
as will be explained below. But this implies that the index member is no longer synchronized with
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these values. This only matters when an insertion or other operation has to be performed on the
text in the bu�er at that position. Rather than updating the index each time, the program only
updates it when such an action is needed. The following function does this.

Listing 5.4: update_bu�er_index()

void update_buffer_index ( Buf f e r ∗ bu f f e r )
{

i n t t o t a l c h a r s = 0 ;
i n t i = 0 ;

whi l e ( i < bu f f e r−>cur_l ine ) {
t o t a l c h a r s += buf f e r−>l ine_len [ i ] ;
i++;

}
t o t a l c h a r s += buf f e r−>index_in_cur_line ;
bu f f e r−>index = to t a l c h a r s ;

}

Similarly, it is also necessary to get the cursor's actual window coordinates when all that is know
are the current line number and the o�set within that line. This is the case, for example, when the
down arrow key is pressed and the cursor must be moved to a new text line. It is possible that the
cursor would actually be below the last visible line. The only way to know this is to calculate its
window coordinates and compare them to the bottom of the screen. The following function is our
means of getting the cursor position.

Listing 5.5: get_cursor_at()

void get_cursor_at ( Buf f e r buf , Window win , i n t index , i n t l ineno ,
Cursor ∗ curs )

{
i n t t o ta l_ l i n e s_be f o r e = 0 ;
i n t rows_in_current_text l ine = 0 ;
i n t i ;

/∗ The f i r s t l i n e i s the one at the top o f the window , whose index i s
win . line_at_top , i n i t i a l l y 0 . ∗/

f o r ( i = win . l ine_at_top ; i < l i n eno ; i++ ) {
i f ( buf . l i n e_ len [ i ] < win . c o l s )

t o ta l_ l in e s_be f o r e++;
e l s e

t o ta l_ l in e s_be f o r e += ( in t ) c e i l ( ( double ) buf . l i n e_len [ i ] / win . c o l s ) ;
}
rows_in_current_text l ine = index /win . c o l s ;

curs−>r = to ta l_ l in e s_be f o r e + rows_in_current_text l ine ;
curs−>c = index − rows_in_current_text l ine ∗ win . c o l s ;

}

There are four movements that the program has to implement: up, down, left, and right. We show
just one of these here. The complete program is in the appendix. The up and down movements are
a bit more complex than left and right.

When the down arrow key is pressed, or the 'j' key, the cursor must be moved to the position in
the text line below at the same o�set relative to the beginning of the line, unless that line is shorter
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than the current one. In the latter case, it is moved to the end of the line. The complication is that
this position may be out of view, in which case the text must be scrolled upwards to put it into
view. Therefore, the function to do this must move the cursor logically and then check whether this
logical position is out of view. This requires

1. advancing cur_line to the line below if not on the last line;

2. adjusting index_in_cur_line if the line is too short;

3. getting the index of the last line in the window;

4. getting the actual cursor position;

5. if the cursor is below the last line, calculating by how much scrolling accordingly; and

6. moving the cursor to the new position on the screen and drawing it.

The moveDown() function in the listing below encapsulates this logic.

Listing 5.6: moveDown()

void moveDown( Buf f e r ∗buf , Window ∗win , Cursor ∗ curs )
{

i n t l a s t l i n e ;

i f ( buf−>cur_l ine < buf−>num_lines−1 ) {
buf−>cur_l ine++;
i f ( buf−>index_in_cur_line >= buf−>l ine_len [ buf−>cur_l ine ] ) {

buf−>index_in_cur_line = buf−>l ine_len [ buf−>cur_l ine ]−1;
}

get_last l ine_in_win ( ∗buf , ∗win , &l a s t l i n e ) ;
i f ( buf−>cur_l ine > l a s t l i n e ) {

win−>line_at_top += buf−>cur_l ine − l a s t l i n e ;
get_cursor_at (∗ buf , ∗win , buf−>index_in_cur_line ,

buf−>cur_line , curs ) ;
s c r o l l_bu f f e r (∗ buf , ∗win ) ;

}
e l s e

get_cursor_at (∗ buf , ∗win , buf−>index_in_cur_line ,
buf−>cur_line , curs ) ;

moveto ( curs−>r , curs−>c ) ;
}

}

5.2.2.3 Terminal Interaction

Terminal interaction includes modifying or querying the terminal state, obtaining the window size
and the erase character, and writing various ANSI escape sequences to do things such as clearing
parts of the screen or moving the cursor.
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Terminal Support Functions Three functions are used for modifying or querying the terminal
state, as shown in the following program listing.

Listing 5.7: Terminal support functions

void modify_termios ( i n t fd , i n t echo , i n t canon )
{

s t r u c t termios cur_tty ;
t c g e t a t t r ( fd , &cur_tty ) ;

i f ( canon )
cur_tty . c_ l f l a g |= ICANON;

e l s e
cur_tty . c_ l f l a g &= ~ICANON;

i f ( echo )
cur_tty . c_ l f l a g |= ECHO;

e l s e
cur_tty . c_ l f l a g &= ( ~ECHO & ~ECHOE) ;

cur_tty . c_ l f l a g &= ~ISIG ;
cur_tty . c_cc [VMIN] = 1 ;
cur_tty . c_cc [VTIME] = 0 ;
t c s e t a t t r ( fd , TCSADRAIN, &cur_tty ) ;

}

void save_restore_tty ( i n t fd , i n t ac t i on )
{

s t a t i c s t r u c t termios o r i g i n a l_ s t a t e ;
s t a t i c i n t r e t r i e v e d = FALSE;

i f ( RETRIEVE == act i on ){
r e t r i e v e d = TRUE;
t c g e t a t t r ( fd , &o r i g i n a l_ s t a t e ) ;

}
e l s e i f ( r e t r i e v e d && RESTORE == act i on ) {

t c s e t a t t r ( fd , TCSADRAIN, &o r i g i n a l_ s t a t e ) ;
}
e l s e

f p r i n t f ( s tde r r , " I l l e g a l a c t i on to save_restore_tty ( ) . \ n " ) ;
}

void init_window ( i n t fd , Window ∗win )
{

s t r u c t w in s i z e s i z e ;

i f ( i o c t l ( fd , TIOCGWINSZ, &s i z e ) < 0) {
pe r ro r ("TIOCGWINSZ e r r o r " ) ;
r e turn ;

}
win−>rows = s i z e . ws_row ;
win−>co l s = s i z e . ws_col ;
win−>line_at_top = 0 ;

}

void get_erase_char ( i n t termfd , Window ∗win )
{
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s t r u c t termios cur_tty ;
t c g e t a t t r ( termfd , &cur_tty ) ;

win−>erase_char = cur_tty . c_cc [VERASE] ;
}

modify_termios() either enables or disables echo and canonical mode, and it disables keyboard
signals. It also sets the MIN and TIME line discipline values to 1 and 0 respectively so that the program
reads a single character at a time and does not time-out. save_restore_tty() can be used to save
the current terminal state into a local static variable for later restoration. get_winsize() uses the
ioctl() function to get the current window size when the program starts up. If the window is
resized while the program is running, all bets are o� � it does not handle resizing events.

Since output operations must bypass the C standard I/O library to avoid falling victim to its internal
bu�ering, the program will only use the kernel's write() system call for writing to the screen. A
write to the terminal device will always place the bytes to be written at the current cursor position.
After a write completes, the cursor is advanced to the right of the last character written, unless what
was written was an ANSI escape sequence that does not actually write to the screen. Because the
write() system call needs the length of the string to write, to improve performance, the length of
each escape sequence is hard-coded as a constant. The listing below is the complete set of sequences
used by the program.

Listing 5.8: ANSI escape sequences

/∗ ANSI Escape Sequences and t h e i r l eng th s ( f o r speed ∗/
const char CLEAR_DOWN[ ] = "\033[0 J " ;
const i n t lCLEAR_DOWN = 4 ;
const char CLEAR_RIGHT[ ] = "\033[0K" ;
const i n t lCLEAR_RIGHT = 4 ;
const char CURSOR_HOME[ ] = "\033 [ 1 ; 1H" ;
const i n t lCURSOR_HOME = 6 ;
const char CLEAR_SCREEN[ ] = "\033[2 J " ;
const i n t lCLEAR_SCREEN = 4 ;
const char CLEAR_LINE [ ] = "\033[2K" ;
const i n t lCLEAR_LINE = 4 ;
const char RIGHT [ ] = "\033[1C" ;
const i n t lRIGHT = 4 ;
const char LEFT [ ] = "\033[1D" ;
const i n t lLEFT = 4 ;
const char BACKSPACE[ ] = "\033[1D \033 [1D" ;
const i n t lBACKSPACE = 9 ;
/∗ The f o l l ow i n g cannot be dec l a r ed s t a t i c a l l y as the dimensions are unknown ∗/
char PARK[ 2 0 ] ; /∗ s t r i n g to park cur so r at lower l e f t ∗/
i n t lPARK; /∗ l ength o f PARK s t r i n g ∗/

The string PARK for parking the cursor in the last line of the window is de�ned dynamically, because
it depends upon the screen size. It is de�ned as follows:

get_winsize(STDIN_FILENO, &rows, &cols);

sprintf(PARK, "\033[%d;1H", rows);

This work is copyrighted by Stewart Weiss and licensed under the Creative Commons Attribution-

ShareAlike 4.0 International License.
15

http://creativecommons.org/licenses/by-sa/4.0/ 
http://creativecommons.org/licenses/by-sa/4.0/ 


UNIX Lecture Notes

Chapter 5 Interactive Programs and Signals

Prof. Stewart Weiss

5.2.2.4 The Main Program

The main function initializes everything necessary and then enters a loop in which it remains until
the user enters a command to quit in lastline mode. Only the main loop is shown in the listing
below.

Listing 5.9: main program loop

whi le ( ! qu i t ) {
i f ( in_input_mode ) {

i f ( read (STDIN_FILENO, &c , 1) > 0 ) {
i f ( c == ESCAPE ) {

in_input_mode = 0 ;
write_status_message ( " " , curs ) ;

}
e l s e {

in_input_mode = hand le_inse r t ion ( &buf , &win , &curs , c ) ;
i f ( in_input_mode == UNHANDLEDCHAR )

in_input_mode = 1 ;
e l s e

write_status_message ( INSERT, curs ) ;
}

}
}
e l s e {

i f ( read (STDIN_FILENO, &c , 1) > 0 ) {
switch ( c ) {
case ' i ' :

in_input_mode = 1 ;
park ( ) ;
update_buffer_index(&buf ) ;
moveto ( curs . r , curs . c ) ;
write_status_message ( INSERT, curs ) ;
break ;

case ' : ' :
in_last l ine_mode = 1 ;
park ( ) ;
wr i t e (1 ,&prompt , 1 ) ;
s t a tu s = do_lastline_mode ( buf , win , curs ) ;
i f ( s t a tu s >= 0 ) qu i t = s ta tu s ;
moveto ( curs . r , curs . c ) ;
break ;

case ' \003 ' :
write_status_message ( CTRLC, curs ) ;
break ;

case ' \004 ' :
write_status_message ( CTRLD, curs ) ;

break ;
case ' \010 ' :

write_status_message ( CTRLH, curs ) ;
break ;

case ' j ' :
moveDown(&buf , &win , &curs ) ;
break ;

case 'k ' :
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moveUp(&buf , &win , &curs ) ;
break ;

case ' l ' :
case ' ' :

moveRight(&buf , &win , &curs ) ;
break ;

case 'h ' :
moveLeft(&buf , &win , &curs ) ;
break ;

case ESCAPE:
handle_escape_char ( &buf , &win , &curs ) ;
break ;

d e f au l t :
i f ( c == win . erase_char )

moveLeft(&buf , &win , &curs ) ;
}

}
}

}

This program has all of the elements of an interactive application that does not involve time. The
remainder of this chapter will introduce features of the UNIX API that are needed for programs
whose state changes with time.

5.2.3 Non-Blocking Input

Changing the state of the terminal itself is preferable to changing the attributes of the open �le
descriptor, because we can exercise more control over it. However, the downside of this is that all
programs that use that terminal will be a�ected by the changes. Usually this is not a problem,
since the program you are writing will be the only foreground process, and no other process will
be reading from the terminal while it is running. However, it is worthwhile to understand how to
exercise some limited control over input through the �le descriptor, using the O_NDELAY �ag (called
O_NONBLOCK in POSIX).

The O_NONBLOCK �ag controls whether reads and writes are blocking or non-blocking. When a read
is blocking, the process that executes the read waits until input is available, and only then does it
continue. This is the semantics that beginning programmers learn. This makes sense; after all, why
would you ever want a program to continue past a read instruction if the read did not yield any
data?

Exercise. Before reading further, try to answer the preceding question.

Non-blocking I/O is a property of open �le connections, not of terminals or devices; when you open a
�le and get a �le descriptor as the return value of the open() call, you can specify in the call that the
�le connection should be non-blocking. In other words, the property of being non-blocking is part of
the process's connection to the �le or the terminal, not the terminal itself. Two di�erent processes
can have the same �le open for reading, one using blocking reads and the other, non-blocking.

Remember that when a connection is established between a process and an input source, a bu�er
is created that holds data from the source on its way to the process. Whether it is a disk �le,
a terminal, a pointing device, or an audio source, there is some temporary storage area used for
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bu�ering input. When a process opens a non-blocking connection to an input source, whether it is
a �le or a device, calls to read data from that source retrieve whatever data is in the bu�er at the
time of the call, up to the amount requested in the read request, and return immediately. If the
bu�er is empty, they return immediately with no data. To be clear, in the call

if ( (bytesRead = read(fd, dataToProcess, bytesToGet) ) > 0 )

{/* statement block */}

if the connection is non-blocking and no data is in the bu�er of the �le descriptor fd, then the call
returns immediately with bytesRead == 0 and the statement block will be skipped.

Similarly, a call to the C library function getchar() will return either the character in the front of
the bu�er or, if the bu�er is empty, nothing at all. In either case, getchar() returns immediately,
i.e., in

if ( ( c = getchar()) != EOF ) { /* statement block */ }

if there is no character in the bu�er, getchar() will return EOF, which the program can use to
decide how to proceed.

Non-blocking input should not be confused with asynchronous input. Asynchronous input occurs
when the process makes a call to read data and returns immediately, without waiting for the data
to be ready. The read() call is executed by a separate process, and as soon as the data are available
for it, that process performs the I/O and �lls the bu�er passed to it by the one calling read(). This
is called asynchronous input because the caller does not synchronize with the process running the
read() call; they proceed independently once the call is made. Asynchronous input is useful when
you may not need the data right away.

Non-blocking input is useful when the lack of input itself is a signi�cant condition to be identi�ed
by the program. For example, it might indicate that a user has left the terminal and is no longer
responding, or that a connection to a remote host has been broken, or that a pipe is empty. It may
also imply that the user is choosing to not supply input because supplying input may mean making
something happen that the user does not want to happen, as in a video game. Very often the
process requesting the input has other work to do and it can simply check later whether the input is
available. For this reason, non-blocking reads are usually placed inside loops where the condition is
tested and an appropriate action can be taken. In most programs that use non-blocking input, the
state of the program is changing without the user's intervention. This might be because animation
is taking place, or a computation is being performed, or something else entirely.

The following listing is of a program that uses non-blocking input and pretends to do a simple ani-
mation. It draws �dots� on the screen, nothing more. Because it uses the same modify_termios(),
save_restore_tty() and get_winsize() functions from the simplevi.c program, their de�nitions
are omitted. It uses a function to put a �le descriptor into non-blocking mode, set_non_block().

Listing 5.10: nonblockdemo.c

#inc lude <s td i o . h>
#inc lude <s t d l i b . h>
#inc lude <uni s td . h>
#inc lude <s t r i n g . h>
#inc lude <f c n t l . h>
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#inc lude <termios . h>
#inc lude <sys / s t a t . h>
#i f n d e f TIOCGWINSZ
#inc lude <sys / i o c t l . h>
#end i f

#de f i n e RETRIEVE 1 /∗ ac t i on f o r set_tty ∗/
#de f i n e RESTORE 2 /∗ ac t i on f o r set_tty ∗/

// Def ined e l s ewhere :
void modify_termios ( i n t fd , i n t echo , i n t canon ) ;
void save_restore_tty ( i n t fd , i n t ac t i on ) ;
void get_wins ize ( i n t fd , i n t ∗rows , i n t ∗ c o l s ) ;

void set_non_block ( i n t fd )
{

i n t f l a g s e t ;

f l a g s e t = f c n t l ( fd , F_GETFL) ;
f l a g s e t |= O_NONBLOCK;
f c n t l ( fd , F_SETFL, f l a g s e t ) ;

}

i n t main ( i n t argc , char ∗argv [ ] )
{

char ch ; // s t o r e s user ' s char
char per iod = ' . ' ;
s i z e_t bytecount ;
i n t count = 0 ;
i n t done = 0 ; /∗ to c on t r o l when to stop loop ∗/
i n t pause = 0 ; /∗ to c on t r o l pausing o f output ∗/
char PARK[ 2 0 ] ; /∗ ANSI escape sequence f o r parking cur so r ∗/
i n t numrows ; /∗ number o f rows in window ∗/
i n t numcols ; /∗ number o f columns in window ∗/
const char CURSOR_HOME[ ] = "\033 [ 1 ; 1H" ;
const char CLEAR_SCREEN[ ] = "\033[2 J " ;
const char SAVE_CURSOR[ ] = "\033[ s " ;
const char REST_CURSOR[ ] = "\033[u " ;
const char MENU[ ] = "Type q to qu i t or p to pause or r to resume . " ;
char dots [ 2 0 ] ;

/∗ Check whether input or output has been r e d i r e c t e d ∗/
i f ( ! i s a t t y (0 ) | | ! i s a t t y (1 ) ) {

f p r i n t f ( s tde r r , " Output has been r e d i r e c t e d ! \ n " ) ;
e x i t (EXIT_FAILURE) ;

}

/∗ Save the o r i g i n a l t ty s t a t e ∗/
save_restore_tty (STDIN_FILENO, RETRIEVE) ;

/∗ Modify the te rmina l −
turn o f f echo , keybd s i g s , and canon i ca l mode ∗/
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modify_termios ( STDIN_FILENO, 0 , 0 ) ;

/∗ Turn o f f b lock ing mode ∗/
set_non_block ( STDIN_FILENO ) ;

/∗ Get the window ' s s i z e ∗/
get_window_size (STDIN_FILENO, &numrows , &numcols ) ;

/∗ Create s t r i n g to park cur so r ∗/
s p r i n t f (PARK, "\033[%d ; 1H" , numrows+1);

/∗ Clear the s c r e en and put cur so r in upper l e f t corner ∗/
wr i t e (STDOUT_FILENO,CLEAR_SCREEN, s t r l e n (CLEAR_SCREEN) ) ;
wr i t e (STDOUT_FILENO,CURSOR_HOME, s t r l e n (CURSOR_HOME) ) ;

/∗ Star t drawing . Stop when the s c r e en i s f u l l ∗/
whi l e ( ! done ) {

i f ( ! pause ) {
count++;
/∗ I s s c r e en f u l l except f o r bottom row? ∗/
i f ( count > ( numcols ∗ (numrows−1)) ) {

pause = 1 ;
count−−;

}
e l s e

wr i t e (STDOUT_FILENO, &period , 1 ) ;
}
us l e ep (10000 ) ; /∗ delay a b i t ∗/
s p r i n t f ( dots , " dots : %d " , count ) ;

/∗ Save the cursor , park i t , wr i t e the menu prompt ∗/
wr i t e (STDOUT_FILENO,SAVE_CURSOR, s t r l e n (SAVE_CURSOR) ) ;
wr i t e (STDOUT_FILENO, PARK, s t r l e n (PARK) ) ;
wr i t e (STDOUT_FILENO, MENU, s t r l e n (MENU) ) ;
wr i t e (STDOUT_FILENO, dots , s t r l e n ( dots ) ) ;
/∗ Do the read . I f nothing was typed , do nothing ∗/
i f ( ( bytecount = read (STDIN_FILENO, &ch , 1) ) > 0 ) {

i f ( ch == 'q ' )
done = 1 ;

e l s e i f ( ch == 'p ' )
pause = 1 ;

e l s e i f ( ch == ' r ' )
pause = 0 ;

}
/∗ Restore the cur so r so the next dot f o l l ow s the prev ious ∗/
wr i t e (STDOUT_FILENO,REST_CURSOR, s t r l e n (REST_CURSOR) ) ;

}
/∗ Cleanup −− f l u s h queue , c l e a r the screen , and r e s t o r e te rmina l ∗/
t c f l u s h (STDIN_FILENO,TCIFLUSH) ;
wr i t e (1 ,CLEAR_SCREEN, s t r l e n (CLEAR_SCREEN) ) ;
wr i t e (1 ,CURSOR_HOME, s t r l e n (CURSOR_HOME) ) ;
save_restore_tty (STDIN_FILENO, RESTORE) ;
re turn 0 ;

}
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The program has a loop of the form

while ( !done ) {

/* actual work here */

if ( (bytecount = read(STDIN_FILENO, &ch, 1) ) > 0 ) {

if ( ch == 'q' )

done = 1;

else if ( ch == 'p' )

pause = 1;

else if ( ch == 'r' )

pause = 0;

}

}

This is the second paradigm shown in Section 5.2.1. The user's input has one of three possible
e�ects: (1) entering 'q' terminates the loop, (2) entering 'p' allows the loop to continue but stops
output, giving the illusion that the program is paused, and (3) entering 'r' resumes the output
if it is paused and has no e�ect otherwise. This is a very ine�cient method of pausing of course,
because the program is gobbling up CPU cycles while it is pretending to do nothing. However, we
do not know enough as yet to do otherwise.

The part of the loop with the comment labeled �actual work here� is the part in which it

1. increments the period count and checks how many periods have been written so far,

2. delays a bit,

3. if still room for another period, writes a period, and

4. moves the cursor to the bottom row, writing the prompt and a count of the periods.

This section of the code is a form of animation � it is changing the state of the screen as a function
of time. In this case, the timing is achieved by pausing a constant amount of time between redraws.
This is a simple, and ine�cient, form of animation. Later we will see that there are better means
of achieving this.

5.2.4 Allowing Time-Outs

Sometimes we would like to write a program that has time-outs: if the user does not respond within
a certain amount of time, it will take this condition to be a signi�cant event in itself. Many programs
have some kind of time-out or delay feature like this, so that if the user does not respond within a
certain amount of time, the program will either terminate or take some other default action.

We can add a time-out feature to a program by setting MIN to 0 and TIME to the number of deci-
seconds we would like it to wait before it decides that there is no input to wait for. For the sake
of curiosity, though, we will design a program that will allow us to set the MIN and TIME terminal
attributes to any values we choose, so that we can see how it behaves with di�erent values.
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5.2.5 A Test Program

We will build a program in which we can test the e�ects of changing both the terminal driver's
attributes and the open connection's attributes. The main program will be a test driver that allows
the user to control the state of the terminal and terminal connection by various command line
options, and repeatedly runs a simple function, which we will call get_response(), that reads user
input in the given state of the terminal and connection. The main program will have a few bells
and whistles besides.

The program will have separate functions for controlling the state of the control terminal and for
changing the attributes of the �le connection to the terminal device. The main program will have
a loop to allow us to experiment with the get_response() function until we are satis�ed that we
understand how it behaves under the given settings. There are several pieces to the program, which
we present in a bottom-up approach.

First, we combine the save_restore_tty() and set_non_block() functions into a single function
that saves and restores both the terminal settings and the �le descriptor �ags. It uses the same
macros as before:

void save_restore_tty ( i n t fd , i n t act ion , s t r u c t termios ∗copy )
{

s t a t i c s t r u c t termios o r i g i n a l_ s t a t e ;
s t a t i c i n t o r i g i n a l_ f l a g s = −1;
s t a t i c i n t r e t r i e v e d = FALSE;

i f ( a c t i on == RETRIEVE ){
r e t r i e v e d = TRUE;
t c g e t a t t r ( fd , &o r i g i n a l_ s t a t e ) ;
o r i g i n a l_ f l a g s = f c n t l ( fd , F_GETFL) ;
i f ( copy != NULL )

∗copy = o r i g i n a l_ s t a t e ;
}
e l s e i f ( r e t r i e v e d && act i on == RESTORE ) {

t c s e t a t t r ( fd , TCSADRAIN, &o r i g i n a l_ s t a t e ) ;
f c n t l ( fd , F_SETFL, o r i g i n a l_ f l a g s ) ;

}
e l s e

f p r i n t f ( s tde r r , "Bad ac t i on to save_restore_tty ( ) . \ n " ) ;
}

We will change our modify_termios(), function so that it can be given a structure whose members
describe the terminal settings:

typedef struct tty_opts_tag {

int min; /* value to assign to MIN */

int time; /* value to assign to TIME */

int echo; /* value to assign to echo [0|1] */

int canon; /* value to assign to canon [0|1] */

} tty_opts;
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modify_termios() will options in the tty_opts parameter that is passed to it to the given termios

structure.

void modify_termios ( s t r u c t termios ∗cur_tty , tty_opts t s )
{

i f ( t s . canon )
cur_tty−>c_l f l a g |= ICANON;

e l s e
cur_tty−>c_l f l a g &= ~ICANON;

i f ( t s . echo )
cur_tty−>c_l f l a g |= ECHO;

e l s e
cur_tty−>c_l f l a g &= ~ECHO;

cur_tty−>c_cc [VMIN] = t s . min ;
cur_tty−>c_cc [VTIME] = t s . time ;

}

The second, apply_termios_settings(), applies the values in the termios structure to the termi-
nal line associated to the given �le descriptor (which should be standard input.)

void apply_termios_sett ings ( i n t fd , s t r u c t termios cur_tty )
{

t c s e t a t t r ( fd , TCSANOW, &cur_tty ) ;
}

The set_non_block() function is the same as the one we used above and is omitted.

The get_response() function will prompt the user to type a character and will return a value that
indicates what the user typed. For simplicity, it will ask for yes or no answers. It prints a question
on the screen and gives the user a chance to give a valid response. If the user types a valid response
or max_tries attempts were made, it returns.

i n t get_response ( FILE∗ fp , ui_params uip )
{

i n t input , n ;
unsigned char c ;
time_t time0 , time_now ;

time(&time0 ) ;
whi l e ( TRUE ){

p r i n t f ( "%s (y/n )?" , uip . prompt ) ;
f f l u s h ( stdout ) ;
i f ( ! uip . i s b l o c k i n g )

s l e e p ( uip . s l e ep t ime ) ;
i f ( (n = read ( f i l e n o ( fp ) , &c , 1 ) ) > 0 ) {

t c f l u s h ( f i l e n o ( fp ) , TCIFLUSH) ;
input = to lower ( c ) ;
i f ( input == 'y ' | | input == 'n ' ) {

re turn input ;
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}
e l s e {

p r i n t f ("\ n Inva l id input : %c\n" , input ) ;
cont inue ;

}
}
time(&time_now ) ;
p r i n t f ("\ nTimeout wai t ing f o r input : %d s e c s e lapsed , "

" %d timeouts l e f t \n" ,
( i n t ) ( time_now− time0 ) , uip . maxtr ies ) ;

i f ( uip . maxtries−− == 0 ) {
p r i n t f ("\nTime i s up . \ n " ) ;
r e turn 0 ;

}
}

}

Comments

• The fflush() call �ushes the bu�ers associated with the �le stream passed to it. The C
Standard I/O Library provides bu�ered I/O for �le streams. When a program is started,
by default, the streams stdin, stdout, and stderr are line bu�ered. This means that the
characters are transmitted to the terminal only when a newline is placed onto the stream.
Since functions such as printf(), puts(), and the others that act on stdout, act on �le
streams, they are line bu�ered. The preceding printf() call

printf("%s (y/n)?", uip.prompt);

sends a string to stdout without a terminated newline and therefore this string will not
appear immediately. To force the characters to be delivered to the terminal device, we use
fflush(stdout), which empties the bu�er. If we comment out the fflush() call, the prompt
will not appear on the screen until after a read() runs.

Note that the bu�ering provided for streams is independent of the bu�ering done by the
terminal within the line discipline. Even if you put the terminal into non-canonical mode, if
you use the higher-level C library functions, C will continue to line bu�er. You must use the
lower-level �le descriptor operations to avoid the bu�ering.

• The call to �ush the terminal's input queue, tcflush(), is needed in case the program is run
in canonical mode and input is bu�ered. In this case the user has to enter a newline before the
terminal will deliver the characters to the read() call, and get_response() needs to remove
that newline character, otherwise it will be used as the next input character when it is called
again.

• get_response() calls sleep() to block itself for the number of seconds given by uip.sleeptime.
The sleep() function's prototype is

unsigned int sleep(unsigned int seconds);
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The process will sleep until either the given time has elapsed or it receives a signal that it does
not ignore. (Signals will be covered soon.) This gives the user a chance to type a response in
case non-blocking input is in e�ect. Without this delay, the read() call would return faster
than the user could blink an eye. The delay is not needed when input is blocking. There are
alternatives to sleep() with �ner granularity, such as usleep() and nanosleep().

• Lastly, get_response() computes the total time elapsed since the original prompt was dis-
played by calling the time() function initially and each time that the user fails to enter any
character before time runs out, and computing the di�erence in seconds.

The main program, with includes and a few other utilities omitted, follows. This is term_demo1.c.

Listing 5.11: term_demo1.c

#de f i n e PROMPT "Do you want to cont inue ?"
#de f i n e MAX_TRIES 3 // max t r i e s
#de f i n e SLEEPTIME_DEFAULT 2 // de lay a f t e r prompt
#de f i n e BEEP putchar ( '\ a ' ) // a l e r t user
#de f i n e RETRIEVE 1 // ac t i on f o r save_res tore
#de f i n e RESTORE 2 // ac t i on f o r save_res tore
#de f i n e FALSE 0
#de f i n e TRUE 1

in t main ( i n t argc , char ∗ argv [ ] )
{

i n t re sponse ;
tty_opts t tyopt s = {1 ,0 , 1 , 1} ;
ui_params ui_parameters = {

SLEEPTIME_DEFAULT, TRUE,
MAX_TRIES, PROMPT

} ;
i n t f f l a g s = 0 ;
s t r u c t termios t t y i n f o ;
i n t fd ;
FILE∗ fp ;

get_options(&argc , &argv , &f f l a g s , &ttyopts ,
&(ui_parameters . s l e ep t ime ) ) ;

i f ( ! i s a t t y (0 ) | | ! i s a t t y (1 ) )
e x i t ( 1 ) ;

fp = s td in ;

save_restore_tty ( f i l e n o ( fp ) , RETRIEVE, &t t y i n f o ) ;
modify_termios ( &t ty in f o , t tyopt s ) ;
apply_termios_sett ings ( f i l e n o ( fp ) , t t y i n f o ) ;
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// I f f f l a g s != 0 then the O_NONBLOCK f l a g i s s e t on fp
i f ( f f l a g s ) {

ui_parameters . i s b l o c k i n g = FALSE;
set_non_blocking_mode ( f i l e n o ( fp ) , f f l a g s ) ;

}
whi l e ( TRUE ) {

response = get_response ( fp , ui_parameters ) ;
i f ( r e sponse ) {

p r i n t f ("\nMain : Response from user = %c\n" ,
re sponse ) ;

i f ( 'n ' == response )
break ;

}
e l s e

p r i n t f ("\nMain : No response from user \n" ) ;
}
save_res tore ( f i l e n o ( fp ) , RESTORE, NULL) ;
t c f l u s h (0 ,TCIFLUSH) ;
re turn response ;

}

Comments

1. One problem with the program as it stands is that it will not respond to any key presses until
it wakes up from its sleep. You cannot kick it into waking up. It will sleep for the speci�ed
time, come hell or high water. This means that a user with a fast response time will be
unhappy with this solution. It is a one-size-�ts-all solution to making a program responsive
to user response rates. It is, in essence, a polling solution because it just repeatedly checks
in on the user. An alternative is to somehow make the program sleep until the user actually
does something.

2. Another problem with the program is that if it is terminated abnormally, as when the user
types Ctrl-C, it will not have a chance to restore the terminal to its original settings. If the
program has turned o� canonical input and echo, for example, and it is killed before reaching
the instruction in the main program to restore the terminal, then when the shell resumes
execution upon the program's untimely death, the terminal will still be in non-canonical
mode with no echo. Fortunately for present-day UNIX programmers, modern shells such as
bash and tcsh automatically reset the terminal when processes invoked from the shell are
killed, so these users will not see this happen.

3. However, even with the shell's ability to reset the terminal, it is still not necessarily immune
to the problem that occurs when the program turns on non-blocking I/O2. If the program
turns on non-blocking reads and is subsequently killed, there is a good possibility that the
shell will be killed too. This is because, when a program is invoked from the shell, it shares
the �le descriptors of its parent shell. In other words, �le descriptor 0 in the program points

2Some shells appear to have �xed this �bug� as well. If a spawned process leaves the O_NONBLOCK �ag on standard

input, they clear it.
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to the same �le structure in the kernel as it does in the shell. Suppose that the program
turns on the O_NONBLOCK �ag on the standard input connection. It is actually modifying the
connection that its parent, i.e., the shell, uses as well. In fact, this standard input connection
is shared by all related processes � siblings, cousins, and so on. Any process that is sharing
this �le connection can potentially make changes that a�ect all other processes that use this
terminal. Once the changes are made, unless they are undone before the process terminates,
the shell's connection has those changed properties.

Now think about the shell for a moment. A shell is basically running a loop of the form

while ( not end of input ) {

display the shell prompt

read the user's command line

carry out the instruction

}

Thus, if the program turns on non-blocking reads and is killed before turning it o�, when the
shell resumes, it executes a read command. Usually the shell is in blocked input mode, so
when it tries to read input but none is there, it enters a blocked state waiting for the user to
press the Enter key, which sends input to the shell process. Since non-blocking input is still
on, instead of waiting for the user's input, it receives an EOF from the function call that it uses
to retrieve the input. This EOF may cause the shell itself to terminate because most shells are
killed by the EOF character. You should set ignoreeof to prevent this. In bash, you add the
line

set -o ignoreeof

in your .bashrc to do this. Anyway, the result is that your shell is killed, and if this is a login
shell, you will be logged out. On my host machine, bash gets caught in a segmentation fault,
which should not happen.

4. The problem with non-blocking reads causing the shell to exit can also be solved by opening
a new �le connection to the terminal instead of using standard input. In the demo program,
explore the e�ect of replacing the line

fp = stdin;

by

fp = fopen(ctermid(NULL), "r");

5.3 Signals

Signals are, as Richard Stevens once put it, software interrupts. They are a mechanism for handling
asynchronous events, such as when a user types Ctrl-C at a terminal. Most non-trivial applications
need to handle signals. In this section we provide an overview of signals, including what they are,
how they are generated, how they are named, and how processes can deal with them.

From a strictly technical point of view, a signal is a message that has a type but does not have
content. Messages are usually de�ned to be containers for data. Signals are not containers. Signals
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outside of the computer are things like tra�c lights, hand gestures that mean "please stop, taxi
driver" or "give me the check", alarm clock rings, or warning lights like "you're about to run out of
gas". They do not have contents. It is enough that they have identity, so a particular signal type
has well-de�ned meaning. When a combatant raises a white �ag, the enemy knows that this signal
means "I give up." In UNIX, a signal is simply an integer with a mnemonic name. For example,
SIGINT is the interrupt signal.

5.3.1 Typing Ctrl-C at a Terminal

When you type a Ctrl-C, the e�ect is to terminate the currently running process. Why? When
you type the Ctrl-C, the character code for it is sent by hardware and then, within the kernel, to
the terminal's device driver. The device driver checks the character code and sees that it matches
the INTR code3. Since it knows this is a control character that is supposed to cause delivery of an
interrupt signal, it checks whether the isig attribute is set for the terminal. If isig is set, then
the corresponding signal must be delivered, which is SIGINT, so it calls the signal subsystem of the
kernel to notify it to send the SIGINT signal to all processes whose control terminal4 is the one that
received the Ctrl-C. If any of these processes has not explicitly noti�ed the kernel of how it wants
to handle this signal, it will terminate upon receipt of the signal, because by default, processes are
killed if they do not catch SIGINT. Soon we shall see that a process can declare what the disposition
of a delivered signal should be while it is running.

5.3.2 Sources of Signals

All signals are sent by the kernel to processes. There is no other way for a process to receive a
signal; the kernel is like the central signal processing station inside the machine. The kernel will
send a signal to one or more processes if it receives a request to do so. Requests can come from a
few di�erent types of sources.

The terminal A user can type a key combination that causes the terminal driver to ask the kernel
to send a signal. This is an asynchronous signal, since it can arrive at a process at
any time, independent of what the process might be doing. Examples include Ctrl-C,
Ctrl-Z, Ctrl-S.

Hardware Hardware exceptions can generate signals. The kernel detects when the exception occurs
and sends a signal to the o�ending process. These may be synchronous or asynchronous.
Synchronous events are things such as �oating-point exceptions, illegal instructions, ad-
dressing exceptions (such as attempts to access addresses outside of the process's address
space), and other events generally caused by the process itself. They are synchronous be-
cause if the process is run again, they will occur again at the same point in the process's
execution. Asynchronous events are things like power loss and terminal hang-ups.

Software Software conditions can generate signals when something noteworthy happens. This
can happen when out-of-band data arrives over a network connection, or when a process
writes to a pipe after the reader of the pipe has terminated, or when an alarm clock set
by the process expires.

3In SunOS it is INTR. On other systems, it might be VINTR.
4The operating system keeps track of which processes are attached to which terminals.
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Processes Processes themselves can request the kernel to send signals to processes, even them-
selves. This is not so strange; an alarm clock is a way for you to send a signal to yourself
in the future; you set the alarm and wait for it to signal you. Similarly, a process can
ask the kernel to send a wake-up call to itself at some future time. A process can also
ask the kernel to send a signal to other processes to which it has permission to send
signals. For ordinary user processes, these include any processes with the same real or
e�ective user-id.

5.3.3 Signal Types

UNIX systems de�ne signals in the header �le <signal.h>. More accurately, the header �le
<signal.h> includes the header �le that contains the signal de�nitions. Di�erent UNIX systems
store this �le in di�erent places. In Linux, the �le <bits/signum.h> is where the signals are de�ned.
The kernel includes this header �le, but user level program are supposed to include <signal.h>.
The idea is to keep separate headers for the kernel and the user-level programs.

The exact set of signals varies from one system to another, but some of them are standard across
all systems. Signal names are just names for small integers such as SIGINT, SIGKILL, SIGHUP, and
SIGCHLD. All names begin with the pre�x SIG. SIGHUP is the hang-up signal. It is sent to a process
when its control terminal has been disconnected. SIGCHLD is the signal sent to a parent by the
kernel when it detects that one of its child processes has terminated. There are typically about 30
to 35 di�erent signals de�ned in any UNIX system. The list of signals has changed over the years.
The �rst 30 signals listed below are found in Linux and Solaris 9 ; the last 4 only in Solaris 9. The
constant NSIG is the the total number of signals de�ned. Since the signal numbers are allocated
consecutively, NSIG is also one greater than the largest de�ned signal number.
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Name Value Default Event Note Category

SIGHUP 1 Exit Hangup Termination
SIGINT 2 Exit Interrupt Termination
SIGQUIT 3 Core Quit Termination
SIGILL 4 Core Illegal Instruction Program Error
SIGTRAP 5 Core Trace or Breakpoint Trap Program Error
SIGABRT 6 Core Abort Program Error
SIGEMT 7 Core Emulation Trap Program Error
SIGFPE 8 Core Arithmetic Exception Program Error
SIGKILL 9 Exit Killed Termination
SIGBUS 10 Core Bus Error 1 Program Error
SIGSEGV 11 Core Segmentation Fault Program Error
SIGSYS 12 Core Bad System Call 1 Program Error
SIGPIPE 13 Exit Broken Pipe Operation Error
SIGALRM 14 Exit Alarm Clock Alarm
SIGTERM 15 Exit Terminated Termination
SIGUSR1 16 Exit User Signal 1 1 Miscellaneous
SIGUSR2 17 Exit User Signal 2 1 Miscellaneous
SIGCHLD 18 Ignore Child Status Changed 1 Job Control
SIGPWR 19 Ignore Power Fail or Restart Hardware
SIGURG 21 Ignore Urgent Socket Condition Asynchronous I/O
SIGPOLL 22 Exit Pollable Event Asynchronous I/O
SIGSTOP 23 Stop Stopped (signal) 1 Job Control
SIGTSTP 24 Stop Stopped (user) 1 Job Control
SIGCONT 25 Ignore Continued 1 Job Control
SIGTTIN 26 Stop Stopped (tty input) 1 Job Control
SIGTTOU 27 Stop Stopped (tty output 1 Job Control
SIGVTALRM 28 Exit Virtual Timer Expired 1 Alarm
SIGPROF 29 Exit Pro�ling Timer Expired 1 Alarm
SIGXCPU 30 Core CPU time limit exceeded 1 Operation Error
SIGXFSZ 31 Core File size limit exceeded 1 Operation Error
SIGWINCH 20 Ignore Window Size Change 2 Miscellaneous
SIGWAITING 32 Ignore Concurrency signal 3 Miscellaneous
SIGLWP 33 Ignore Inter-LWP signal 3 Miscellaneous
SIGFREEZE 34 Ignore Check point Freeze 3 Miscellaneous
SIGTHAW 35 Ignore Check point Thaw 3 Miscellaneous

Notes

1. In Linux the numerical value of the signal is architecture-dependent.

2. This is only found in Sun OS and BSD.

3. These are in Solaris 9.

The above list has four columns. The �rst is the mnemonic name for the signal, i.e., the name that
can be used in a program. The second is the integer value, which you do not need to know. The
third is the default action that happens to a process. For example, SIGCHLD is ignored by default,
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SIGSTOP causes the program to stop by default, and SIGINT causes the process to terminate. The
last column indicates the cause or condition that leads to this signal.

5.3.4 Sending Signals

In UNIX, the kernel can send a signal to a process when some hardware error condition arises. For
example, if a program attempts to execute an illegal instruction, the kernel will receive the hardware
noti�cation and will send the SIGILL (illegal instruction signal) to the o�ending process. A process
can also send a signal to one or more processes (or even itself) by using the kill() system call.
The form of the call is

int kill(int processid, int signal);

The �rst parameter stores a means to specify the process id of the process to receive the signal.
The second parameter is the kind of signal to send. In the simplest case,

kill(942, SIGTERM);

sends the SIGTERM signal to the process whose process-id is 942. A process cannot send a signal to
another process if they do not share the same real or e�ective user-id1. If a process does not have
permission to issue the kill call, kill() returns �1.

processid can be 0, -1, or a negative number, and it means something di�erent in each case. If
processid is 0, the signal will be sent to all processes in the same process group, whereas if it is �1,
and the sender is not the superuser, it is sent to all processes for which it has permission to send
signals, which are those processes with the same real or e�ective user-id. If processid < -1, it is
sent to all processes in the process group with id -processid.

A process can also send a signal to itself using

int raise( int signal);

which is equivalent to

kill(getpid(), signal);

The call to raise() will return only when the process has handled the signal.

5.3.5 Signal Generation and Delivery

UNIX systems generally distinguish between the generation of a signal and its delivery. According
to the Open Group Base Speci�cation Issue 6 (IEEE Std 1003.1),
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"A signal is said to be 'generated' for (or sent to) a process or thread when the
event that causes the signal �rst occurs. Examples of such events include detection
of hardware faults, timer expiration, signals generated via the sigevent structure and
terminal activity, as well as invocations of the kill() and sigqueue() functions. In
some circumstances, the same event generates signals for multiple processes.

"A signal is delivered to a process when the appropriate action for that process and
signal is taken."

What this means is that delivery takes place when the process receives the signal and responds by
either

• ignoring it,

• taking the default action, or

• executing a signal handler for it.

Signal handling is described below. The point to remember now is that from the moment that a
signal is generated for a process until the moment that the signal is delivered, the signal is pending.
Pending signals are managed by the operating system5.

5.3.6 Signal Handling

A process does not have to accept the default action caused by a signal. It can choose to respond
di�erently to all signals except for SIGKILL and SIGSTOP. These signals always terminate the process.
To handle a signal, the programmer de�nes a function called a signal handler. The signal handler
is executed when the signal is received, provided that it has been installed.

The program noti�es the operating system that it has a handler for a speci�c signal by executing
a system call to install the handler. The original system call for installing a signal handler was the
signal() system call. The signal() system call was unreliable because it was possible to miss
signals when using it. It was replaced by a reliable signal installing call named sigaction(). We
will explore the sigaction() call later. For now, we start with the signal() system call, partly
because it is an easier one to use, and partly so that you understand its weaknesses. Once you do,
you should avoid using it.

The signal() call has the form

signal( signal_number, handler_action)

The �rst parameter is the number of a signal, but you should always use its mnemonic name such
as SIGINT or SIGQUIT. The second parameter is one of the following:

SIG_DFL Take the default action, which is usually to terminate the process.

SIG_IGN Ignore the signal completely and continue.

user-de�ned function Address of a user-de�ned function
5This discussion of signals overlooks the complexity entailed because of threads and multi-threaded processes.

Until we discuss threads in general, we have to overlook this topic. But you should bear in mind that the operating

system has to make decisions when signals are generated as to whether they are to be sent to every thread in a process

or just to a single thread in particular, and that certain signals must always be sent to one choice or the other.
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Examples

The following program, signal_demo1.c, shows how signal handlers for Ctrl-C (SIGINT) and
Ctrl-\ (SIGQUIT) are installed.

Listing 5.12: signal_demo1.c

#inc lude <s td i o . h>
#inc lude <s i g n a l . h>

void catch1 ( i n t signum )
{

p r i n t f ("You can do be t t e r than that ! \ n " ) ;
}

void catch2 ( i n t signum )
{

p r i n t f (" I 'm no qu i t t e r ! \ n " ) ;
}

i n t main ( )
{

i n t i ;

s i g n a l ( SIGINT , catch1 ) ;
s i g n a l ( SIGQUIT , catch2 ) ;
f o r ( i = 20 ; i > 0 ; i−− ) {

p r i n t f ("Try to k i l l me with ^C or ^\\.\n " ) ;
s l e e p ( 1 ) ;

}
re turn 0 ;

}

The call signal(signum, f) installs f() as the signal handler for the signal signum. When
signal() is executed, f() is installed. Until that point, f() is not installed. When you run
signal_demo1 and enter a Ctrl-C, the SIGINT signal is sent to the process executing signal_demo1;
as a result, the handler f() runs, and when it terminates, the program resumes execution. In
signal_demo1.c, the only action taken by either handler is to print a message on the screen, simply
to show that the function was executed.

The next program, signal_demo2.c, is almost the same as signal_demo1.c with one exception:
SIGINT and SIGQUIT are ignored by calling signal() with SIG_IGN as the second argument.

#inc lude <s td i o . h>
#inc lude <s i g n a l . h>

in t main ( )
{
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s i g n a l ( SIGINT , SIG_IGN ) ; // i gnor e Ctrl−C
s i g n a l ( SIGQUIT , SIG_IGN ) ; // i gnor e Ctrl−\

f o r ( i = 20 ; i > 0 ; i−− ) {
p r i n t f ("Try to k i l l me with ^C or ^\\.\n " ) ;
s l e e p ( 1 ) ;

}
re turn 0 ;

}

5.3.7 Putting It Together

We revise term_demo1.c so that it handles Ctrl-C and Ctrl-\ interrupts (whether from the key-
board or sent via a kill() from another process.) This program is term_demo2.c. The listing
below shows only the changed portion of the code.

. . . .
#inc lude <s i g n a l . h>
. . . . ( sn ip )

i f ( f f l a g s ) {
ui_parameters . i s b l o c k i n g = FALSE;
set_nodelay ( f i l e n o ( fp ) , f f l a g s ) ;

}

s i g n a l (SIGINT , inter rupt_handler ) ;
s i g n a l (SIGQUIT, inter rupt_handler ) ;

whi l e ( TRUE ) {
response = get_response ( fp , ui_parameters ) ;

. . . . ( sn ip )

char ∗ signame ( i n t s i gno )
{

s t a t i c char name [ 1 6 ] ;
switch ( s i gno ) {
case SIGINT :

s t r cpy (name , "SIGINT" ) ;
break ;

case SIGQUIT :
s t r cpy (name , "SIGQUIT" ) ;

}
re turn name ;

}

void inter rupt_handler ( i n t signum )
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{
p r i n t f (" Ex i t ing with s i g n a l %s \n" , signame ( signum ) ) ;
save_res tore ( f i l e n o ( s td in ) , RESTORE, NULL) ;
e x i t ( 2 ) ;

}

The major changes are that the signal() function is used to install handlers for SIGINT and
SIGQUIT. In this program they share the same handler, named interrupt_handler(). This handler
prints a message on the standard output and then restores the termios structure's �ags and the
�le status �ags to what they were before the program was run.

5.3.8 Weaknesses of the Signal Mechanism

Signals in this form do not carry any information other than their particular values. Therefore, they
are of limited use. They were never intended to be a robust form of communication, and they are
still not completely reliable. The early form of signal handling using the signal() system call was
very unreliable. While a process was in the midst of catching a signal, it was unable to detect the
arrival of another signal of the same type; any new signals of that type were lost. This means that
if two signals of the same type were sent in rapid succession to a process, the second might be lost.
Later versions of the signal() function in BSD and in SVR corrected this problem in di�erent ways,
so that it now has at least two di�erent behaviors. The modern version in Linux 2.6 combines the
semantics of each. It is best to avoid the signal() call for that reason.

5.3.9 Signal Handling The "Right" Way

Signals are a primitive form of inter-process communication by today's standards, but at the time
they were conceived, they provided a simple, e�cient method of solving the most important inter-
process communication problems. The signal() system call was early UNIX's method of de�ning
and installing signal handlers. One problem with the signal() call is that it needs to be reset each
time, like a mouse trap � once it catches a signal, arriving signals are missed. Another problem
with signal() is that its behavior was left unspeci�ed in the case when multiple signals arrived,
and di�erent implementations of UNIX provided di�erent semantics to handle multiple signals.

5.3.10 Multiple Signals

Suppose that a signal handler is in the midst of handling a signal that has been delivered when a
second signal is generated and is pending. There are a few possible ways to dispose of this new
signal:

• Ignore it completely, e�ectively losing the new signal;

• Put it in a queue and handle it when the current signal has been handled completely, e�ectively
blocking pending signals while handling the current one;

• Interrupt the processing of the current signal, handle the new signal, and return to the old
signal when the new one has been handled, e�ectively treating the handler like an involuntary
recursive function;

This work is copyrighted by Stewart Weiss and licensed under the Creative Commons Attribution-

ShareAlike 4.0 International License.
35

http://creativecommons.org/licenses/by-sa/4.0/ 
http://creativecommons.org/licenses/by-sa/4.0/ 


UNIX Lecture Notes

Chapter 5 Interactive Programs and Signals

Prof. Stewart Weiss

In any one UNIX system, you might have found one of these solutions employed rather than the
others, without any consistency. The POSIX standard introduced a uniform solution to the problem
in the sigaction() interface.

5.3.11 The sigaction() call

The sigaction() system call allows a process to install a signal handler and to specify how it will
respond to multiple arriving signals. Its prototype is

#include <signal.h>

int (sigaction (int signum, const struct sigaction *act,

struct sigaction *oldaction);

where

signum is the value of the signal to be handled

act is a pointer to a sigaction structure that speci�es the handler, masks, and �ags for the
signal

oldact is a pointer to a structure to hold the currently active sigaction data.

We will examine the sigaction structure �rst to see how �exible this interface is. Notice that the
function name is the same as the name of the structure whose address is passed to it, like the stat()
function and the stat structure.

5.3.12 The sigaction struct

The sigaction structure is de�ned in <signal.h>. The de�nition is unusual because it has two
members (sa_handler and sa_sigaction) that are allowed to overlap in memory and must be
used in mutual exclusion. The simplest way to present it is as if it were two di�erent overloaded
de�nitions of the same structure:

struct sigaction // backward-compatible, old-style handler

{

void (*sa_handler) (int); // the action to take

sigset_t sa_mask; // additional signals to block

// during handling of the signal

int sa_flags; // flags that affect behavior

};

or

struct sigaction // POSIX compliant, new-style handler

{

void (*sa_sigaction) (int, siginfo_t *, void *);
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// pointer to signal handler

sigset_t sa_mask; // additional signals to block

// during handling of the signal

int sa_flags; // flags that affect behavior

};

In other words, there are two di�erent forms of the sigaction structure. The �rst one uses the
old-style of handler, and the second uses the newer POSIX compliant method. The structs are
otherwise identical.

Notes

In the old-style, the sa_handler member does not have to be a pointer to a function. It can also be
one of the two �ags SIG_IGN or SIG_DFL. If it is SIG_IGN, the signal is ignored; if SIG_DFL, then the
default action is taken. If a pointer to a handler is supplied, that handler will be run. The handler
must have a single integer argument.

In the new style, the sa_handler is replaced by a pointer to a function that has three parameters
as follows:

• An sa_mask, which de�nes which signals should be blocked while the handler is processing the
signal. By default, the signal that caused the handler to run will always be blocked. Adding
signals to SA_MASK is a way to block other signals as well.

• The sa_flags is a �ag set that can be used to control how subsequent signals of the same type
as the one that caused the handler to run are handled. For example, if a handler is handling
a SIGINT signal and another SIGINT arrives while the process is in the handler, the sa_flags
will determine how to dispose of the second SIGINT. It has no e�ect on other arriving signals.
The �ags determine how arriving signals are handled after the handler has been invoked. All
�ags are independent and sa_flags is their bitwise-or. The most important �ags are:

SA_RESETHAND If this bit is set, the signal action is reset to SIG_DFL. This means that as
soon as the signal is delivered, the default action will take place. This �ag implies
the SA_NODEFER �ag; signals are not blocked, instead causing the process to take
whatever is the default action for the type of signal. The intention is to make the
handler behave like the old-style signal() handler, since any signal arriving after
the �rst will cause the default behavior.

SA_NODEFER If this bit is set, the kernel will not automatically block the signal while it is
being caught. This means that an arriving signal will cause the handler itself to
be interrupted and re-entered with the second signal. This is involuntary recursion.

SA_RESTART If this bit is set, certain system calls that would otherwise be terminated if a
signal were delivered during their execution, will be automatically restarted. This
bit allows the BSD style handling.

SA_SIGINFO If this bit is set, two additional arguments are passed to the signal-catching
function. If the second argument is not NULL, it points to a siginfo_t structure
containing the reason why the signal was generated; the third argument points to
a ucontext_t structure containing the receiving process's context when the signal
was delivered.
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Note. If multiple instances of an individual signal are delivered while that signal is currently blocked,
then only one instance is queued. For example, if you issue multiple SIGINT signals to a process,
without setting the SA_NODEFER �ag in the handler, then the �rst one will cause the handler to run,
the second will be queued, but all those after that will be lost.

5.3.12.1 Example

The �rst example, sigaction_demo1.c, shows how the SA_SIGINFO �ag can be used. A signal handler
for SIGINT is installed with the SA_SIGINFO �ag set. The program delays itself using sleep(60) so
that the user has time to enter a Ctrl-C. When the Ctrl-C is entered and the program is delivered
a SIGINT signal, the handler runs and accesses the siginfo_t structure to print the values of its
members as a result of the signal.

Listing 5.13: sigaction_demo1.c

#inc lude <uni s td . h>
#inc lude <sys / types . h>
#inc lude <s i g n a l . h>
#inc lude <b i t s / s i g i n f o . h>
#inc lude <s td i o . h>
#inc lude <s t d l i b . h>

void s ig_handler ( i n t s igno , s i g i n f o_t ∗ i n fo , void ∗ context )
{

p r i n t f (" S i gna l number : %d\n" , in fo−>si_s igno ) ;
p r i n t f (" Error number : %d\n" , in fo−>si_errno ) ;
p r i n t f ("PID o f sender : %d\n" , in fo−>si_pid ) ;
p r i n t f ("UID o f sender : %d\n" , in fo−>si_uid ) ;
e x i t ( 1 ) ;

}

i n t main ( i n t argc , char∗ argv [ ] )
{

s t r u c t s i g a c t i o n the_action ;

the_action . sa_f lags = SA_SIGINFO;
the_action . sa_s igac t i on = sig_handler ;

s i g a c t i o n (SIGINT , &the_action , NULL) ;

p r i n t f ("Type Ctrl−C with in the next minute"
" or send s i g n a l 2 . \n " ) ;

s l e e p ( 6 0 ) ;
r e turn 0 ;

}
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5.3.12.2 Example

The following program will demonstrate the use of the sigaction structure for old-style handlers
as well as the new-style handlers. The program begins by de�ning the sigaction structure that
will be passed to the sigaction function. The handler function, interrupt_handler, is assigned
to the sa_handler �eld. The sa_flags �eld is initialized with the bitwise-or of the �ags referenced
in the command-line. The sa_mask is built step by step. There are a few ways to do this. You can
start with an empty set and add to it or start with a full set and remove from it. In this case, I am
allowing the user to interactively add signal numbers to the blocked set, so I start with an empty
set and add to it. The method of creating these sets is discussed below.

Listing 5.14: sigaction_demo2.c

/∗
∗ Usage :
∗ sigaction_demo [ r e s e t | noblock | r e s t a r t ]∗
∗
∗ i . e . , 0 or more o f the words r e s e t , noblock , and r e s t a r t may appear
∗ on the command l i n e , and mul t ip l e i n s t an c e s o f the same word as the same
∗ e f f e c t as a s i n g l e i n s t anc e .
∗
∗ r e s e t turns on SA_RESETHAND
∗ noblock turns on SA_NODEFER
∗ r e s t a r t turns on SA_RESTART

∗
∗ NOTES
∗ (1 ) I f you supply the word " r e s e t " on the command l i n e i t w i l l s e t the
∗ handl ing to SIG_DFL f o r s i g n a l s that a r r i v e when the proce s s i s
∗ in the handler . I f noblock i s a l s o set , the s i g n a l w i l l have the
∗ de f au l t behavior immediately . I f i t i s not set , the d e f au l t w i l l
∗ delay un t i l a f t e r the handler e x i t s . I f noblock i s s e t but r e s e t i s
∗ not , i t w i l l r e c u r s i v e l y ente r the handler .
∗ (2 ) The inter rupt_handler purpose ly de lays f o r a few seconds in order to
∗ g ive the user time to ente r a few i n t e r r up t s on the keyboard .
∗ (3 ) inter rupt_handler i s the handler f o r both SIGINT and SIGQUIT, so i f i t
∗ i s not r e s e t , n e i t h e r Ctrl−C nor Ctrl−\ w i l l k i l l i t .
∗ (4 ) I t w i l l ask you to ente r the numeric va lue s o f s i g n a l s to block . I f
∗ you don ' t g ive any , no s i g n a l s are blocked .
∗
∗/

#inc lude <s td i o . h>
#inc lude <s t r i n g . h>
#inc lude <s i g n a l . h>
#inc lude <time . h>
#inc lude <f c n t l . h>

#de f i n e INPUTLEN 100

i n t main ( i n t ac , char ∗ av [ ] )
{

s t r u c t s i g a c t i o n newhandler ; /∗ new s e t t i n g s ∗/
s i g s e t_t blocked ; /∗ s e t o f b locked s i g s ∗/
void in thand l e r ( ) ; /∗ the handler ∗/
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char x [INPUTLEN ] ;
i n t f l a g s = 0 ;
i n t s igno , n ;
char s [ ] = "Entered text : " ;
i n t s_len = s t r l e n ( s ) ;

whi l e ( 1 < ac ) {
i f (0 == strncmp (" r e s e t " , av [ ac−1] , s t r l e n ( av [ ac −1])) )

f l a g s |= SA_RESETHAND;
e l s e i f (0 == strncmp (" noblock " , av [ ac−1] , s t r l e n ( av [ ac −1])) )

f l a g s |= SA_NODEFER;
e l s e i f (0 == strncmp (" r e s t a r t " , av [ ac−1] , s t r l e n ( av [ ac −1])) )

f l a g s |= SA_RESTART;
ac−−;

}
/∗ load these two members f i r s t ∗/
newhandler . sa_s igac t i on = inter rupt_handler ; /∗ handler func t i on ∗/
newhandler . sa_f lags = SA_SIGINFO | f l a g s ; /∗ new s t y l e handler ∗/

/∗ then bu i ld the l i s t o f b locked s i g n a l s ∗/
s igemptyset (&blocked ) ; /∗ c l e a r a l l b i t s ∗/

p r i n t f ("Type the numeric va lue o f a s i g n a l to block (0 to stop ) : " ) ;
whi l e ( 1 ) {

s can f ( "%d" , &s igno ) ;
i f ( 0 == s igno )

break ;
s i g add s e t (&blocked , s i gno ) ; /∗ add s igno to l i s t ∗/
p r i n t f (" next s i g n a l number (0 to stop ) : " ) ;

}
newhandler . sa_mask = blocked ; /∗ s t o r e blockmask ∗/

// i n s t a l l i n thand l e r as the SIGINT handler
i f ( s i g a c t i o n (SIGINT , &newhandler , NULL) == −1 )

pe r ro r (" s i g a c t i o n " ) ;

// i f s u c c e s s f u l , i n s t a l l i n thand l e r as the SIGQUIT handler a l s o
e l s e i f ( s i g a c t i o n (SIGQUIT, &newhandler , NULL) == −1 )

pe r ro r (" s i g a c t i o n " ) ;
e l s e

whi l e ( 1 ) {
x [ 0 ] = ' \ 0 ' ;
t c f l u s h (0 ,TCIOFLUSH) ;
p r i n t f (" Enter t ex t then <RET>: ( qu i t to qu i t )\n " ) ;
n = read (0 , &x , INPUTLEN) ;
i f ( n == −1 && errno == EINTR ) {

p r i n t f (" read c a l l was in t e r rup t ed \n " ) ;
x [ n ] = ' \ 0 ' ;
wr i t e (1 , &x , n+1);

}
e l s e i f ( strncmp (" qu i t " , x , 4) == 0 )

break ;
e l s e {

x [ n ] = ' \ 0 ' ;
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wr i t e (1 , &s , s_len ) ;
wr i t e (1 , &x , n+1);
p r i n t f ("\n " ) ;

}
} // whi l e

re turn 0 ;
}

void inter rupt_handler ( i n t s igno , s i g i n f o_t ∗ i n fo , void ∗ context )
{

i n t l o c a l i d ; /∗ s t o r e s a number to unique ly i d e n t i f y s i g n a l ∗/
time_t timenow ; /∗ cur rent time −− used to generate id ∗/
s t a t i c i n t t i c k e r = 0 ; /∗ used f o r id a l s o ∗/
s t r u c t tm ∗ tp ;

time(&timenow ) ;
tp = l o c a l t ime (&timenow ) ;
l o c a l i d = 36000∗ tp−>tm_hour + 600∗ tp−>tm_min + 10∗ tp−>tm_sec +

t i c k e r++ % 10 ;
p r i n t f (" Entered handler : s i g = %d \ t i d = %d\n" ,

in fo−>si_signo , l o c a l i d ) ;
s l e e p ( 3 ) ;
p r i n t f (" Leaving handler : s i g = %d \ t i d = %d\n" ,

in fo−>si_signo , l o c a l i d ) ;
}

The while loop in the main program exists just to demonstrate that the system calls to perform
I/O are restarted when the interrupts occur. You can run this program with any combination
of SA_RESTART, SA_RESETHAND, and SA_NODEFER to see the combined e�ect of the �ags. You can
add any signal to the blocked set, but you will only be able to send SIGINT and SIGQUIT unless
you open a separate window and use the kill command to send arbitrary signals to the process.
You can try this � put signal 4 in the blocked set and issue kill -4 with the process id from a
second window while the process is handling a Ctrl-C. You will see that signal 4 is blocked until
interrupt_handler() �nishes.

The while loop is designed so that you do not have to kill this program to terminate it. If you type
"quit" it will terminate.

5.3.13 Creating Signal Mask Sets

There are four functions that modify signal mask sets:

sigemptyset(sigset_t *setp);

sigfillset(sigset_t *setp);

sigaddset(sigset_t *setp, int signum);

sigdelset(sigset_t *setp, int signum);

The �rst two create empty and full mask sets respectively. The next two add or delete speci�c
signals from the speci�ed sets. You can either create an empty mask and add to it, or create a full
mask and delete from it. If you plan on having more than half of the signals in it, then do the
latter, otherwise do the former.
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5.3.14 Blocking Signals Temporarily around Critical Sections

The sigprocmask() system call can be used to block or unblock signals sent to a process. This is
useful if you need to temporarily turn o� all signals in a small section of code. This is one way to
create something like a critical section, in the sense that the process will not be interrupted in the
middle of the code fragment. It does not prevent the kernel from preempting the process and letting
another process run on the CPU, so it does not provide a means of protecting shared variables that
might be accessed while the process is removed from the CPU, but it does allow the process to
complete some critical sequence of statements without any signal handlers running in the interim,
and without being terminated in the midst of it. The prototype is

int sigprocmask( int how, const sigset_t *sigs, sigset_t *prev);

where how is one of SIG_BLOCK, SIG_UNBLOCK, or SIG_SETMASK. SIG_BLOCK will block the speci�ed
signal set, i.e., prevent those signals from reaching until the procmask is changed. SIG_UNBLOCK

allows the signals in the set to be unblocked, and SIG_SETMASK is used to change the mask completely,
i.e., assign a new mask to the procmask. The following program can be run to demonstrate how
the blocking works. If you type Ctrl-C during the �rst loop, the process will continue to loop and
it will exit before the second loop is executed. If you change the SIG_BLOCK to SIG_UNBLOCK then
the Ctrl-C will kill the process when you type it.

Listing 5.15: procmask_demo.c

#inc lude <s i g n a l . h>
#inc lude <s td i o . h>

in t main ( )
{

i n t i ;
s i g s e t_t s i g s , p r e v s i g s ;

s igemptyset (& s i g s ) ;
s i g add s e t (& s i g s , SIGINT ) ;
s igprocmask (SIG_BLOCK, &s i g s , &p r ev s i g s ) ;

f o r ( i = 0 ; i < 5 ; i++) {
p r i n t f ("Waiting %d\n" , i ) ;
s l e e p ( 1 ) ;

}
s igprocmask (SIG_SETMASK, &prevs i g s , NULL) ;
f o r ( i = 0 ; i < 5 ; i++) {

p r i n t f (" After %d\n" , i ) ;
s l e e p ( 1 ) ;

}
}
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5.4 Summary

An understanding of terminals and signal handling is essential to being able to write UNIX System
applications. You now have almost all of the tools at your disposal to write terminal-based interac-
tive programs that can use the full terminal window and allow the user to interact with it at will.
As you will discover in the next chapter, you are still missing a few more pieces. For one, we still
need to manage timing more accurately and allow events to happen at speci�c times as controlled
by the program. For another, we do not have the means of placing characters anywhere on the
screen. This is what comes next.

The entire simplevi.c program is listed below. Many comments have been deleted to reduce the
space.

Listing 16: simplevi.c

#inc lude <s td i o . h>
#inc lude <ctype . h>
#inc lude <s t d l i b . h>
#inc lude <termios . h>
#inc lude <f c n t l . h>
#inc lude <time . h>
#inc lude <s t r i n g . h>
#inc lude <uni s td . h>
#inc lude <math . h>
#inc lude <getopt . h>
#i f n d e f TIOCGWINSZ
#inc lude <sys / i o c t l . h>
#end i f

#de f i n e RETRIEVE 1
#de f i n e RESTORE 2
#de f i n e FALSE 0
#de f i n e TRUE 1
#de f i n e ESCAPE '\033 '
#de f i n e CONTROL_C '\003 '
#de f i n e CONTROL_D '\004 '
#de f i n e CONTROL_H '\010 '
#de f i n e KEY_UP 65
#de f i n e KEY_DOWN 66
#de f i n e KEY_RIGHT 67
#de f i n e KEY_LEFT 68
#de f i n e MAXLINES 1000
#de f i n e MAXCHARS 255
#de f i n e OUT_OF_LINES −1
#de f i n e OUT_OF_MEM −2
#de f i n e UNHANDLEDCHAR −3

const char CLEAR_DOWN[ ] = "\033[0 J " ;
const i n t lCLEAR_DOWN = 4 ;
const char CLEAR_RIGHT[ ] = "\033[0K" ;
const i n t lCLEAR_RIGHT = 4 ;
const char CURSOR_HOME[ ] = "\033 [ 1 ; 1H" ;
const i n t lCURSOR_HOME = 6 ;
const char CLEAR_SCREEN[ ] = "\033[2 J " ;
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const i n t lCLEAR_SCREEN = 4 ;
const char CLEAR_LINE [ ] = "\033[2K" ;
const i n t lCLEAR_LINE = 4 ;
const char RIGHT [ ] = "\033[1C" ;
const i n t lRIGHT = 4 ;
const char LEFT [ ] = "\033[1D" ;
const i n t lLEFT = 4 ;
const char BACKSPACE[ ] = "\033[1D \033 [1D" ;
const i n t lBACKSPACE = 9 ;
char PARK[ 2 0 ] ; /∗ s t r i n g to park cur so r at lower l e f t ∗/
i n t lPARK; /∗ l ength o f PARK s t r i n g ∗/

/∗ Misce l l aneous s t r i n g s f o r output ∗/
const char CTRLC[ ] = "You typed Control−C. " ;
const char CTRLD[ ] = "You typed Control−D. " ;
const char CTRLH[ ] = "This i s the Help Command. Not much help , so r ry ! " ;
const char BLANK = ' ' ;
const char INSERT [ ] = "−−INSERT−−";
const i n t lINSERT = 10 ;
const char MAXLINES_MSSGE[ ]

= "You reached the maximum number o f l i n e s . "
" Exi t ing input mode . " ;

const char OUT_OF_MEM_MSSGE[ ]
= "You reached the maximum bu f f e r s i z e . "

" Exi t ing input mode . " ;
const char UNHANDLEDCHAR_MSSGE[ ]

= "This input not yet implemented . "
" Exi t ing input mode . " ;

i n l i n e void clearandhome ( )
{

wr i t e (1 ,CLEAR_SCREEN, lCLEAR_SCREEN) ;
wr i t e (1 ,CURSOR_HOME, lCURSOR_HOME) ;

}

i n l i n e void park ( )
{

wr i t e (1 ,PARK, lPARK) ;
wr i t e (1 , CLEAR_LINE, lCLEAR_LINE) ;

}

/∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/
/∗ Data Types ∗/
/∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/

typede f s t r u c t _cursor
{

i n t r ;
i n t c ;

} Cursor ;

typede f s t r u c t _window
{
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unsigned shor t rows ;
unsigned shor t c o l s ;
i n t l ine_at_top ;
char erase_char ;

} Window ;

typede f s t r u c t _buffer
{

char t ext [BUFSIZ ] ;
i n t l i n e_len [MAXLINES ] ; /∗ l eng th s o f t ex t l i n e s , i n c l ud ing newl ine

cha ra c t e r s ∗/
i n t l i n e_s t a r t [MAXLINES ] ; /∗ s t a r t s o f each l i n e ∗/
i n t num_lines ; /∗ number o f t ex t l i n e s in bu f f e r . This

i n c l ud e s l i n e s that have not yet been
terminated with a newl ine cha rac t e r . I t i s
the number o f newl ine cha ra c t e r s + 1 i f the
l a s t cha rac t e r in the bu f f e r i s not a
newl ine . ∗/

i n t index ; /∗ index o f cur so r in t ext bu f f e r ∗/
i n t s i z e ; /∗ t o t a l chars in bu f f e r ∗/
i n t cur_l ine ; /∗ cur rent t ext l i n e , not s c r e en l i n e ∗/
i n t index_in_cur_line ; /∗ index in cur rent l i n e o f cur so r ∗/

} Buf f e r ;

/∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/
/∗ Function Prototypes ∗/
/∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/

/∗ Window/Terminal Functions ∗/
void init_window ( i n t fd , Window ∗win ) ;
void moveto ( i n t l i n e , i n t column ) ;
void write_status_message ( const char ∗message , Cursor curs ) ;
void save_restore_tty ( i n t fd , i n t ac t i on ) ;
void modify_termios ( i n t fd , i n t echo , i n t canon ) ;
void set_erase_char ( i n t termfd , Window ∗win ) ;

/∗ Buf f e r Functions ∗/
i n t i n s e r t ( Buf f e r ∗buf , Window win , char ch ) ;
void i n i t_bu f f e r ( Buf f e r ∗ bu f f e r ) ;
void update_buffer_index ( Buf f e r ∗ bu f f e r ) ;
i n t buf fer_index ( i n t index_in_line , i n t cur_line , i n t l i n e l e n g t h [ ] ) ;
void redraw_buffer ( Buf f e r bu f f e r , Window ∗win , Cursor ∗ curs ) ;
void s c r o l l_bu f f e r ( Buf f e r buf , Window win ) ;
i n t l ine_in_buf f e r ( Buf f e r buf , Window win , i n t pos ) ;
void save_buf fer ( const char path [ ] , Bu f f e r buf , char ∗ s t a t u s s t r ) ;
i n t hand le_inse r t ion ( Buf f e r ∗buf , Window ∗win , Cursor ∗ curs , char c ) ;
void get_last l ine_in_win ( Buf f e r bu f f e r , Window win , i n t ∗ l a s t l i n e ) ;

/∗ La s t l i n e Mode ∗/
i n t p a r s e l a s t l i n e ( char ∗ s t r , i n t len , Buf f e r buf , char ∗ s t a t u s s t r ) ;
i n t do_lastline_mode ( Buf f e r buf , Window win , Cursor curs ) ;
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/∗ Cursor Functions ∗/
void in i t_cur so r ( Cursor ∗ cur so r ) ;
void show_cursor ( Buf f e r buf , Window win , Cursor cursor ,

i n t index_in_line , i n t line_number ) ;
void advance_cursor ( Cursor ∗ cursor , Window win , char ch ) ;
void get_cursor_at ( Buf f e r buf , Window win , i n t index ,

i n t l ineno , Cursor ∗ curs ) ;
void handle_escape_char ( Buf f e r ∗bin , Window ∗win , Cursor ∗ curs ) ;
void moveUp ( Buf f e r ∗buf , Window ∗win , Cursor ∗ curs ) ;
void moveDown ( Buf f e r ∗buf , Window ∗win , Cursor ∗ curs ) ;
void moveRight ( Buf f e r ∗buf , Window ∗win , Cursor ∗ curs ) ;
void moveLeft ( Buf f e r ∗buf , Window ∗win , Cursor ∗ curs ) ;

/∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/
/∗ Main ∗/
/∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/

i n t main ( i n t argc , char ∗ argv [ ] )
{

i n t qu i t = 0 ;
i n t in_input_mode = 0 ;
i n t in_lastl ine_mode = 0 ;
Buf f e r buf ;
Window win ;
Cursor curs ; /∗ cur so r p o s i t i o n (0 , 0 ) i s upper l e f t ∗/
char prompt = ' : ' ; /∗ prompt charac t e r ∗/
char c ;
i n t s t a tu s ;

i f ( ! i s a t t y (STDIN_FILENO) | | ! i s a t t y (STDOUT_FILENO) ) {
f p r i n t f ( s tde r r , "Not a te rmina l \n " ) ;
e x i t ( 1 ) ;

}

save_restore_tty (STDIN_FILENO, RETRIEVE) ;
modify_termios ( STDIN_FILENO, 0 , 0 ) ;
i n i t_bu f f e r (&buf ) ;
i n i t_cur so r (&curs ) ;
init_window (STDIN_FILENO, &win ) ;

s p r i n t f (PARK, "\033[%d ; 1H" , win . rows ) ;
lPARK = s t r l e n (PARK) ;

/∗ Clear the s c r e en and put cur so r in upper l e f t corner ∗/
clearandhome ( ) ;

whi l e ( ! qu i t ) {
i f ( in_input_mode ) {

i f ( read (STDIN_FILENO, &c , 1) > 0 ) {
i f ( c == ESCAPE ) {

in_input_mode = 0 ;
write_status_message ( " " , curs ) ;

}
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e l s e {
/∗ i n s e r t typed char and echo i t ∗/
in_input_mode = hand le_inse r t ion ( &buf , &win , &curs , c ) ;
i f ( in_input_mode == UNHANDLEDCHAR )

in_input_mode = 1 ;
e l s e

write_status_message ( INSERT, curs ) ;
}

}
}
e l s e {

i f ( read (STDIN_FILENO, &c , 1) > 0 ) {
switch ( c ) {
case ' i ' :

in_input_mode = 1 ;
park ( ) ;
update_buffer_index(&buf ) ;
moveto ( curs . r , curs . c ) ;
write_status_message ( INSERT, curs ) ;
break ;

case ' : ' :
in_last l ine_mode = 1 ;
park ( ) ;
wr i t e (1 ,&prompt , 1 ) ;
s t a tu s = do_lastline_mode ( buf , win , curs ) ;
i f ( s t a tu s >= 0 ) qu i t = s ta tu s ;
moveto ( curs . r , curs . c ) ;
break ;

case ' \003 ' :
write_status_message ( CTRLC, curs ) ;
break ;

case ' \004 ' :
write_status_message ( CTRLD, curs ) ;

break ;
case ' \010 ' :

write_status_message ( CTRLH, curs ) ;
break ;

case ' j ' :
moveDown(&buf , &win , &curs ) ;
break ;

case 'k ' :
moveUp(&buf , &win , &curs ) ;
break ;

case ' l ' :
case ' ' :

moveRight(&buf , &win , &curs ) ;
break ;

case 'h ' :
moveLeft(&buf , &win , &curs ) ;
break ;

case ESCAPE:
handle_escape_char ( &buf , &win , &curs ) ;
break ;

d e f au l t :
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i f ( c == win . erase_char )
moveLeft(&buf , &win , &curs ) ;

}
}

}
}
p r i n t f ("\n " ) ;
t c f l u s h (STDIN_FILENO,TCIFLUSH) ;
clearandhome ( ) ;
save_restore_tty (STDIN_FILENO, RESTORE) ;
re turn 0 ;

}
/∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/

i n t p a r s e l a s t l i n e ( char ∗ s t r , i n t len , Buf f e r buf , char ∗ s t a t u s s t r )
{

i n t i = 0 ;
i n t foundquit = 0 ;
i n t foundwr i te = 0 ;
i n t badchar = 0 ;
i n t done = 0 ;
char ∗ f i l ename = NULL;
i n t s t a t e ;

s t a t e = 1 ;
whi l e ( ( i < l en ) && ! done ) {

switch ( s t a t e ) {
case 1 :

i f ( s t r [ i ] == ' ' )
s t a t e = 1 ;

e l s e i f ( s t r [ i ] == 'w' ) {
foundwri te = 1 ;
s t a t e = 2 ;

}
e l s e i f ( s t r [ i ] == 'q ' ) {

foundquit = 1 ;
s t a t e = 7 ;

}
e l s e

s t a t e = 5 ;
i++;
break ;

case 2 :
i f ( s t r [ i ] == 'q ' ) {

foundquit = 1 ;
s t a t e = 3 ;

}
e l s e i f ( s t r [ i ] == ' ' )

s t a t e = 4 ;
e l s e

s t a t e = 5 ;
i++;
break ;

case 3 :
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i f ( s t r [ i ] == ' ' )
s t a t e = 4 ;

e l s e
s t a t e = 5 ;

i++;
break ;

case 4 :
i f ( s t r [ i ] == ' ' )

s t a t e = 4 ;
e l s e i f ( isalnum ( s t r [ i ] ) | | s t r [ i ] == '_' ) {

f i l ename = &( s t r [ i ] ) ;
s t a t e = 6 ;

}
e l s e

s t a t e = 5 ;
i++;
break ;

case 5 :
badchar = 1 ;
s p r i n t f ( s t a t u s s t r , "\033[7m: %s Not an ed i t o r command\033[27m" , s t r ) ;
r e turn −1;

case 6 :
f i l ename = &( s t r [ i −1 ] ) ;
whi l e ( ( i < l en ) && ( isalnum ( s t r [ i ] ) | | s t r [ i ] == '_' ) )

i++;
s t r [ i ] = ' \ 0 ' ;
done = 1 ;
break ;

case 7 :
i f ( s t r [ i ] == ' ' )

s t a t e = 7 ;
e l s e {

badchar = 1 ;
s p r i n t f ( s t a t u s s t r ,

"\033[7m: %s Not an ed i t o r command\033[27m" , s t r ) ;
r e turn −1;

}
i++;

}
}
i f ( foundwri te ) {

i f ( f i l ename != NULL )
save_buf fer ( f i l ename , buf , s t a t u s s t r ) ;

e l s e {
s p r i n t f ( s t a t u s s t r ,

"\033[7m: %s Not an ed i t o r command\033[27m" , s t r ) ;
r e turn −1;

}
}
i f ( foundquit )

re turn 1 ;
e l s e

re turn 0 ;
}
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/∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/

i n t do_lastline_mode ( Buf f e r buf , Window win , Cursor curs )
{

char tempstr [MAXCHARS] ;
char s t a t u s s t r [MAXCHARS] ;
char c ;
i n t i = 0 ;
i n t s t a tu s ;
i n t in_last l ine_mode = 1 ;

whi l e ( in_last l ine_mode ) {
read (STDIN_FILENO, &c , 1 ) ;
i f ( c == '\n ' ) {

tempstr [ i ] = ' \ 0 ' ;
s t a tu s = p a r s e l a s t l i n e ( tempstr , s t r l e n ( tempstr ) ,

buf , s t a t u s s t r ) ;
in_last l ine_mode = 0 ;
write_status_message ( s t a tu s s t r , curs ) ;
s t a t u s s t r [ 0 ] = ' \ 0 ' ;

}
e l s e i f ( c == win . erase_char ) {

wr i t e (1 ,BACKSPACE, lBACKSPACE ) ;
i f ( i > 0 )

i−−;
e l s e

in_last l ine_mode = 0 ;
}
e l s e {

tempstr [ i++] = c ;
wr i t e (1 ,&c , 1 ) ;

}
}
re turn s t a tu s ;

}
/∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/

void handle_escape_char ( Buf f e r ∗buf , Window ∗win , Cursor ∗ curs )
{

char c ;

read (STDIN_FILENO, &c , 1 ) ;
i f ( c == 91 ) {

read (STDIN_FILENO, &c , 1 ) ;
switch ( c ) {
case KEY_UP:

moveUp( buf , win , curs ) ;
break ;

case KEY_DOWN:
moveDown( buf , win , curs ) ;
break ;

case KEY_RIGHT:
moveRight ( buf , win , curs ) ;
break ;
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case KEY_LEFT:
moveLeft ( buf , win , curs ) ;
break ;

}
}

}
/∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/

void set_erase_char ( i n t termfd , Window ∗win )
{

s t r u c t termios cur_tty ;
t c g e t a t t r ( termfd , &cur_tty ) ;

win−>erase_char = cur_tty . c_cc [VERASE] ;
}
/∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/

void modify_termios ( i n t fd , i n t echo , i n t canon )
{

s t r u c t termios cur_tty ;
t c g e t a t t r ( fd , &cur_tty ) ;

i f ( canon )
cur_tty . c_ l f l a g |= ICANON;

e l s e
cur_tty . c_ l f l a g &= ~ICANON;

i f ( echo )
cur_tty . c_ l f l a g |= ECHO;

e l s e
cur_tty . c_ l f l a g &= ( ~ECHO & ~ECHOE) ;

cur_tty . c_ l f l a g &= ~ISIG ;
cur_tty . c_cc [VMIN] = 1 ;
cur_tty . c_cc [VTIME] = 0 ;

t c s e t a t t r ( fd , TCSADRAIN, &cur_tty ) ;
}
/∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/

void save_restore_tty ( i n t fd , i n t ac t i on )
{

s t a t i c s t r u c t termios o r i g i n a l_ s t a t e ;
s t a t i c i n t r e t r i e v e d = FALSE;

i f ( RETRIEVE == act i on ){
r e t r i e v e d = TRUE;
t c g e t a t t r ( fd , &o r i g i n a l_ s t a t e ) ;

}
e l s e i f ( r e t r i e v e d && RESTORE == act i on ) {

t c s e t a t t r ( fd , TCSADRAIN, &o r i g i n a l_ s t a t e ) ;
}
e l s e

f p r i n t f ( s tde r r , " I l l e g a l a c t i on to save_restore_tty ( ) . \ n " ) ;
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}

/∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
Window Functions

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/

void init_window ( i n t fd , Window ∗win )
{

s t r u c t w in s i z e s i z e ;

i f ( i o c t l ( fd , TIOCGWINSZ, &s i z e ) < 0) {
pe r ro r ("TIOCGWINSZ e r r o r " ) ;
r e turn ;

}
win−>rows = s i z e . ws_row ;
win−>co l s = s i z e . ws_col ;
win−>line_at_top = 0 ;
set_erase_char ( fd , win ) ;

}
/∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/

void write_status_message ( const char ∗message , Cursor curs )
{

wr i t e (1 ,PARK, lPARK) ;
wr i t e (1 , CLEAR_LINE, lCLEAR_LINE) ;
wr i t e (1 , message , s t r l e n ( message ) ) ;
moveto ( curs . r , curs . c ) ;

}
/∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/

void moveto ( i n t l i n e , i n t column )
{

char seq_str [ 2 0 ] ;

s p r i n t f ( seq_str , "\033[%d;%dH" , l i n e +1, column+1);
wr i t e (1 , seq_str , s t r l e n ( seq_str ) ) ;

}

/∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
Buf f e r Functions

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/

void i n i t_bu f f e r ( Buf f e r ∗ bu f f e r )
{

bu f f e r−>num_lines = 0 ;
bu f f e r−>cur_l ine = 0 ;
bu f f e r−>l ine_len [ 0 ] = 0 ;
bu f f e r−>l i n e_s t a r t [ 0 ] = 0 ;
bu f f e r−>s i z e = 0 ;
bu f f e r−>index_in_cur_line = 0 ;
bu f f e r−>index = 0 ;

}
/∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/
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void save_buf fer ( const char path [ ] , Bu f f e r buf , char ∗ s t a t u s s t r )
{

char newl ine = '\n ' ;
i n t fd ;
// char s t a t u s s t r [ 8 0 ] ;

fd = c r ea t ( path , 0644 ) ;
i f ( fd != −1 ) {

s p r i n t f ( s t a t u s s t r ,
"\"%s \" %dL %dC wr i t t en " ,
path , buf . num_lines+1, buf . s i z e ) ;

wr i t e ( fd , buf . text , s t r l e n ( buf . t ex t ) ) ;
i f ( buf . t ex t [ buf . s i z e −1] != '\n ' )

wr i t e ( fd , &newline , 1 ) ;
c l o s e ( fd ) ;

}
e l s e

e x i t ( 1 ) ;
}
/∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/

void update_buffer_index ( Buf f e r ∗ bu f f e r )
{

i n t t o t a l c h a r s = 0 ;
i n t i = 0 ;

whi l e ( i < bu f f e r−>cur_l ine ) {
t o t a l c h a r s += buf f e r−>l ine_len [ i ] ;
i++;

}
t o t a l c h a r s += buf f e r−>index_in_cur_line ;
bu f f e r−>index = to t a l c h a r s ;

}

/∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/

void get_last l ine_in_win ( Buf f e r bu f f e r , Window win , i n t ∗ l a s t l i n e )
{

i n t t o t a l l i n e s = 0 ;
i n t i ;
i n t max_possible = win . rows−1; /∗ rows l e s s s t a tu s l i n e ∗/

i = win . l ine_at_top ;
whi l e ( i < bu f f e r . num_lines ) {

i f ( bu f f e r . l i n e_len [ i ] <= win . c o l s )
t o t a l l i n e s++;

e l s e
t o t a l l i n e s += ( i n t ) c e i l ( ( double ) bu f f e r . l i n e_len [ i ] / win . c o l s ) ;

i f ( t o t a l l i n e s > max_possible )
break ;

e l s e {
i++;

}
}
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// t o t a l > max_possible , so we use prev ious l i n e , which i s i −1.
∗ l a s t l i n e = i −1;

}
/∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/

void redraw_buffer ( Buf f e r bu f f e r , Window ∗win , Cursor ∗ curs )
{

i n t i ;
i n t l a s t l i n e ;
i n t l a s t c h a r ;
i n t f i r s t c h a r ;
i n t l ine_of_cursor ;

/∗ Compute the l a s t v i s i b l e complete t ex t l i n e in the bu f f e r ∗/
get_last l ine_in_win ( bu f f e r , ∗win , &l a s t l i n e ) ;

/∗ Get the index o f the text l i n e conta in ing the i n s e r t i o n po s i t i o n ∗/
l ine_of_cursor = l ine_in_buf f e r ( bu f f e r , ∗win , bu f f e r . index ) ;

/∗ Check i f the window needs to be s c r o l l e d ∗/
i f ( l ine_of_cursor < win−>line_at_top ) {

l a s t l i n e −= (win−>line_at_top − l ine_of_cursor ) ;
curs−>r += (win−>line_at_top − l ine_of_cursor ) ;
win−>line_at_top = l ine_of_cursor ;

}
e l s e i f ( l ine_of_cursor > l a s t l i n e ) {

win−>line_at_top += ( l ine_of_cursor − l a s t l i n e ) ;
curs−>r −= ( l ine_of_cursor − l a s t l i n e ) ;
l a s t l i n e = l ine_of_cursor ;

}

l a s t c h a r = bu f f e r . l i n e_s t a r t [ l a s t l i n e ] + bu f f e r . l i n e_len [ l a s t l i n e ] ;
f i r s t c h a r = bu f f e r . l i n e_s t a r t [ win−>line_at_top ] ;

/∗ Prepare to redraw the window . F i r s t c l e a r the s c r e en . ∗/
wr i t e (1 ,CLEAR_SCREEN, lCLEAR_SCREEN) ;

/∗ Do the redraw ∗/
moveto ( 0 , 0 ) ;
f o r ( i = f i r s t c h a r ; i < l a s t c h a r ; i++ )

wr i t e (1 ,& bu f f e r . t ex t [ i ] , 1 ) ;
}
/∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/

void s c r o l l_bu f f e r ( Buf f e r buf , Window win )
{

/∗
This c a l c u l a t e s the po s i t i o n o f the f i r s t cha rac t e r on the s c r e en
as the l e f tmos t cha rac t e r in the cur rent line_at_top , and then
c a l l s get_last l ine_in_win ( ) to get the index o f the l a s t t ex t l i n e
that can f i t in i t s e n t i r e t y with in the window . I t then computes
the index o f the l a s t cha rac t e r in that l i n e .

I t then c l e a r s the s c r e en and wr i t e s the contents o f the text bu f f e r ,
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s t a r t i n g at the computed f i r s t c h a r un t i l the l a s t c h a r . The cur so r
has to be moved to the upper l e f t −hand corner be f o r e s t a r t i n g .
The c a l l e r i s r e s p on s i b l e f o r r e s t o r i n g the prev ious cur so r p o s i t i o n .

∗/

i n t i ;
i n t l a s t l i n e ;
i n t l a s t c h a r ;
i n t f i r s t c h a r = buf . l i n e_s t a r t [ win . l ine_at_top ] ;

get_last l ine_in_win ( buf , win , &l a s t l i n e ) ;
l a s t c h a r = buf . l i n e_s t a r t [ l a s t l i n e ] + buf . l i n e_len [ l a s t l i n e ] ;

wr i t e (1 ,CLEAR_SCREEN, lCLEAR_SCREEN) ;
moveto ( 0 , 0 ) ;
f o r ( i = f i r s t c h a r ; i < l a s t c h a r ; i++ )

wr i t e (1 ,& buf . t ex t [ i ] , 1 ) ;
}
/∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/

i n t l ine_in_buf f e r ( Buf f e r buf , Window win , i n t pos )
{

i n t i = 0 ;

whi l e ( i < buf . num_lines )
i f ( buf . l i n e_s t a r t [ i ] <= pos )

i++;
e l s e

break ;
/∗ I f the i n s e r t e d charac t e r i s a newline , add

the extra l i n e ∗/
i f ( ( buf . t ex t [ pos ] == '\n ' ) )

i++;
return i −1;

}
/∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/

i n t i n s e r t ( Buf f e r ∗buf , Window win , char c )
{

i n t i ;

i f ( ( c == '\n ' ) && ( MAXLINES == buf−>num_lines ) )
re turn OUT_OF_LINES;

e l s e i f ( buf−>s i z e == BUFSIZ )
re turn OUT_OF_MEM;

i f ( c == win . erase_char )
re turn UNHANDLEDCHAR;

f o r ( i = buf−>s i z e ; i > buf−>index ; i−− )
buf−>text [ i ] = buf−>text [ i −1] ;

buf−>text [ buf−>index ] = c ;
buf−>s i z e++;
buf−>index++;
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buf−>l ine_len [ buf−>cur_l ine ]++;

/∗ the f i r s t cha rac t e r s e t s l i n e count to 1 ∗/
i f ( buf−>s i z e == 1 ) buf−>num_lines++;

i f ( c == '\n ' ) {
i n t temp = buf−>l ine_len [ buf−>cur_l ine ] ;

buf−>l ine_len [ buf−>cur_l ine ] = buf−>index_in_cur_line + 1 ;
buf−>num_lines++;

f o r ( i = buf−>num_lines−1; i > buf−>cur_l ine+1; i−− ) {
buf−>l ine_len [ i ] = buf−>l ine_len [ i −1] ;
buf−>l i n e_s t a r t [ i ] = buf−>l i n e_s t a r t [ i −1]+1;

}
buf−>l i n e_s t a r t [ buf−>cur_l ine+1] = buf−>l i n e_s t a r t [ buf−>cur_l ine ]

+ buf−>l ine_len [ buf−>cur_l ine ] ;

buf−>cur_l ine++;
buf−>l ine_len [ buf−>cur_l ine ] = temp − buf−>l ine_len [ buf−>cur_line −1] ;
buf−>index_in_cur_line = 0 ;

}
e l s e i f ( i s p r i n t ( c ) ) { /∗ non−newl ine cha rac t e r ∗/

buf−>index_in_cur_line++; // advance index in l i n e
/∗ increment a l l l i n e s t a r t s a f t e r t h i s l i n e ∗/
f o r ( i = buf−>cur_l ine+1; i < buf−>num_lines ; i++ )

buf−>l i n e_s t a r t [ i ]++;
}
e l s e

re turn UNHANDLEDCHAR;

return 0 ;
}

i n t hand le_inse r t ion ( Buf f e r ∗buf , Window ∗win , Cursor ∗ curs , char c )
{

i n t r e t va l u e ;

/∗ i n s e r t typed char and echo i t ∗/
r e tva l u e = i n s e r t ( buf , ∗win , c ) ;
i f ( r e t va l u e < 0 ) {

i f ( r e t va l u e == OUT_OF_LINES )
write_status_message ( MAXLINES_MSSGE, ∗ curs ) ;

e l s e i f ( r e t va l u e == OUT_OF_MEM )
write_status_message ( OUT_OF_MEM_MSSGE, ∗ curs ) ;

e l s e i f ( r e t va l u e == UNHANDLEDCHAR ) {
write_status_message ( UNHANDLEDCHAR_MSSGE, ∗ curs ) ;
r e turn r e tva l u e ;

}
re turn 0 ;

}
advance_cursor ( curs , ∗win , c ) ;
redraw_buffer ( ∗buf , win , curs ) ;
moveto ( curs−>r , curs−>c ) ;
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re turn 1 ;
}

/∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
Cursor Functions

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/

void get_cursor_at ( Buf f e r buf , Window win , i n t index , i n t l ineno ,
Cursor ∗ curs )

{
i n t t o ta l_ l i n e s_be f o r e = 0 ;
i n t rows_in_current_text l ine = 0 ;
i n t i ;

f o r ( i = win . l ine_at_top ; i < l i n eno ; i++ ) {
i f ( buf . l i n e_ len [ i ] < win . c o l s )

t o ta l_ l in e s_be f o r e++;
e l s e

t o ta l_ l in e s_be f o r e += ( in t ) c e i l ( ( double ) buf . l i n e_len [ i ] / win . c o l s ) ;
}
rows_in_current_text l ine = index /win . c o l s ;
curs−>r = to ta l_ l in e s_be f o r e + rows_in_current_text l ine ;
curs−>c = index − rows_in_current_text l ine ∗ win . c o l s ;

}
/∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/

void advance_cursor ( Cursor ∗ cursor , Window win , char ch )
{

i f ( ch == '\n ' ) {
cursor−>r++;
cursor−>c = 0 ;

}
e l s e {

cursor−>c++;
i f ( cursor−>c == win . c o l s ) { /∗ wrap the l i n e ∗/

cursor−>c = 0 ;
cursor−>r++;

}
}

}
/∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/

void in i t_cur so r ( Cursor ∗ cur so r )
{

cursor−>r = 0 ;
cursor−>c = 0 ;

}
/∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/

void show_cursor ( Buf f e r buf , Window win , Cursor cursor ,
i n t index_in_line , i n t line_number )

{
char curs_str [ 8 0 ] ;
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s p r i n t f ( curs_str , "Cursor : [%d,%d ] l i n e index : %d win t op l i n e : %d "
"buf #l i n e s : %d" ,

cur so r . r+1, cur so r . c+1, line_number , win . line_at_top ,
buf . num_lines ) ;

wr i t e (1 ,PARK, lPARK) ;
wr i t e (1 , CLEAR_LINE, lCLEAR_LINE) ;
wr i t e (1 , curs_str , s t r l e n ( curs_str ) ) ;
moveto ( cur so r . r , cu r so r . c ) ;

}
/∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/

void moveUp( Buf f e r ∗buf , Window ∗win , Cursor ∗ curs )
{

/∗ i f buf . cur_l ine == 0 , we cannot go up fu r t h e r ∗/
i f ( buf−>cur_l ine > 0 ) {

buf−>cur_line−−;

i f ( buf−>index_in_cur_line >= buf−>l ine_len [ buf−>cur_l ine ] ) {
buf−>index_in_cur_line = buf−>l ine_len [ buf−>cur_l ine ]−1;

}

i f ( buf−>cur_l ine >= win−>line_at_top ) {
get_cursor_at (∗ buf , ∗win , buf−>index_in_cur_line , buf−>cur_line ,

curs ) ;
}

e l s e {
win−>line_at_top = buf−>cur_l ine ;
get_cursor_at (∗ buf , ∗win , buf−>index_in_cur_line , buf−>cur_line ,

curs ) ;
s c r o l l_bu f f e r (∗ buf , ∗win ) ;

}
moveto ( curs−>r , curs−>c ) ;

}
}
/∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/

void moveDown( Buf f e r ∗buf , Window ∗win , Cursor ∗ curs )
{

i n t l a s t l i n e ;

i f ( buf−>cur_l ine < buf−>num_lines−1 ) {
buf−>cur_l ine++;
/∗ Check whether the cur so r would be past the r ightmost cha rac t e r

o f the now cur rent l i n e . I f so , p o s i t i o n i t j u s t past the r ightmost
cha rac t e r . ∗/

i f ( buf−>index_in_cur_line >= buf−>l ine_len [ buf−>cur_l ine ] ) {
buf−>index_in_cur_line = buf−>l ine_len [ buf−>cur_l ine ]−1;

}

get_last l ine_in_win ( ∗buf , ∗win , &l a s t l i n e ) ;

i f ( buf−>cur_l ine > l a s t l i n e ) {
/∗ Need to s c r o l l ∗/
win−>line_at_top += buf−>cur_l ine − l a s t l i n e ;
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get_cursor_at (∗ buf , ∗win , buf−>index_in_cur_line , buf−>cur_line ,
curs ) ;

s c r o l l_bu f f e r (∗ buf , ∗win ) ;
}
e l s e

get_cursor_at (∗ buf , ∗win , buf−>index_in_cur_line ,
buf−>cur_line , curs ) ;

moveto ( curs−>r , curs−>c ) ;
}

}
/∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/

void moveRight ( Buf f e r ∗buf , Window ∗win , Cursor ∗ curs )
{

i f ( ( buf−>index_in_cur_line < buf−>l ine_len [ buf−>cur_l ine ] −1 ) | |
( ( buf−>index_in_cur_line < buf−>l ine_len [ buf−>cur_l ine ] )

&& ( buf−>cur_l ine == buf−>num_lines−1 ) ) )

{
buf−>index_in_cur_line++;
i f ( buf−>index_in_cur_line % win−>co l s == 0 ) {

curs−>r++;
curs−>c = 0 ;
i f ( curs−>r > win−>rows−2 ) {

win−>line_at_top += curs−>r − (win−>rows−2);
s c r o l l_bu f f e r (∗ buf , ∗win ) ;

}
moveto ( curs−>r , curs−>c ) ;

}
e l s e {

curs−>c++;
wr i t e (1 , RIGHT, lRIGHT ) ;

}
}

}
/∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/

void moveLeft ( Buf f e r ∗buf , Window ∗win , Cursor ∗ curs )
{

i f ( buf−>index_in_cur_line > 0 ) {
i f ( buf−>index_in_cur_line % win−>co l s == 0 ) {

curs−>r−−;
curs−>c = win−>co l s −1;
moveto ( curs−>r , curs−>c ) ;

}
e l s e {

curs−>c−−;
wr i t e (1 , LEFT, lLEFT ) ;

}
buf−>index_in_cur_line−−;

}
}
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Chapter 6 Event Driven Programming

Concepts Covered

The NCurses library,
Alarms and interval timers
Signals revisited, signal-driven I/O
Asynchronous I/O

AIO Library
alarm, pause, nanosleep,
setitimer, getitimer, aio_read,
aio_return, aio_error

6.1 Introduction

An event-driven program is a program in which the �ow of control of the program depends upon the
occurrence of external events. The typical event-driven program remains in a state in which it listens
for or awaits events, selects which events to respond to next, responds to them, and then returns to
its listening state. Event driven programs must have some type of event recognition mechanism and
event handling mechanism. Unlike sequential programs, event-driven programs must work correctly
in an environment in which unexpected, dynamic, external stimuli come from sources such as users,
hardware, or other processes.

6.2 Common Features of Event-Driven Programs

Event-driven programs include programs with graphical user interfaces, operating systems, device
drivers, control system software, and video games, to name a few. Writing video games is a good
means to master event-driven programming, because their requirements include those commonly
encountered in other event-driven programs (EDPs), and because it is generally fun to write them.
Typical video games need to handle the following:

Spatial control Like many other EDPs, video games have to manage the two-dimensional screen
image, maintaining information about where all of its objects are located.

Timing Video games, like many EDPs, usually have moving images whose velocities are moni-
tored and controlled by the game. Games may also time the user's inputs. They often
have to keep track of clock time and cause certain events to happen at speci�c times or
at speci�c intervals of time.

Asynchronous inputs and signals Video games, like all EDPs, have to respond to unpredictable user
inputs such as mouse clicks, mouse motion, and keystrokes, as well as inputs from other
sensors. These events are asynchronous with respect to the execution of the program.

Process synchronization Video games usually have multiple threads of control. One or more objects
might be moving independently across the screen while the user independently types
or uses a tracking device. The program has to keep track of and synchronize these
independent processes and objects.
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6.3 Terminal-based Games

Early UNIX systems often came bundled with a large variety of terminal-based games, i.e., games
that ran in a pseudo-terminal window rather than a console window. The distinction between
these is that a terminal window is a character I/O device that treats its display area as a two-
dimensional array whose cells can contain characters, whereas a console window is a bit-mapped
display device each of whose pixels can be accessed individually. Historically, these games were
located in /usr/games.

These days, system administrators do not install the games, one reason being because they know
that users tend to use up system resources having fun instead of working1. Another reason for
not installing the terminal-based games is that there are now many free games that run on top of
the X Windows system, using bit-mapped displays, making the older games seem less fun to those
accustomed to the advanced technology. Perhaps those who appreciate the old terminal-based games
are the same people who still appreciate black-and-white movies.

The great advantage of writing a terminal-based game over one that uses a GUI, is that it is easier
to concentrate on the principles rather than the details of the windowing system. Although it is
more exciting to create a game that runs in a graphics window, that requires an entirely di�erent
set of topics to learn and it would be a distraction from the objective of learning how to control
and use signals, how to use time and synchronization, and how to control what the user is able to
do with the keyboard. If you also had to learn about video cards, X Windows, and widgets and
windows, your time would be consumed with that instead.

We will write a game similar to the game of pong, which runs in a terminal window. The game of
pong is a simpli�cation of an arcade game. In pong, there are two controlled objects: a ball and a
paddle. The ball is a small circle or square that moves across the screen at some �xed speed. The
paddle is a vertical line segment that the user can move up and down with keystrokes. The edges
of the terminal window are walls o� of which the ball bounces.

6.4 The Curses (NCurses) Library

Recall that in Chapter 1 we saw that we could con�gure the terminal by sending various escape
sequences to it, such as "\033[7m" to reverse the colors of the video display. We also saw how
we could move the cursor around, clear various portions of the screen, and do other things by
sending escape sequences to the terminal. With di�erent kinds of terminals requiring di�erent
escape sequences, the task of writing a program that controls a terminal becomes complex, if this
is the only means of con�guring and controlling terminals.

Fortunately, in UNIX, it is relatively easy to write programs that control the terminal, because
UNIX systems come bundled with a character-oriented graphics library called Curses, the header
�le for which is <curses.h>. Curses is basically a library that wraps the complexity of terminal
capabilities into an easy to use interface. According to Eric Raymond in the September issue of the
Linux Journal,

"The �rst Curses library was hacked together at the University of California at Berkeley in about
1980 to support a screen-oriented dungeon game called rogue. It leveraged an earlier facility called
termcap, the terminal capability library, which was used in the vi editor and elsewhere."

1In the past, people would spend idle time playing snake, worm, hangman, chess, or even rogue. The �rst thing

one did when given an account on a UNIX system was to check the contents of /usr/games.
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AT&T Bell Labs saw the virtues of Curses and developed their own version and incorporated it into
SVR1. The SVR1 Curses library had many attractive features, but it was proprietary and it was
based on a binary �le format called terminfo, while the BSD version was free and based on the
termcap �le, a plain text �le. Programmers were torn between the proprietary, enhanced Curses
of SVR1 and the free, but limited feature BSD version. In 1982, Pavel Curtis solved the problem
by rewriting a version of Curses based on the SVR1 version, but his was free and text-based. This
made it possible for hackers to improve on it. To shorten the story, from Curses eventually came
NCurses (new curses), with more features and multi-terminal capabilities.

We will use the NCurses library. The NCurses library is a library of more than one hundred
graphics functions for manipulating a character-oriented display device. The functions treat the
display device as a two-dimensional array of characters, with coordinate (0,0) in the upper left
corner. The library also contains routines for creating and manipulating windows, sub-windows and
panels, and menus. We will focus our attention on a small set of features of the library.

6.4.1 NCurses Basics

Most window managers, whether on UNIX, the Macintosh operating systems, or the various Win-
dows operating systems, follow the same principle of drawing: they maintain two data structures
representing the canvas on which they draw. One, the visible canvas, is what is currently in view
on the physical display device, and the other, the hidden canvas, is a canvas stored in memory,
on which drawing operations take place. This terminology is not standardized and goes by various
names, depending on the particular system one uses. I will use the term double-bu�ering to describe
this method of rendering, which is what it is called in graphics applications.

In double bu�ering, applications draw on the hidden canvas, and when it is ready to be displayed,
it is drawn onto the screen. In e�ect the hidden canvas becomes the visible canvas, and the memory
used for the visible canvas becomes the hidden canvas. The operation of drawing the hidden canvas
on the screen is known by various names, but the most common is screen updating. In reality, screen
updating is optimized to redraw only those portions of the screen that are di�erent than what is on
display.

NCurses uses a form of double bu�ering. Because NCurses manages the content of a terminal
window, the concept of a �screen� in this context is not the monitor's full visible area, but the area
enclosed within the terminal emulation window. Henceforth, a screen refers to the content area of
a terminal window. In NCurses, screen updating is called refreshing.

NCurses, like many graphical libraries, uses a coordinate system derived from matrix coordinates
rather than Cartesian coordinates. The origin is at the upper left corner of the screen, and the pair
(y,x) representing the coordinates of a point (or character in this case) is the row number followed
by the column number, as shown in Figure 6.1.

It de�nes a data structure called a WINDOW to represent a window. A WINDOW structure describes a
sub-rectangle of the screen, possibly the entire screen. It includes the window's starting position on
the screen (the (y, x) coordinates of the upper left hand corner), its size, and various properties. It
is opaque to the programmer; you do not have access to its members. You can write to a window as
though it were a miniature screen, scrolling independently of other windows on the physical screen.
A window is a purely internal representation. It is used to build and store a potential image of a
portion of the terminal. It doesn't bear any necessary relation to what is really on the terminal
screen.
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Figure 6.1: NCurses coordinate system

A screen is a special window that is the size of the terminal screen, i.e., it starts at the upper
left hand corner and extends to the lower right hand corner. There are two prede�ned screens2:
stdscr, which is automatically provided for the programmer, and curscr, for current screen, which
is a screen image of what the terminal currently looks like. The programmer can draw on stdscr,
but not on curscr.

6.4.2 Screen Updating

Each time that the application makes changes to a window that it wants to become visible on the
screen, it needs to refresh the screen. There are two functions that make the section of the terminal
screen corresponding to a window re�ect the contents of the window structure: refresh() and
wrefresh(). If the application is drawing on stdscr, which is the default screen, then it simply
calls

refresh()

If it is drawing on a WINDOW named win, and it wants to draw that window's content on the screen,
it calls

wrefresh(win)

refresh() is equivalent to wrefresh(stdscr). It is actually a macro.

A piece of screen �real estate� may be within the extent of any number of overlapping windows. If
two windows, win1 and win2, overlap, and wrefresh(win2) is called, the library determines how to
redraw the screen most e�ciently, replacing those portions of the screen within the intersection of
win1 and win2. It only redraws a window if that window's content has changed in some way. You
can call touchwin(win) to tell NCurses that the entire window win has changed, forcing a redraw
when wrefresh(win) is called.

2There is a third, hidden screen that represents the logical screen on which the hidden drawing takes place.

NCurses documentation calls it the virtual screen.
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6.4.3 Building Programs

All programs using NCurses must include the <ncurses.h> header �le and the standard C I/O li-
brary header �le <stdio.h>. The header �le <ncurses.h> is often just a symbolic link to <curses.h>,
so they are often interchangeable. Because the NCurses library is not in the linker's standard set
of libraries, you have to build explicitly with -lncurses in the command (following all �les that
reference NCurses symbols):

$ gcc -o myprog myprog.c -lncurses

6.4.4 A Core Repertoire of Functions

This is not intended to be a comprehensive tutorial on NCurses. For that you should consult any
of the several on-line reference manuals or tutorials. The objective here is to explain the underlying
concepts of the core library and to describe many of the functions that it provides. Below is a
collection of the most important, and basic, representative functions for terminal con�guration,
cursor movement, output and input.

Con�guration Functions
initscr() Initialize the curses library and create a logical screen.
endwin() Turn o� curses and reset the screen.
wrefresh(win) Draw what is in the logical window win into the physical

display. Remember that refresh() is the same as
wrefresh(stdscr).

clear() Clear the screen.
keypad(stdscr,TRUE) Enable use of function and keypad keys (arrows, F1, ...)

Output and Cursor Movement
move(r,c) Move the cursor to screen position (r,c).
getyx(win,y,x) Get the current cursor position. This is a macro so y and x

do not have to be passed by address.
addch(c) Draw character c on the screen at the current cursor

position, advancing the cursor to the end of the character. If
c is a tab, newline, or backspace, the cursor is moved
appropriately within the window. It wraps if it reaches the
right margin.

addstr(str) Draw the character string str on the screen at the current
cursor position, advancing the cursor to the end of the
string. It is equivalent to calling addch() for every character
in the string.

addnstr(str, n) Like addstr(), except that at most n characters of str will
be written. If n is -1, then the entire string will be added,
up to the maximum number of characters that will �t on the
line, or until a terminating null is reached. Thus,
addstr(str) is the same as addnstr(str,-1).
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mvaddch(x,y,c) Move the cursor to position (x,y) on the screen and draw
the character at that position, advancing cursor to the end
of the character.

addchstr(str) Like addstr(str), except that: the cursor does not
advance, it does not perform any kind of checking (such as
for the newline, backspace, or carriage return characters), it
does not expand other control characters to ^-escapes, and
it truncates the string if it crosses the right margin, rather
than wrapping it around to the new line.

printw(fmt, ...) The same as printf() in C but prints to current cursor
position.

Input
getch() Read a character from the window.
getstr(str) Read characters until a newline is received and store

(without newline) in str (allocated by caller)
scanw(fmt, ...) The same as scanf() in C � like calling getstr(), passing

to sscanf().

Window Functions
win = newwin(l,c,y,x) Create a new window with l lines, c columns, whose upper

left corner is at (y,x). Returns pointer to new window.
mvwin(win,y,x) Move window pointed to by win to position (y,x)
win = dupwin(oldwin) Make a duplicate of oldwin, returning pointer to the new

window.
delwin(win) Delete the window win, releasing all of its resources.
putwin(win, filep) Write all data associated with the window pointed to by win

into the FILE stream to which filep points. Returns ERR if
the underlying write fails.

win = getwin(filep) Read all window data stored into the �le by putwin, and
create and initialize a new window with that data. This
returns a pointer to the new window.

Synopsis.

The initscr() function initializes the terminal in curses mode. It may also clear the screen in
certain implementations. This always must be called �rst. It initializes the NCurses system and
allocates memory for the stdscr and curscr windows and some other data-structures. When a
program is �nished, it should always call endwin() to reset the terminal and release curses resources.

After initializing curses, there are several functions that can be used to con�gure the terminal. It
is usual to clear the screen with clear(), and if the program wants to receive key-presses from the
keypad and function keys, then it should call keypad(stdscr, TRUE). Other functions not shown
above include functions that a�ect the terminal driver processing modes � raw() and cbreak(),
echo() and noecho(), and halfdelay(). We will discuss these later.

Output functions can be divided into three families:
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addch() Print a character at the cursor position, advancing cursor

addstr() Print a string at the cursor position, advancing cursor

printw() Print formatted output similar to printf(), advancing cursor

Thus, addch() adds a character, addstr() adds a string, and printw() prints formatted text. For
each of these there are many variants, which are described below.

The cursor can be moved without output using the move() function. Its current position can be
retrieved using getyx(). The mvaddch() function is a representative of a class of functions that
perform a cursor movement prior to an output operation. Generally speaking, for each output
function such as addch(), there is a corresponding function of the form mvaddch(). For example,
there is a mvaddstr() function and a mvprintw() function.

The basic input functions are getch() and the string counterpart, getstr(), and the C-like scanw(),
which is like scanf(). Notice that getch() has no argument, but getstr() expects a pointer to
an allocated bu�er in which to store the entered text.

Finally, all of the above functions work on the standard screen, stdscr. They are all macros. For
each of them, there is a function that operates on arbitrary windows, and a naming convention
that makes it pretty easy to guess what they are. For example, wgetch(win) is an input function
that reads a character from the current window, win, and getch() is de�ned as wgetch(stdscr).
Similarly, waddch(win,ch) puts a character at the cursor position in win and addch(ch) is de�ned
as waddch(stdscr,ch).

One can create windows using newwin(), which allocates the memory on the heap and returns a
pointer to it. If newwin() is passed 0 for either lines or columns, that dimension is set to the
maximum it can be and �t within the terminal window. The function makes sure that the new
window does not extend beyond the bounds of the terminal screen in all cases. A window can be
moved using mvwin(); you have to refresh to see the change. This does not erase the old window
from the screen, which you have to do yourself. You can make a copy of a window with dupwin(),
and delete a window with delwin().

6.4.5 Important Points About Windows and Refreshing

• It is a good idea to call refresh() or wrfresh() whenever you make changes to the screen,
but you should bear in mind several important points.

• The functions of the addch() and addstr() families that write strings and characters to the
screen always call wrefresh() themselves, so that it is not necessary to refresh when adding
strings or characters. This is not true of the printw() functions.

• When drawing many windows to the screen, if wrefresh() is called for each window, it
can cause bursty output and poor performance. The wrefresh() function actually calls two
functions, wnoutrefresh() and doupdate(). A call to wnoutrefresh(win) copies the WINDOW
pointed to by win onto the logical screen, and doupdate() copies the logical screen to the
physical screen. Therefore, it is better to call wnoutrefresh(win) for each window to be
written to the screen, followed by a single call to doupdate().
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• The input functions of the getch() and getstr() families will call wrefresh() on the given
window if it has been moved or modi�ed since its last refresh. If echo is on, then automatically
a refresh will take place, since this is a modi�cation. To be clear, getch() will call refresh(),
and wgetch(win) will call wrefresh(win). This can have serious consequences on the behavior
of your program, since the cursor will move into the window on which wgetch(win) is being
called, and refreshes may have unexpected consequences as well.

• Lastly, as a general rule, you should never write NCurses programs that mix the use of the
standard screen, stdscr, and other windows. The functions that perform input and output
and refreshing on the standard screen interact in unexpected ways with other windows. If you
want to write simple programs, do not use windows in them, and conversely, if you feel that
the program would bene�t from using windows, then do not use any functions that operate
on the standard screen.

6.4.6 A Few Simple Programs

In keeping with the tradition, we start with a hello-world program.

Listing 6.1: helloworld.c

L i s t i n g . he l l owor ld . c
#inc lude <ncurse s . h>

in t main ( )
{

i n i t s c r ( ) ; /∗ i n i t i a l i z e the l i b r a r y ∗/
printw (" He l lo World ! ! ! \ n " ) ; /∗ pr in t at cur so r ∗/
r e f r e s h ( ) ; /∗ update s c r e en ( unneces s sary ) ∗/
getch ( ) ; /∗ wait f o r a keypres s ∗/
endwin ( ) ; /∗ c l ean up and qu i t cu r s e s ∗/
return 0 ;

}

The input call getch() is used so that the screen does not disappear before we can see it. The next
program is a bit more interesting.

Listing 6.2: drawpattern.c

#inc lude <s td i o . h>
#inc lude <cur s e s . h>

in t main ( )
{

char pattern [ ] = "1234567890";
i n t i ;

/∗ I n i t i a l i z e NCurses and c l e a r the s c r e en ∗/
i n i t s c r ( ) ;
c l e a r ( ) ;
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/∗ This w i l l wrap ac ro s s the s c r e en ∗/
move(LINES/2 , 0 ) ;
f o r ( i = 1 ; i <= 8 ; i++ ) {

addstr ( pattern ) ;
addch ( ' ' ) ;

}

/∗ Park the cur so r at bottom ∗/
move(LINES−1 ,0) ;
addstr ("Type any char to qu i t : " ) ;
r e f r e s h ( ) ; /∗ not needed ∗/

/∗ Wait f o r the user to type something , o therw i se
the s c r e en w i l l c l e a r . ∗/

getch ( ) ;
endwin ( ) ;
r e turn 0 ;

}

Comments

1. NCurses has a prede�ned constant, LINES, that contains the number of rows in the terminal
window, and a constant COLS that stores the number of columns.

2. Notice too that the program calls refresh() each time it changes the screen. This is unnec-
essary, because addstr() forces the refresh automatically.

3. If you delete the call to getch(), you will not see anything, and if you delete the call to
endwin(), the screen will not be restored.

The next program draws a grid of periods centered on the screen.

Listing 6.3: drawgrid.c

#de f i n e CENTERY (LINES/2 −2) /∗ The middle l i n e in te rmina l ∗/
#de f i n e CENTERX (COLS/2 −2) /∗ The middle column in termina l ∗/
#de f i n e NUMROWS (LINES/2)
#de f i n e NUMCOLS (COLS/2)

i n t main ( )
{

i n t r , c ;
char MESSAGE[ ] = "Press any charac t e r to e x i t : " ;
i n t length , i , j ;
l ength = s t r l e n (MESSAGE) ;

i n i t s c r ( ) ; /∗ I n i t i a l i z e s c r e en ∗/
c l e a r ( ) ; /∗ Clear the s c r e en ∗/
noecho ( ) ; /∗ turn o f f cha rac t e r echo ∗/

char g r id [NUMROWS] [NUMCOLS] ;
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f o r ( i = 0 ; i < NUMROWS; i++ ) {
f o r ( j = 0 ; j < NUMCOLS−1; j++ )

gr id [ i ] [ j ] = ' . ' ;
g r i d [ i ] [NUMCOLS−1] = ' \ 0 ' ;

}

/∗ move to cente r to draw gr id ∗/
r = CENTERY − (NUMROWS/2 ) ;
c = CENTERX − (NUMCOLS/2 ) ;
move( r , c ) ;

/∗ Draw each row o f g r id as a s t r i n g ∗/
f o r ( i = 0 ; i < NUMROWS; i++ ) {

mvaddstr ( r+i , c , g r i d [ i ] ) ;
}

/∗ Move to bottom o f screen , post message to d i sp l ay ∗/
move(LINES−1 ,0) ;
addstr (MESSAGE) ;

getch ( ) ; /∗ wait f o r the user to type something ∗/
c l e a r ( ) ; /∗ c l e a r the s c r e en ∗/
endwin ( ) ; /∗ de l e t e cu r s e s window and qu i t ∗/ ;
re turn 0 ;

}

NCurses makes it easy to save any window to a �le. The putwin() function will write the contents
of a window to a FILE stream, and this can be read back into a program using getwin(). The next
two listings show how to do both. The �rst is a program that draws a face in a window and also
saves it to a �le speci�ed on the command line.

Listing 6.4: Saving a window: drawface2.c

#inc lude <s td i o . h>
#inc lude <s t r i n g . h>
#inc lude <ncurse s . h>
#inc lude <s t d l i b . h>

#de f i n e CENTERY (LINES/2 −2) /∗ The middle l i n e in te rmina l ∗/
#de f i n e CENTERX (COLS/2 −2) /∗ The middle column in termina l ∗/

void addhappyface ( i n t ∗ y , i n t ∗ x )
{

i n t orig_y = ∗y ;
addstr (" ^ ^ " ) ; move(++(∗y ) ,∗ x ) ;
addstr (" o o " ) ; move(++(∗y ) ,∗ x ) ;
addstr (" ^ " ) ; move(++(∗y ) ,∗ x ) ;
addstr ("\\___/" ) ;move(++(∗y ) ,∗ x ) ;
addstr (" " ) ;
∗y = orig_y ;
∗x = (∗x ) + 5 ;
move( ∗y , ∗x ) ;

}
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i n t main ( i n t argc , char ∗argv [ ] )
{

i n t r , c ;
char MESSAGE[ ] = "Press any charac t e r to e x i t : " ;
i n t l ength ;
FILE ∗ fp ; /∗ f o r wr i t i ng window contents ∗/

l ength = s t r l e n (MESSAGE) ;
i f ( argc < 2 ) {

p r i n t f (" usage : %s window− f i l e \n" , argv [ 0 ] ) ;
r e turn 0 ;

}

fp = fopen ( argv [ 1 ] , "w" ) ;
i f ( NULL == fp ) {

p r i n t f (" Error opening %s f o r wr i t i ng . \ n" , argv [ 1 ] ) ;
r e turn 0 ;

}

i n i t s c r ( ) ; /∗ I n i t i a l i z e cu r s e s l i b r a r y and the drawing sc r e en ∗/
c l e a r ( ) ; /∗ Clear the s c r e en ∗/

/∗ Move to bottom o f s c r e en and post message to d i sp l ay ∗/
move(LINES−1 ,0) ;
addstr (MESSAGE) ;

/∗ move to cente r o f s c r e en − width o f f a c e ∗/
r = CENTERY;
c = CENTERX − 5 ;
move( r , c ) ;
addhappyface(&r , &c ) ;
addhappyface(&r , &c ) ;
addhappyface(&r , &c ) ;

/∗ Park cur so r at bottom at the r i gh t s i d e o f the message ∗/
move(LINES−1, l ength ) ;
r e f r e s h ( ) ;

/∗ Write the standard sc r e en to a f i l e ∗/
i f ( ERR == putwin ( s tdsc r , fp ) ) {

printw (" Error sav ing window .\ n " ) ;
}
f c l o s e ( fp ) ;

getch ( ) ; /∗ wait f o r the user to type something ∗/
c l e a r ( ) ; /∗ c l e a r the s c r e en ∗/
endwin ( ) ; /∗ de l e t e cu r s e s window and qu i t ∗/
return 0 ;

}

The next listing is of a program that can read any �le created by an NCurses program that saved
data using putwin(). It tries to open the �le and display the window stored there. As getwin()
returns a NULL pointer on failure, it checks that the returned pointer is not NULL before displaying
the data.
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Listing 6.5: Retrieving a saved window: getdrawing.c

#inc lude <s td i o . h>
#inc lude <s t r i n g . h>
#inc lude <cur s e s . h>

in t main ( i n t argc , char ∗argv [ ] )
{

FILE ∗ fp ;
WINDOW ∗win ;

i f ( argc < 2 ) {
p r i n t f (" usage : %s window− f i l e \n" , argv [ 0 ] ) ;
r e turn 0 ;

}

fp = fopen ( argv [ 1 ] , " r " ) ;
i f ( NULL == fp ) {

p r i n t f (" Error opening %s . \ n" , argv [ 1 ] ) ;
r e turn 0 ;

}

i n i t s c r ( ) ; /∗ I n i t i a l i z e cu r s e s l i b r a r y and the drawing sc r e en ∗/
cbreak ( ) ; /∗ So that the charac t e r i s a v a i l a b l e immediately ∗/
noecho ( ) ; /∗ Turn o f f echo ∗/
c l e a r ( ) ; /∗ Clear the s c r e en ∗/

move(LINES−1 ,0) ;
addstr (" Enter a charac t e r to see the f a c e s : " ) ;
getch ( ) ;

win = getwin ( fp ) ;
i f ( NULL == win ) {

c l e a r ( ) ;
move(LINES−2 ,0) ;
printw ("The f i l e %s was not c rea ted us ing putwin ( ) . "

" Type any charac t e r to e x i t . \ n" ,
argv [ 1 ] ) ;

}
wre f r e sh (win ) ;
f c l o s e ( fp ) ;

getch ( ) ; /∗ wait f o r the user to type something ∗/
c l e a r ( ) ; /∗ c l e a r the s c r e en ∗/
endwin ( ) ; /∗ de l e t e cu r s e s window and qu i t ∗/
return 0 ;

}

6.5 User Input in NCurses

NCurses has functions to put the terminal into a few di�erent input modes. The following table
summarizes the di�erent models of input.
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Function Call Line
Bu�ering

Erase/Kill
Processing

Signal Inter-
pretation

Blocking

raw() No No No Yes
cbreak() No No Yes Yes
halfdelay(n) No No Yes Timed (0.1*n

seconds)
nodelay(stdscr, TRUE) No No Yes No

Raw mode, established with the raw() function, is similar to non-canonical mode in which, in addi-
tion, keyboard signal processing is disabled. Note though that it is a blocking input mode. Cbreak
mode, established with cbreak(), is like raw mode except that keyboard signals are processed.
Cbreak mode is also blocking.

The halfdelay() function and the nodelay() function both turn o� blocking mode, but the
halfdelay() function has a timeout whereas nodelay() is mercilessly unforgiving and does not.
Neither is line-bu�ered nor allows editing functions. The halfdelay() function takes a single in-
teger argument that represents the number of tenths of a second to block for terminal input. If
no input arrives within that time, then it returns the ERR value, which is an integer value. In our
demos directory, in chapter07, you can �nd demo programs named raw_demo.c, cbreak_demo.c,
halfdelay_demo.c, and nodelay_demo.c, that show how these input modes work.

There are two other functions worth remembering: noraw() and nocbreak(). If the terminal has
been put into raw, cbreak, or halfdelay mode, noraw() undoes that e�ect, turning on line bu�ering,
line editing, blocking, and signal processing. It will not undo the e�ect of nodelay(), which can
only be undone by calling

nodelay(stdscr, FALSE);

The nocbreak() function restores line-bu�ering and line-editing, but does not restore signal pro-
cessing if it had been disabled by raw mode previously. For that you need to call noraw(), which,
turns signal processing back on. nocbreak() also ends halfdelay mode.

Example

We will begin with a relatively simple program that puts the terminal into cbreak mode. The
program will go into a user-controlled loop that terminates only when the user enters a speci�c
character. To make it a bit more interesting, and realistic, we will use the F1 function key to
terminate the program. The program will also show how user input can be used to modify the
current window state other than by displaying text. It will let the user move the cursor around on
the screen with the arrow keys. Finally, it will create a status bar at the bottom of the screen and
write the current cursor position into it as the cursor moves, as well as the user's instructions for
what to do.

The listing follows. The comments explain the logic within the program.

Listing 6.6: cursortrack.c

/∗ LINES and COLS are NCurses v a r i a b l e s that get i n i t i a l i z e d when ∗/
/∗ i n i t s c r ( ) i s c a l l e d . ∗/
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#de f i n e CENTERY (LINES/2 −2) /∗ The middle l i n e in te rmina l ∗/
#de f i n e CENTERX (COLS/2 −2) /∗ The middle column in termina l ∗/

i n t main ( i n t argc , char ∗argv [ ] )
{

i n t x , y ; /∗ to r e t r i e v e coo rd ina t e s o f cu r so r ∗/
i n t ch ; /∗ to r e c e i v e user input cha rac t e r ∗/
i n t r , c ; /∗ to s t o r e coo rd ina t e s o f cur so r ∗/

/∗ A s t r i n g to d i sp l ay in the " s t a tu s bar" at the bottom of the s c r e en ∗/
char MESSAGE[ ] = "Use the arrow keys to move the cur so r . "

"Press F1 to e x i t " ;
i n t l ength ;
l ength = s t r l e n (MESSAGE) ; /∗ compute t h i s once . ∗/

i n i t s c r ( ) ; /∗ I n i t i a l i z e s c r e en ∗/
c l e a r ( ) ; /∗ Clear the s c r e en ∗/
noecho ( ) ; /∗ turn o f f cha rac t e r echo ∗/
cbreak ( ) ; /∗ d i s ab l e l i n e bu f f e r i n g ∗/
keypad ( s tdsc r , TRUE) ; /∗ Turn on func t i on keys ∗/

/∗ Move to bottom l e f t corner o f screen , wr i t e message the re ∗/
move(LINES−1 ,0) ;
addstr (MESSAGE) ;

/∗ Star t the cur so r at the s c r e en cente r ∗/
r = CENTERY;
c = CENTERX;
move( r , c ) ;

/∗ Print the cursor ' s c oo rd ina t e s at the lower r i g h t ∗/
move(LINES−1,COLS−8);
printw ("(%02d,%02d )" , r , c ) ;
r e f r e s h ( ) ;

/∗ Then move the cur so r back to the cente r ∗/
move( r , c ) ;

/∗ Repeatedly wait f o r user input us ing getch ( ) . Because we turned o f f ∗/
/∗ echo and put cu r s e s in to cbreak mode , getch ( ) w i l l r e turn without ∗/
/∗ needing to get a newl ine char and w i l l not echo the charac t e r . ∗/
/∗ When the user p r e s s e s the F1 key , the program qu i t s . ∗/
whi l e ( ( ch = getch ( ) ) != KEY_F(1 ) ) {

switch ( ch ) {

/∗ When keypad ( ) turns on func t i on keys , the arrow keys are enabled ∗/
/∗ and are named KEY_X, where X i s LEFT, RIGHT, e t c . ∗/
/∗ This switch updates the row or column as needed , modulo COLS ∗/
/∗ ho r i z o n t a l l y to wrap , and LINES−1 to wrap v e r t i c a l l y without ∗/
/∗ en t e r i ng the s an c t i t y o f the s t a tu s bar . ∗/

case KEY_LEFT:
c = ( 0 == c )? COLS−1:c−1;
break ;

case KEY_RIGHT:
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c = ( c == COLS−1 )? 0 : c+1;
break ;

case KEY_UP:
r = ( 0 == r )? LINES−2 : r−1;
break ;

case KEY_DOWN:
r = ( r == LINES−2 )? 0 : r+1;
break ;

}

/∗ Now we move the cur so r to the new pos i t i on , get i t s c oo rd ina t e s ∗/
/∗ and then move to the lower r i g h t to p r i n t the new po s i t i o n ∗/
move( r , c ) ;
getyx ( s tdsc r , y , x ) ;
move(LINES−1,COLS−8);
printw ("(%02d,%02d )" , y , x ) ;
r e f r e s h ( ) ;
/∗ Now we have to move back to where we were in c e the cur so r was ∗/
/∗ in the lower r i gh t a f t e r the printw ( ) . ∗/
move( r , c ) ;

}

endwin ( ) ; /∗ e x i t cu r s e s ∗/
return 0 ;

}

6.6 Multiple Windows in NCurses

The next example program demonstrates how to use multiple windows. Note that this program
does not use the standard screen.

Listing 6.7: drawmanygrids.c

#inc lude <s td i o . h>
#inc lude <s t d l i b . h>
#inc lude <s t r i n g . h>
#inc lude <cur s e s . h>

#de f i n e CENTERY (LINES/2 −2) /∗ The middle l i n e in te rmina l ∗/
#de f i n e CENTERX (COLS/2 −2) /∗ The middle column in termina l ∗/
#de f i n e NUMROWS (LINES/2) /∗ number o f rows we use ∗/
#de f i n e NUMCOLS (COLS/2) /∗ number o f columns we use ∗/
#de f i n e REPEATS 5
#de f i n e GRIDCHARS " .∗@+#" /∗ should have REPEATS many chars ∗/

i n t main ( i n t argc , char ∗argv [ ] )
{

char MESSAGE[ ] =
"Type the charac t e r o f the g r id to br ing i t forward , ' q ' to e x i t : " ;

i n t length , i , j , k ;
WINDOW ∗mssge_win ;
WINDOW ∗windows [REPEATS ] ;
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char g r idchar [REPEATS] = GRIDCHARS;
i n t rowsh i f t , c o l s h i f t ;
i n t ch ;

i n i t s c r ( ) ; /∗ I n i t i a l i z e s c r e en ∗/
noecho ( ) ; /∗ turn o f f cha rac t e r echo ∗/

/∗ Make sure that the window i s wide enough f o r message at the bottom .∗/
l ength = s t r l e n (MESSAGE) ;
i f ( l ength > COLS − 2 ) {

endwin ( ) ;
p r i n t f (" This program needs a wider window .\ n " ) ;
e x i t ( 1 ) ;

}

/∗ Calcu la te the amount by which we s h i f t each window when we draw i t ∗/
rowsh i f t = (LINES − NUMROWS)/5 ;
c o l s h i f t = (COLS − NUMCOLS)/5 ;

/∗ In t h i s loop , we c r e a t e a new window , f i l l i t with a g r id o f a unique
cha ra c t e r s

∗/
f o r ( j = 0 ; j < REPEATS; j++ ) {

/∗ Create a new window at an o f f s e t from (0 , 0 ) determined by the
row and column s h i f t . ∗/

windows [ j ] = newwin (NUMROWS, NUMCOLS, r owsh i f t ∗ j , c o l s h i f t ∗ j ) ;
i f ( NULL == windows [ j ] ) {

endwin ( ) ;
f p r i n t f ( s tde r r , "Error c r e a t i n g window\n " ) ;
e x i t ( 1 ) ;

}

/∗ Draw each gr id row as a s t r i n g in to windows [ j ] ∗/
f o r ( i = 0 ; i < NUMROWS; i++ ) {

f o r ( k = 0 ; k < NUMCOLS; k++ ) {
wmove(windows [ j ] , i , k ) ;
i f ( ERR == waddch (windows [ j ] , g r idchar [ j ] ) )

/∗ Ignore the e r r o r ; i t means we are in the
bottom r i gh t corner o f the window and the
cur so r was advance to a non−window po s i t i o n

∗/
;

}
}
/∗ Update the v i r t u a l s c r e en with t h i s window ' s content ∗/
wnoutre f resh (windows [ j ] ) ;

}
/∗ Now send the v i r t u a l s c r e en to the phy s i c a l s c r e en ∗/
doupdate ( ) ;

/∗Create a window to hold a message and put i t in the bottom row ∗/
mssge_win = newwin (1 , COLS, LINES−1, 0 ) ;

/∗ Write the message in to the window ; mvwaddstr p o s i t i o n s the cur so r ∗/
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mvwaddstr (mssge_win , 0 , 0 , MESSAGE) ;
wre f r e sh (mssge_win ) ;

whi l e ( 1 ) {
/∗

Read a charac t e r from the message window , not from s td s c r . The
c a l l to wgetch f o r c e s a r e f r e s h on i t s window argument . I f we
r e f r e s h s tdsc r , our g r i d s w i l l d i sappear .

∗/
ch = wgetch (mssge_win ) ; /∗ wait f o r the user to type something ∗/
i f ( ch == 'q ' ) /∗ time to qu i t ∗/

break ;
/∗ Check i f they typed a g r id charac t e r ∗/
f o r ( j = 0 ; j < REPEATS; j++ ) {

i f ( ch == gr idchar [ j ] ) {
wmove(mssge_win , 0 , l ength ) ; /∗ move cur so r to bottom ∗/
touchwin (windows [ j ] ) ; /∗ f o r c e the update ∗/
wre f r e sh (windows [ j ] ) ; /∗ r e f r e sh , b r ing ing i t forward ∗/
break ;

}
}

}
c l e a r ( ) ; /∗ c l e a r the s c r e en ∗/
endwin ( ) ; /∗ de l e t e cu r s e s window and qu i t ∗/
return 0 ;

}

6.7 Adding Timing to Programs: Sleeps

To make images move or animate on the screen, the program has to control the rate at which
images are changed or displayed, which implies their being able to access a time-of-day clock or a
timer. You have already seen the sleep() system call. It is one method of controlling time. The
problem with sleep() is that its base unit is a one-second interval, which is too coarse for most
video. An alternative is the usleep() system call; usleep() has a granularity of one microsecond3.
The problem with usleep() though is that it uses the real timer of the process, of which there is
just one, so multiple simultaneous calls to usleep() will have unexpected results. Both sleep()

and usleep() su�er from the fact that they may share the same timer as the alarm() system call.
POSIX requires a call named nanosleep(), which has even �ner granularity and is guaranteed not
to interact with any other timers. Therefore, we will use nanosleep():

#include <time.h>

int nanosleep(const struct timespec *req, struct timespec *rem);

The timespec structure is de�ned by

struct timespec {

3This does not mean that it will be implemented accurately to within a microsecond. The implementation of the

timer may be inaccurate for small intervals because of context-switching.
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time_t tv_sec; /* seconds */

long tv_nsec; /* nanoseconds */

};

The �rst argument speci�es the amount of time that the caller should be suspended. The second
argument can be used to store the amount of time remaining in case the caller is awakened by a
signal. If it is a NULL pointer, it is ignored. For now we will pass a NULL pointer as the second
argument.

The �rst example of animation alternates two images on the screen at regular intervals determined
by the nanosleep() timer. It uses three functions de�ned in �le faces.c :

void addsadface(int * y, int * x); // Draws a "sad" face at (y,x)

void addhappyface(int * y, int * x); // Draws a "happy" face at (y,x)

void eraseface(int * y, int * x); // Erases face at (y,x)

that draw, respectively, a �sad face�, a �happy face�, and a blank face. The coordinates are initially
the upper left corner of the rectangle enclosing the face. On return they store the upper right hand
corner.

The main loop will repeatedly draw a face, park the cursor in the lower left-hand corner of the
screen, call refresh(), and then sleep a bit. The sad and happy faces will alternate. The �rst
version of the program, whose listing follows, uses a loop that runs forever and must be killed by
the user's entering a Ctrl-C.

Listing 6.8: animateface0.c

#inc lude <s td i o . h>
#inc lude <cur s e s . h>
#inc lude <s t r i n g . h>
#inc lude <time . h> /∗ f o r s t r u c t t imespec ∗/
#inc lude " f a c e s . h" /∗ The s e t o f f a c e drawing func t i on s ∗/

i n t main ( i n t argc , char ∗ argv [ ] )
{

i n t r , c ;
i n t i = 0 ;
char MESSAGE[ ] = "Type Ctrl−C to ex i t : " ;
char BLANKS[ ] = " " ;
i n t l ength ;
s t r u c t t imespec s l e ep t ime = {0 ,500000000}; /∗ 1/2 second ∗/

i n i t s c r ( ) ; /∗ I n i t i a l i z e cu r s e s l i b r a r y and the drawing sc r e en ∗/
c l e a r ( ) ; /∗ Clear the s c r e en ∗/

/∗ Move to bottom o f s c r e en and post message to d i sp l ay ∗/
move(LINES−1 ,0) ;
addstr (MESSAGE) ;

/∗ Loop repea t ed ly un t i l user types any charac t e r ∗/
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whi le (1 ) {
/∗ move to cente r o f s c r e en ∗/
r = CENTERY;
c = CENTERX;
move( r , c ) ; /∗ move to that p o s i t i o n to draw ∗/

/∗ Draw e i t h e r a happy f a c e or sad f a c e at ( r , c ) ∗/
i f (0 == i ) {

addsadface(&r , &c ) ;
i = 1 ;

}
e l s e {

addhappyface(&r , &c ) ;
i = 0 ;

}

/∗ Park cur so r at bottom ∗/
move(LINES−1, l ength ) ;
r e f r e s h ( ) ;
nanos leep(&s leept ime , NULL) ; /∗ s l e e p 1/2 second ∗/

}

/∗ Cleanup −− e r a s e the f a c e f i r s t ∗/
r = CENTERY;
c = CENTERX;
move( r , c ) ;
e r a s e f a c e (&r , &c ) ;
/∗ e r a s e the message at the bottom of the s c r e en ∗/
move(LINES−1 ,0) ;
addstr (BLANKS) ;
r e f r e s h ( ) ;

endwin ( ) ; /∗ Delete NCurses window and qu i t ∗/
return 0 ;

}

6.8 Combining User Input and Timing

We can use the halfdelay() function in combination with timed sleeps to animate the face and also
let the user enter input. Our program can call halfdelay(1) to cause reads to wait one-tenth of a
second and use a controlled loop whose entry condition is simply (ERR == getch()) to allow the
user to type a character to stop the loop. As soon as the user types, the character will be bu�ered,
and the next time the getch() is executed, the character will be removed and returned, and the
condition will be false, breaking the loop.

We can also turn o� echo within NCurses with the noecho() function. Putting this all together,
we have the makings of animateface.c below.

Listing 6.9: animateface.c

#inc lude <s td i o . h>
#inc lude <cur s e s . h>
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#inc lude <s t r i n g . h>
#inc lude <time . h> /∗ f o r s t r u c t t imespec ∗/
#inc lude " f a c e s . h" /∗ The s e t o f f a c e drawing func t i on s ∗/

i n t main ( i n t argc , char ∗ argv [ ] )
{

i n t r , c ;
i n t i = 0 ;
char MESSAGE[ ] = "Press any charac t e r to e x i t : " ;
char BLANKS[ ] = " " ;
i n t l ength ;
l ength = s t r l e n (MESSAGE) ;
s t r u c t t imespec s l e ep t ime = {0 ,500000000}; /∗ 1/2 second ∗/

i n i t s c r ( ) ; /∗ I n i t i a l i z e cu r s e s l i b r a r y and the drawing sc r e en ∗/
c l e a r ( ) ; /∗ Clear the s c r e en ∗/
noecho ( ) ; /∗ Turn o f f cha rac t e r echo ∗/
ha l f d e l a y ( 1 ) ; /∗ Turn on timed delay o f 0 . 1 second −− i f no char ∗/

/∗ with in 0 .1 sec , getch ( ) r e tu rn s ERR ∗/

/∗ Move to bottom o f s c r e en and post message to d i sp l ay ∗/
move(LINES−1 ,0) ;
addstr (MESSAGE) ;

/∗ Loop repea t ed ly un t i l user types any charac t e r ∗/
whi l e (ERR == getch ( ) ) {

/∗ move to cente r o f s c r e en ∗/
r = CENTERY;
c = CENTERX;
move( r , c ) ; /∗ move to that p o s i t i o n to draw ∗/

/∗ Draw e i t h e r a happy f a c e or sad f a c e at ( r , c ) ∗/
i f (0 == i ) {

addsadface(&r , &c ) ;
i = 1 ;

}
e l s e {

addhappyface(&r , &c ) ;
i = 0 ;

}

/∗ Park cur so r at bottom ∗/
move(LINES−1, l ength ) ;
r e f r e s h ( ) ;
nanos leep(&s leept ime , NULL) ; /∗ s l e e p 1/2 second ∗/

}

/∗ Cleanup −− e r a s e the f a c e f i r s t ∗/
r = CENTERY;
c = CENTERX;
move( r , c ) ;
e r a s e f a c e (&r , &c ) ;
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/∗ e r a s e the message at the bottom of the s c r e en ∗/
move(LINES−1 ,0) ;
addstr (BLANKS) ;
r e f r e s h ( ) ;

endwin ( ) ; /∗ Delete NCurses window and qu i t ∗/
return 0 ;

}

6.9 Timing with the alarm() and pause() system calls

The sleep() system call is based upon the use of alarms. An alarm in UNIX is essentially the
software equivalent of a timer. (A timer goes o� after a designated time interval; an alarm clock
goes o� at a designated clock time; in UNIX alarms are like timers.) When you want to snooze for
an hour, you set a timer to wake you in an hour. In UNIX, a process can set an alarm to send itself
a signal at some future time. It does this by calling alarm(), whose prototype is

#include <unistd.h>

unsigned int alarm(unsigned int seconds)

alarm() sets a timer to expire in the number of seconds speci�ed as its argument and returns
immediately. If there is no pending alarm, the return value is 0. Otherwise the return value is the
number of seconds remaining in the pending alarm. An alarm is pending if alarm() was called
previously but the time period for which it was set has not yet elapsed. For example, suppose that
at time 0 an alarm is set for 10 seconds:

alarm(10);

and that 4 seconds later, the same process calls alarm() again, this time asking for 20 seconds:

seconds_left = alarm(20); // called with 6 seconds remaining

The value returned by this call to alarm(), which is stored in seconds_left, would be 6. The
alarm is reset to 20, and the alarm will signal the process 20 seconds later. The demo program
snoozealot.c demonstrates how this works and how to use that return value. Before you look at
snoozealot.c, take a look at the simpler program, snooze.c, which will be described shortly.

When an alarm's timer expires, a SIGALRM (there is no "A" between the L and R) signal is sent to
the process that set the alarm. If the process does not provide a signal handler for the SIGALRM, or
if for some other reason, the signal is not caught, then the SIGALRM will kill the process. The "other
reason" can be that the process is in a system call that cannot be interrupted, or that it is handling
some other signal at the time the SIGALRM hits it, and the particular handler is not designed to
allow multiple signals to be received.

From this discussion you should realize that the alarm() call can be used to maintain at most one
alarm at a time. If you want the e�ect of multiple alarms, then you have to code this into the
SIGALRM handler; i.e. you have to reset the alarm for the new time.
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In case it is not yet apparent, the alarm() system call has several di�erent uses. A process can set
an alarm prior to starting a long task that might not complete if the input data is unexpectedly
large. The alarm will prevent the process from spending too much time on potentially endless tasks.
It can also set an alarm to do a task asynchronously after a speci�c amount of time, perhaps based
upon the state of its data.

A system call that is often used with alarms is the pause() call. When a process calls pause(), it
is suspended and remains suspended until it receives a signal. Any signal will do to waken it. The
prototype of pause() is:

#include <unistd.h>

int pause(void);

If a process calls pause() without having scheduled an alarm that will expire after the call to
pause(), it will most likely never run again4. For example:

#include <unistd.h>

#include <stdio.h>

int main()

{

pause();

printf("You will never see this message!\n");

return 0;

}

This program, when run, will stay blocked until either the kernel sends it a signal or a user does,
and because there is no handler, it will take the default action on receiving the signal, which is
usually to terminate, not ever reaching the printf() statement.

The demos directory contains several di�erent examples to demonstrate the alarm(), signal(), and
pause() calls. The snooze.c demo is similar to the UNIX sleep command. The snoozealot.c

demo demonstrates how the alarm can be reused, how a signal handler for SIGALRM and for SIGINT
can do program cleanup, and how to allow non-blocking user input while in a programmed loop that
is counting down an alarm. The following demo is another example that focuses only on alarms but
also records the times that they occur.

The program in the listing below, alarmdemo1.c, uses the signal() system call to install signal
handlers. There is a second version of this program in the demos directory that does the exact same
thing using sigaction() instead. It is useful to compare them.

Listing 6.10: alarmdemo1.c

#inc lude <uni s td . h>
#inc lude <s td i o . h>
#inc lude <s i g n a l . h>
#inc lude <time . h>
#inc lude <s t d l i b . h>

/∗ This i s the SIGALRM handler . When the SIGALRM i s d e l i v e r e d to t h i s ∗/

4It might run if some other signal is delivered to it, for which it has a handler.
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/∗ process , i t r e s e t s the handler and d i s p l a y s the cur rent time . ∗/
void catchalarm ( i n t s i gno )
{

s i g n a l (SIGALRM, catchalarm ) ; /∗ i n s t a l l handler again ∗/
time_t t ; /∗ time in seconds s i n c e the Epoch ∗/
s t r u c t tm ∗ tp ; /∗ time s t r u c t with years , months , days , . . . ∗ /

time(&t ) ; /∗ get cur rent time as a time_t in t ∗/
tp = l o c a l t ime (&t ) ; /∗ convert time to a tm s t r u c t ∗/
p r i n t f ("Caught alarm at %d:%d:%d\n" , tp−>tm_hour , tp−>tm_min , tp−>tm_sec ) ;

}

i n t main ( i n t argc , char ∗ argv [ ] )
{

i n t k , s e c ;
s t r u c t tm ∗ tp ; /∗ time s t r u c t with years , months , days , e t c ∗/
time_t t ; /∗ time in seconds s i n c e the Epoch ∗/

/∗ check proper usage ∗/
i f (2 > argc ) {

p r i n t f ("Usage : %s n\n" , argv [ 0 ] ) ;
r e turn −1;

}

k = a t o i ( argv [ 1 ] ) ; /∗ convert argv [ 1 ] to i n t ( no e r r o r check ) ∗/
s i g n a l (SIGALRM, catchalarm ) ; /∗ i n s t a l l catchalarm as the handler ∗/

time (&t ) ; /∗ s t o r e cur rent time in t ∗/
tp = l o c a l t ime (&t ) ; /∗ s t o r e t as day , hours , minutes , e t c . ∗/

/∗ pr in t time at which alarm i s s e t an how long i t i s s e t f o r ∗/
p r i n t f ("Time i s %d:%d:%d\n" , tp−>tm_hour , tp−>tm_min , tp−>tm_sec ) ;
p r i n t f ( "Alarm i s s e t f o r %d seconds . \ n" , k ) ;
s e c = alarm (k ) ; /∗ s e t alarm ∗/

pause ( ) ; /∗ wait f o r a s i g n a l to a r r i v e ∗/
return 0 ;

}

Explanation

The main program begins by installing a SIGALRM handler using the signal() call:

signal(SIGALRM, catchalarm);

The catchalarm() handler is unlike the earlier examples. Before it does anything else, it calls
signal() to reinstall the handler. This is because signals of the same type will be lost while the
process is handling a signal. The only way to catch a SIGALRM while in the handler for SIGALRM is
to reissue the signal(). Although this particular program cannot issue another alarm, in general,
signal handlers should be designed so that if a second signal of the same type arrives while they

This work is copyrighted by Stewart Weiss and licensed under the Creative Commons Attribution-

ShareAlike 4.0 International License.
23

http://creativecommons.org/licenses/by-sa/4.0/ 
http://creativecommons.org/licenses/by-sa/4.0/ 


UNIX Lecture Notes
Chapter 6 Event Driven Programming

Prof. Stewart Weiss

are processing the �rst, they are not caught "by surprise" and possibly killed by the second signal.
This handler is just demonstrating that technique.

The handler uses the time() and localtime() system calls to get the current time, convert it to a
human readable format, and display it on the console. The main program displays the current time
and immediately turns on the alarm by calling

alarm(k)

where k is the command line argument's numeric value. It then calls pause() to wait for the
SIGALRM to be received. If a SIGALRM arrives before any other signal, it will cause catchalarm() to
run, which will display the time. If another signal arrives �rst, the process will probably be killed.

6.10 Interval Timers

The time granularity, or resolution, of the alarm() system call is too coarse to be useful for many
applications. Furthermore, alarm() must be called repeatedly if an alarm is to go o� at regular
intervals, such as when a process is timing the progress of some task. (Suppose you wanted to
display some sort of speed indicator on the console, where instantaneous speed was measured by
the amount of data written in a �xed time interval. You would need a timer of �ne resolution and
a SIGALRM catcher that would measure the amount of data processed and reinstall itself, but this
would be slightly inaccurate because of time lapsed between the start of the handler and the time
it took to reinstall itself.)

Interval timers were introduced in later Berkeley distributions of UNIX (4.2BSD) as well as in the
SVR4(1170) versions of UNIX as a solution to this problem. An interval timer has two components:
an initial delay and a repeat interval. The value of the initial delay is the amount of time the kernel
should delay before sending the �rst signal to the process. The value of the repeat interval is the
amount of time the kernel should wait between successive signals sent to the process. In other
words, if an interval timer is started at time t0, with initial delay = x and repeat interval y, then it
will generate signals at times t0 + x, t0 + x+ y, t0 + x+2y, t0 + x+3y, t0 + x + 4y, ... until the
process terminates.

6.10.1 Three kinds of timers: Real, Virtual, and Pro�le

There are three di�erent types of interval timers. One type of timer ticks during all elapsed time
(like the clock on the wall); this is the real timer. The second ticks only when the process is in user
mode (like the timer in a sporting event, which stops when play is paused for various reasons); this
is the virtual timer. The last ticks when the process is in user mode or in system calls (like the
timer in a professional chess game, which is stopped when one person has stopped it and the other
has not yet started it5); it is called the prof timer. The constants used to de�ne these timers, as
you will shortly see in the documentation are:

ITIMER_REAL ticks always and sends a SIGALRM when it expires

5If the two people decide to take a co�ee break, the timer is in the o� state. You can think of user mode as your

time and kernel mode as your opponent's time. Then this analogy �ts.
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ITIMER_VIRTUAL only ticks when the process is in user mode, i.e., not in system calls. It sends a
SIGVTALRM when it expires.

ITIMER_PROF ticks during user mode and in system calls; on expiration sends a SIGPROF signal

The "PROF" in SIGPROF and ITIMER_PROF is short for pro�le, which is a snapshot of a process's time
usage across all user mode and kernel mode activities. From these de�nitions, it follows that the
time the process spends sleeping is its real time less its pro�le time, and that the time it spends in
kernel mode is pro�le time less virtual time. Our interest is in real interval timers, those that tick
like an ordinary alarm clock.

6.10.2 The Initial and Repeating Values

An itimerval structure contains two members: the value of the initial delay, and the value of the
repeat interval:

struct itimerval {

struct timeval it_interval; /* next value */

struct timeval it_value; /* current value */

};

The initial delay is stored in the it_value element and the repeat interval is stored in it_interval.
As the timer ticks, the it_value element is decremented; when it reaches zero, a signal is sent to
the process and the value of it_interval is copied into it_value.

Each member is of type timeval. A timeval structure represents a time interval using two elements:
the number of seconds and the number of microseconds in the interval. There is no milliseconds
�eld:

struct timeval {

long tv_sec; /* seconds */

long tv_usec; /* microseconds */

};

As a long integer is usually either 32 or 64 bits, depending upon the implementation, the tv_usec
member is large enough to represent any number of microseconds from 0 to one million. Since it
is common to work with time in milliseconds, you need to convert a time measured in milliseconds
to a timeval with seconds and microseconds units. Mathematically, if t is a time expressed in
milliseconds, then

• bt/1000c is the number of whole seconds in t, and

• 1000 · (t mod 1000) is the number of microseconds in t− bt/1000c

Therefore, the following C code fragment sets a timeval structure's �elds, given an integer number
m of milliseconds
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timeval t;

t.tv_sec = m / 1000;

t.tv_usec = ( m - t.tv_sec * 1000 ) * 1000;

This avoids a second division using the modulo operator.

The getitimer() and setitimer() system calls work with interval timers. The former gets a
timer's current value and the latter sets a timer's value.

#include <sys/time.h>

int getitimer(int which, struct itimerval *value);

int setitimer(int which, const struct itimerval *value,

struct itimerval *ovalue);

The �rst parameter to both is an integer constant that speci�es the type of timer, one of the
constants, ITIMER_REAL, ITIMER_VIRTUAL, or ITIMER_PROF. The second parameter to getitimer()

is a pointer to the itimerval structure to be �lled with its current values. The it_value element
of this structure is given the time remaining on the timer, not the time it was originally set to be.

The setitimer() function's second parameter, value, is the address of the itimerval structure
with which to set the timer, and the third, ovalue, if it is not NULL, is the address of a structure to
be �lled with its current values.

To stop a timer, set the initial and repeat intervals to 0. If the repeat is 0 but the initial delay is
not, the timer sends a single signal and then stops. If the initial value is 0 the timer never starts,
no matter what the repeat interval is.

The function set_timer(), below, can be used to set the value of an interval timer, given a time
value expressed in milliseconds. It has three parameters, the type of timer to set, the number of
milliseconds in the initial delay, and the number of milliseconds in the repeat interval.

Listing 6.11: set_timer()

i n t set_timer ( i n t which , long i n i t i a l , long repeat )
{

s t r u c t i t ime r va l i t ime r ;
long s e c s ;

/∗ i n i t i a l i z e i n i t i a l de lay ∗/
s e c s = i n i t i a l / 1000 ;
i t ime r . i t_value . tv_sec = s e c s ;
i t ime r . i t_value . tv_usec = ( i n i t i a l − s e c s ∗1000 ) ∗ 1000 ;

/∗ i n i t i a l i z e repeat i n t e r v a l ∗/
s e c s = repeat / 1000 ;
i t ime r . i t_ i n t e r v a l . tv_sec = s e c s ;
i t ime r . i t_ i n t e r v a l . tv_usec = ( repeat − s e c s ∗1000 ) ∗ 1000 ;

r e turn s e t i t im e r (which , &i t imer , NULL) ;
}
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The demo program, timerdemo.c, demonstrates how this function can be used. It accepts command
line arguments so that you can control the initial and repeat delays, and the signal handler is
designed to simply count how many signals are received and to quit after a pre-speci�ed number of
signals.

Listing 6.12: timerdemo.c

#inc lude <s t d l i b . h>
#inc lude <s td i o . h>
#inc lude <sys / time . h>
#inc lude <s i g n a l . h>
#inc lude " t imers . h"

void count_alarms ( i n t ) ;

i n t main ( i n t argc , char ∗ argv [ ] )
{

i n t i n i t i a l = 250 ; /∗ de f au l t va lue ∗/
i n t repeat = 500 ; /∗ de f au l t va lue ∗/

i f ( argc >= 3) {
i n i t i a l = a t o i ( argv [ 1 ] ) ;
r epeat = a t o i ( argv [ 2 ] ) ;

}
i f ( i n i t i a l == 0 | | r epeat == 0 ) {

p r i n t f (" Se t t i ng e i t h e r i n t e r v a l to 0 hangs the proce s s . \ n " ) ;
p r i n t f (" Ba i l i ng out . . . \ n " ) ;
r e turn 0 ;

}

s i g n a l (SIGALRM, count_alarms ) ;
i f ( set_timer (ITIMER_REAL, i n i t i a l , r epeat ) == −1 )

pe r ro r (" set_timer " ) ;
e l s e

whi l e ( 1 )
pause ( ) ;

r e turn 0 ;
}

void count_alarms ( i n t signum )
{

i n t a larmsaccepted = 10 ;
s t a t i c i n t count = 0 ;
p r i n t f (" alarm %d \n" , ++count ) ;
f f l u s h ( stdout ) ;
i f ( a larmsaccepted == count ){

p r i n t f ("No more alarms al lowed ! \ n " ) ;
e x i t ( 0 ) ;

}
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}

If you run this program with various values as arguments, you will see how it works.

6.10.3 How Timers Are Implemented in UNIX

There is only one system clock. In contrast, there are many processes, and more than one of
these might have active timers. The kernel maintains a data structure containing the timers of all
processes. With each tick of the system clock, the kernel decrements each of the currently active
per-process timers. If a process's timer reaches 0, the kernel sends the appropriate signal to the
process and copies the it_interval value into it_value, provided that it_interval is not 0,
e�ectively resetting the timer. If the it_interval is 0, the timer is stopped.

6.10.4 Timer Limitations and Precautions

Each process can have one of each kind of timer: a real timer, a virtual timer, and a pro�le timer,
but only one of each. Although both the seconds value and the microseconds value are used to
set the timer parameters, most operating systems will not give a process an interval of that exact
amount of time because these are not real-time timers and because the operating system typically
uses a time resolution on the order of a few milliseconds, not microseconds. UNIX systems that
conform to SVR4 and to 4.4BSD specs do guarantee, though, to generate a signal no sooner than
the requested time interval. The signal's delivery may be delayed on very heavily loaded systems.
In addition, if a system is very heavily loaded, it is even a possibility that a later signal may fail to
be delivered because the signal from an earlier timer expiration has not yet been delivered and so
the second will be lost.

6.11 Timers and Signals in Video Games

So far we have seen how to create the illusion of movement on the screen using the NCurses
library by erasing, repositioning, and drawing the same object, with a small time delay between
repeated drawing. The animateface.c program used the nanosleep() function to achieve this
time delay because nanosleep() provided a small enough time resolution and does not interfere
with SIGALRM signals. If we want a video game to be interactive, however, then it has to respond
to user inputs while creating the illusion that the action on the screen is independent of the user's
actions. The method used by animateface.c will not work because when the program is waiting
in the nanosleep() call, it is unable to respond to user inputs.

Instead, we can let a timer run in the background. At regular intervals, it can interrupt the process
by sending a SIGALRM signal. All of the functionality to update the drawing can be put into the
signal handler for the SIGALRM signal. However, there are dangers with extrapolating these ideas to
programs in general, as is explained below.

6.11.1 Cautions About Signal Handler Design

The signal generation and delivery mechanism is a complex system with many nuances, and the
programmer must be aware of them and must design the handlers with utmost care. The �rst issue
is with respect to potential race conditions within the handlers themselves.
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Because signal handlers cannot have any parameters other than the signal number or the structures
passed to it by the kernel in the case of the newer sa_sigaction() style handlers, the only way
that they can share data with the rest of the program is through global variables. For example, if
the SIGALRM signal handler has to update the position of an object on the screen, then the handler
needs read and write access to a variable that stores the object's current position. This variable
must be either a static variable within the handler, or a global variable in the program. It must be
a global if the variable needs to be accessed by other parts of the program outside of the handler. In
either case, the variable cannot reside on the runtime stack because if it did, it would be destroyed
between invocations of the handler. If the variable's contents are destroyed between invocations of
the handler, there will be no means of animating the object.

In general, using signal handlers that have to access either global data or data that is not on the
stack is a dangerous thing. If handled correctly in our video programs, there is little risk, but if this
same strategy is used for programs in general, it can lead to unreliable and insecure programs. It
can open up a Pandora's box of problems associated with the possibility of race conditions within
the handler itself. This is because the handler might be re-entered as a result of another signal
arriving while the handler is active. For example, if the handler is registered with the SA_NODEFER
�ag set, then it can be interrupted in the middle of its execution and variables within the handler
might be in an inconsistent state as a result. Still worse, under certain circumstances, intruders
could �nd ways to send the appropriate signal sequences to the program to force it to core dump
and could use these dumps to gain root access (see Zalewski [3]).

A second issue pertains to certain system calls and library functions. Certain system calls and
library functions are marked as safe, and the rest are unsafe. If a signal handler makes a call to a
library function or a system call, and another signal causes it to be re-entered (because the signal
was not masked or blocked) during the time the handler is in the call, the second invocation of the
signal handler may also enter that same function. If it does, then the function will be re-entered
as well, by the same process. If this function is not safe, then the data state of the handler will be
corrupted and its execution no longer predictable. For example, in the following handler

void sighandler(int signum)

{

....

printf("Running with uid=%d euid=%d\n",getuid(),geteuid());

...

}

if a second signal arrives while the �rst is in the printf() function, then both invocations will be
using the printf() code, which is not re-entrant, and hence not safe. This means that the output of
printf() may be corrupted. Far worse scenarios can result, making a system vulnerable to attack.
POSIX.1-2004 requires that the following functions can be safely called within a signal handler:

_Exit(), _exit(), abort(), accept(), access(), aio_error(), aio_return(),

aio_suspend(), alarm(), bind(), cfgetispeed(), cfgetospeed(), cfsetispeed(),

cfsetospeed(), chdir(), chmod(), chown(), clock_gettime(), close(), connect(),

creat(), dup(), dup2(), execle(), execve(), fchmod(), fchown(), fcntl(),

fdatasync(), fork(), fpathconf(), fstat(), fsync(), ftruncate(), getegid(),

geteuid(), getgid(), getgroups(), getpeername(), getpgrp(), getpid(),

This work is copyrighted by Stewart Weiss and licensed under the Creative Commons Attribution-

ShareAlike 4.0 International License.
29

http://creativecommons.org/licenses/by-sa/4.0/ 
http://creativecommons.org/licenses/by-sa/4.0/ 


UNIX Lecture Notes
Chapter 6 Event Driven Programming

Prof. Stewart Weiss

getppid(), getsockname(), getsockopt(), getuid(), kill(), link(), listen(),

lseek(), lstat(), mkdir(), mkfifo(), open(), pathconf(), pause(), pipe(),

poll(), posix_trace_event(), pselect(), raise(), read(), readlink(), recv(),

recvfrom(), recvmsg(), rename(), rmdir(), select(), sem_post(), send(),

sendmsg(), sendto(), setgid(), setpgid(), setsid(), setsockopt(), setuid(),

shutdown(), sigaction(), sigaddset(), sigdelset(), sigemptyset(), sigfillset(),

sigismember(), signal(), sigpause(), sigpending(), sigprocmask(), sigqueue(),

sigset(), sigsuspend(), sleep(), socket(), socketpair(), stat(), symlink(),

sysconf(), tcdrain(), tcflow(), tcflush(), tcgetattr(), tcgetpgrp(),

tcsendbreak(),tcsetattr(), tcsetpgrp(), time(), timer_getoverrun(),

timer_gettime(), timer_settime(), times(), umask(), uname(), unlink(),

utime(), wait(), waitpid(), write().

POSIX.1-2008 removes fpathconf(), pathconf(), and sysconf() from the preceding list, and
adds the following functions to it:

execl(), execv(), faccessat(), fchmodat(), fchownat(), fexecve(), fstatat(),

futimens(), linkat(), mkdirat(), mkfifoat(), mknod(), mknodat(), openat(),

eadlinkat(), renameat(), symlinkat(), unlinkat(), utimensat(), utimes()

In general, I/O functions other than read() and write() are not safe to invoke inside signal
handlers.

Non-reentrant functions are functions that cannot safely be called, interrupted, and then recalled
before the �rst call has �nished without resulting in memory corruption. An easy way to think of
a function being re-entrant is that every single variable used by that function is stored on the run
time stack, including any return value. It uses no static variables and no globals. Each time it is
invoked, the new invocation has its own set of variables.

A signal handler would have to completely remove all possibility of its being interrupted if it con-
tained a call to an unsafe function within it. This is not realistic. If an unsafe function is in
the middle of execution when a signal arrives, and the handler for this signal also calls an unsafe
function, then the result of execution becomes unde�ned, meaning all bets are o� about what will
happen. This is an even more compelling reason to avoid unsafe functions within handlers.

Three general rules to follow when designing signal handlers, whenever possible, as recommended
by Wheeler[2], are:

1. Where possible, have your signal handlers unconditionally set a speci�c �ag and do nothing
else.

2. If you must have more complex signal handlers, use only calls speci�cally designated as being
safe for use in signal handlers. In particular, don't use malloc() or free() in C (which on
most systems aren't protected against signals), nor the many functions that depend on them
(such as the printf() family and syslog()). You could try to �wrap� calls to insecure library
calls with a check to a global �ag (to avoid re-entry), but I wouldn't recommend it.

3. Block signal delivery during all non-atomic operations in the program, and block signal delivery
inside signal handlers.
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In addition to these recommendations, I would add one more:

• Use the SA_RESTART �ag when possible, to avoid the possibility of system calls being inter-
rupted and terminated, which may then cause the program to exit abnormally, and check the
return value of all system calls when using signal handlers in a program.

We will not be able to adhere to rule 1 in some of our demo programs because they are designed
to produce output or change program state during the handler calls to illustrate various principles,
but we can stick to rules 2 and 3.

6.11.2 A Demonstration

We will develop a simple program to illustrate the �rst method of animation. Our program, called
bouncestr.c, moves a string, in this case a worm-like fellow, horizontally across the screen, from
left to right and then back again. It is called bouncestr.c because each time the poor guy hits the
"wall", he bounces back in the opposite direction. The program allows the user to control the game
with three di�erent keys:

• Typing 'f' speeds up the motion;

• Typing 's' slows down the motion;

• Typing a space character reverses the direction of the worm.

The speed is the number of character positions that our object will move each second. For example,
a speed of 6 means that it moves 6 columns (i.e., characters) per second. When the user presses
the f or s key, the speed should increase or decrease linearly, up to some reasonable limits. For
example, if v is the current speed, then one press of f should mean v = v + 2. The changes in
speed are handled by changing the intervals in the interval timer and resetting it with setitimer()

whenever the user presses the 'f' or 's' key.

This �rst method of animation will make the main program in charge of getting user input, and
use timers and signal handlers to interrupt the main program and update the worm's position on
the screen. Because timers will interrupt the main program loop whenever they occur, there is a
good chance they will interrupt the read() system call that is invoked within the getch() code
to get user input. For this reason, they must be established with the SA_RESTART �ag, to restart
these calls and not lose the user's input. There is no need to make the input non-blocking; doing so
would waste needless CPU cycles asking the kernel if input is available. But line bu�ering should
be disabled, as well as echo and line-editing. Therefore, the program will turn on cbreak mode and
turn o� echo.

The program needs one global variable:

int direction;

to store the direction of movement (left or right, by one cell), and the signal handler needs two
static variables:

int row, col;
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which store the current position at which to draw. The logic in the main program's loop handles
the input events, as follows.

Listing 6.13: Main processing loop of bouncestr.c

whi l e ( ! f i n i s h e d ) {
move( LINES−1, 0 ) ;
s p r i n t f (mssge , "Current speed : %3d ( chars / sec )" , speed ) ;
addstr (mssge ) ;
is_changed = FALSE;
c = getch ( ) ;
switch ( c ) {

case 'Q' :
case 'q ' :

f i n i s h e d = 1 ;
break ;

case ' ' :
d i r e c t i o n = ( d i r e c t i o n == LEFT)? RIGHT:LEFT;
break ;

case ' f ' :
i f ( 1000/ speed > 2 ) { /∗ i f i n t e r v a l > 2 ∗/

speed = speed + 2 ; /∗ i n c r e a s e ∗/
is_changed = TRUE;

}
break ;

case ' s ' :
i f (1000/ speed <= 500 ) { /∗ i f i n t e r v a l <= 500 ∗/

speed = speed − 2 ; /∗ dec r ea s e ∗/
is_changed = TRUE;

}
break ;

}
i f ( is_changed ) {

set_timer ( ITIMER_REAL, 1000/ speed , 1000/ speed ) ;
}
r e f r e s h ( ) ;

}

Notes

1. is_changed lets us know whether to reset the timer.

2. Blocking input is on, so the getch() can never return without data. The loop just has to
check which character was typed.

3. Speed is the reciprocal of the interval length, in the same way that frequency is the inverse of
period with a periodic function (like a wave). If we want a frequency of k signals every 1000
milliseconds, then the interval between each signal must be 1000/k. Similarly, if we want an
object to be moved k times each second ( equivalently k times each 1000 ms), then the interval
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to give to the interval timer must be 1000/k ms. Since speed contains the current number
of chars per second for moving the object, the interval to give to the timer is 1000/speed,
since the set_timer() function (de�ned in Listing 6.11 ) is expecting the interval expressed
in milliseconds.

As a concrete example, if speed = 10, then the timer must expire every 1000/10 = 100
milliseconds, in order that we can move the object 10 times per second. If speed is increased
by 2, to 12 chars/second, then the interval must be 1000/12 u 83 milliseconds, so that the
timer will expire every 83 milliseconds.

4. We make sure we avoid a division by zero, by preventing the user from decrementing speed
below 1, which is achieved by making sure 1000/speed ≤ 500. We set an upper bound on the
speed simply because high speeds are not easy to watch.

The logic of redrawing is now in the signal handler, move_msg(), shown below:

Listing 6.14: move_msg()

void move_msg( i n t signum )
{

s t a t i c i n t row = ROW;
s t a t i c i n t c o l = 0 ;
char mssge [ 4 0 ] ;
mvaddstr ( row , co l , BLANK ) ; /∗ e r a s e o ld s t r i n g ∗/
co l += d i r ; /∗ advance one column ∗/
move( row , c o l ) ; /∗ move to new l o c a t a i on ∗/
i f ( RIGHT == d i r ) {

addstr ( MESSAGE ) ; /∗ add forward s t r i n g ∗/
i f ( c o l+s t r l e n (MESSAGE) >= COLS−1 )

d i r = LEFT; /∗ r e v e r s e i f h i t t i n g edge ∗/
}
e l s e {

addstr ( REVMSSGE ) ; /∗ add r ev e r s e s t r i n g ∗/
i f ( c o l <= 0 )

d i r = RIGHT; /∗ r e v e r s e i f h i t t i n g edge ∗/
}
r e f r e s h ( ) ;

}

Note that

• The handler uses static variables, a.k.a globals, making it non-re-entrant.

• It makes calls to several functions that are not safe.

However, because this is a SIGALRM handler, and the time intervals are extremely long relative to
the length of the code, it is essentially impossible for a SIGALRM signal to be delivered while the
handler is running. That is why it is e�ectively safe. Of course you can send it multiple Ctrl-C's
and it will be unsafe for them.

If the signal handler were installed using the signal() system call, the handler would have to
reset itself by calling signal() immediately. We use the sigaction() call instead. If the user
were allowed to speed up the animation enough, the SIGALRM signals might arrive so fast that they
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would arrive before the handler has �nished executing. In this case, the handler's behavior would
be unsafe. By using sigaction(), we can make sure that signals are blocked while the program is
executing inside the handler.

The program without the main processing loop from Listing 6.13 is below.

Listing 6.15: Main program of bouncestr.c

#inc lude <s td i o . h>
#inc lude <s t r i n g . h>
#inc lude <cur s e s . h>
#inc lude <s i g n a l . h>
#inc lude " t imers . h"

#de f i n e INITIAL_SPEED 50
#de f i n e RIGHT 1
#de f i n e LEFT −1
#de f i n e ROW 12
#de f i n e MESSAGE "ooooooo=>"
#de f i n e REVMSSGE "<=ooooooo"
#de f i n e BLANK " "

in t d i r ; /∗ Global v a r i ab l e to s t o r e d i r e c t i o n o f movement ∗/
i n t speed ; /∗ Current speed in chars / second ∗/

i n t main ( )
{

i n t f i n i s h e d ;
i n t is_changed ;
i n t c ;

/∗ Set up s i g n a l handl ing ∗/
s t r u c t s i g a c t i o n newhandler ; /∗ f o r i n s t a l l i n g hand le r s ∗/
s i g s e t_t blocked ; /∗ to s e t mask f o r handler ∗/

newhandler . sa_handler = move_msg ; /∗ name o f handler ∗/
newhandler . sa_f lags = SA_RESTART; /∗ f l a g i s j u s t RESTART ∗/
s igemptyset (&blocked ) ; /∗ c l e a r a l l b i t s o f b locked s e t ∗/
newhandler . sa_mask = blocked ; /∗ s e t t h i s empty s e t to be the mask ∗/

i f ( s i g a c t i o n (SIGALRM, &newhandler , NULL) == −1 ){ /∗ t ry to i n s t a l l ∗/
pe r ro r (" s i g a c t i o n " ) ;
r e turn ( 1 ) ;

}

/∗ Prepare the te rmina l f o r the animation ∗/
i n i t s c r ( ) ; /∗ i n i t i a l i z e the l i b r a r y and sc r e en ∗/
cbreak ( ) ; /∗ turn o f f l i n e bu f f e r i n g and ed i t i n g ∗/
noecho ( ) ; /∗ turn o f f echo ∗/
c l e a r ( ) ; /∗ c l e a r the s c r e en ∗/
curs_set ( 0 ) ; /∗ hide the cur so r ∗/

/∗ I n i t i a l i z e the parameters o f the program ∗/
d i r = RIGHT;
f i n i s h e d = 0 ;
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speed = INITIAL_SPEED ;

/∗ Star t the r e a l time i n t e r v a l t imer with de lay i n t e r v a l s i z e ∗/
set_timer ( ITIMER_REAL, 1000/ speed , 1000/ speed ) ;

/∗ main p ro c e s s i ng loop omitted but would be here ∗/

endwin ( ) ;
r e turn 0 ;

}

6.12 Non-polling Input

The bouncestr.c program uses a timer to generate interrupts to update the screen, but it obtains
the user's input through what is essentially a polling loop: the main program repeatedly polls the
terminal for input. This is �ne if the CPU is not going to be used by any other process or if the
program does not have other tasks to perform in the main loop, but it is an ine�cient method of
checking for the availability of input, which is extremely infrequent in the life of a processor. We
should be unsatis�ed with the idea that our program is a CPU hog, stuck in a polled I/O loop, even
if the process is blocked each time it calls getch() to check for user input. The process basically
calls getch(), blocks, is awakened when the user types, does a bit of work and blocks again, over and
over. It would be more e�cient if the input part of the program were also signal-driven, meaning
that the program would ask the kernel to notify it when input could be delivered to it, perhaps
through the signal-handling mechanism. In this case, the program would be essentially idle, waiting
for a signal of any kind, either from the timer to update the screen, or from the kernel because input
was available.

There are two di�erent types of non-polling input: signal-driven and asynchronous. To understand
the di�erence between them, it is important to know that input is �rst moved from a device to a
bu�er in the kernel's address space, and from there to the process's address space.

• In signal-driven I/O, the program tells the kernel to notify it when input has been placed
into the kernel's address space. Once the process is noti�ed that the input is in the kernel's
address space, if it makes a read() system call, because the data is immediately available, it
will not block. In other words, a read() executed after the process is noti�ed is guaranteed
to return immediately with data.

• In asynchronous I/O, the process tells the kernel to notify it when input has been moved from
the device to the kernel's address space and then into a bu�er in the process's address space. In
this type of I/O, when the process receives the signal, the read() has already been executed,
and the user process has the data already, but not necessarily in the memory location into
which it must go.

Signal-driven I/O is available in UNIX by setting the O_ASYNC �ag in the �le descriptor and then
establishing appropriate signals. Asynchronous I/O is available through the POSIX Asynchronous
I/O Interface (AIO). It is a bit confusing that the �ag to enable signal-driven I/O is called O_ASYNC.
We will �rst explore signal-driven I/O by modifying the bouncestr.c program. Then we will create
a version of the bouncestr.c program that uses asynchronous I/O with the AIO interface.
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6.12.1 Non-polling I/O Using the O_ASYNC Flag

When you set the O_ASYNC �ag on a �le descriptor, it causes input from the descriptor's �le connec-
tion to be partially delivered asynchronously. To be precise, it means that when input is available
on the device, it is copied by the kernel into a location in the kernel's address space, after which
the kernel sends a SIGIO signal to the process. To set up signal-driven input by this method, the
program must do the following:

1. Tell the kernel which process should be sent the SIGIO signal when the data is ready to read
by calling

fcntl(SETOWN, getpid());

The SETOWN operation makes the process-id in the second argument the owner of the signal
to be received. Usually the program wants to receive the signal itself, so it calls this with
getpid().

2. Retrieve the existing �ags on the standard input device with

fcntl(0, F_GETFL);

3. Set the O_ASYNC �ag on the connection with

fcntl(0,F_SETFL,(fd_flags|O_ASYNC));

4. Assuming that on_input() is the function that will handle the SIGIO signal, register that
signal handler:

struct sigaction newhandler;

sigset_t blocked;

newhandler.sa_handler = on_input;

newhandler.sa_flags = SA_RESTART;

sigemptyset(&blocked);

newhandler.sa_mask = blocked;

sigaction(SIGIO, &newhandler, NULL);

The on_input() handler can call the NCurses getch() function and will be guaranteed to
receive the single character input by the user. This way it does not have to be in a loop doing
a blocking read and can instead do other things in the loop.

This is all put together in the program bouncestr_async.c. The �rst three of the above steps can
be put into a function called enable_keybd_signals():

void enable_keybd_signals ( )
{

i n t fd_f l ag s ;

f c n t l (0 , F_SETOWN, getp id ( ) ) ;
f d_f l ag s = f c n t l (0 , F_GETFL) ;
f c n t l (0 , F_SETFL, ( fd_f l ag s |O_ASYNC) ) ;

}
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6.12.2 The bouncestr.c Program Using O_ASYNC: Flawed Version

Sometimes it is worth writing a bad program in order to understand how to write a good program.
This is such an exercise. The program (excluding the #includes and parts that are identical to
the bouncestr.c program's ) is shown below. The program is terminated within the on_input()

handler when it receives the quit input character. This is because, once the program has started,
it cannot be terminated by turning o� the timer or by setting the control variable of the loop to 1.
This will be explained later.

The tasks of the main program are:

1. Establish the signal handlers.

2. Initialize NCurses (in cbreak mode with no echo).

3. Initialize the data state of the program (speed, direction, rows, columns, etc)

4. Set up keyboard signals.

5. Start the interval timer.

6. Display the messages on the last line and loop until it is time to quit.

The program:

Listing 6.16: A �awed bouncestr_async.c

. . .
/∗ <−−−− sn ip −−−−> ∗/
i n t d i r ; /∗ Global v a r i ab l e to s t o r e d i r e c t i o n o f movement ∗/
i n t speed ; /∗ Current speed in chars / second ∗/
v o l a t i l e sig_atomic_t f i n i s h e d ;

void move_msg( i n t ) ; /∗ handler f o r alarm ∗/
void on_input ( i n t ) ; /∗ handler f o r keybd ∗/
void enable_kbd_signals ( ) ; /∗ setup f o r SIGIO ∗/

i n t main ( i n t argc , char ∗ argv [ ] )
{

s t r u c t s i g a c t i o n newhandler ; /∗ f o r i n s t a l l i n g hand le r s ∗/
s i g s e t_t blocked ; /∗ to s e t mask f o r handler ∗/
char mssge [ 4 0 ] ;

/∗ Set up s i g n a l handl ing ∗/
newhandler . sa_handler = on_input ; /∗ name o f handler ∗/
newhandler . sa_f lags = SA_RESTART; /∗ f l a g i s j u s t RESTART ∗/
s igemptyset (&blocked ) ; /∗ c l e a r a l l b i t s o f b locked s e t ∗/
newhandler . sa_mask = blocked ; /∗ s e t t h i s empty s e t to be the mask ∗/
i f ( s i g a c t i o n (SIGIO , &newhandler , NULL) == −1 ) {

pe r ro r (" s i g a c t i o n " ) ;
r e turn ( 1 ) ;

}

s igemptyset (&blocked ) ; /∗ c l e a r a l l b i t s o f b locked s e t ∗/
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s i g add s e t (&blocked , SIGIO ) ;
newhandler . sa_mask = blocked ; /∗ s e t t h i s empty s e t to be the mask ∗/
newhandler . sa_handler = move_msg ; /∗ SIGALRM handler func t i on ∗/
i f ( s i g a c t i o n (SIGALRM, &newhandler , NULL) == −1 ){ /∗ t ry to i n s t a l l ∗/

pe r ro r (" s i g a c t i o n " ) ;
r e turn ( 1 ) ;

}

/∗ Prepare the te rmina l f o r the animation ∗/
i n i t s c r ( ) ; /∗ i n i t i a l i z e the l i b r a r y and sc r e en ∗/
cbreak ( ) ; /∗ put te rmina l i n to non−b lock ing input mode ∗/
noecho ( ) ; /∗ turn o f f echo ∗/
c l e a r ( ) ; /∗ c l e a r the s c r e en ∗/
curs_set ( 0 ) ; /∗ hide the cur so r ∗/

/∗ I n i t i a l i z e the parameters o f the program ∗/
row = ROW;
co l = 0 ;
d i r = RIGHT;
f i n i s h e d = 0 ;
speed = INITIAL_SPEED ;

/∗ Turn on keyboard s i g n a l s ∗/
enable_kbd_signals ( ) ;

/∗ Star t the r e a l time i n t e r v a l t imer with de lay i n t e r v a l s i z e ∗/
set_timer ( ITIMER_REAL, 1000/ speed , 1000/ speed ) ;

/∗ Display the s t a tu s in fo rmat ion on the bottom l i n e ∗/
s p r i n t f (mssge , "Current speed : %3d ( chars / sec )" , speed ) ;
mvaddstr (LINES−1, 0 , mssge ) ;
r e f r e s h ( ) ;

whi l e ( 0 == f i n i s h e d ) {
pause ( ) ;

}
endwin ( ) ;
r e turn 0 ;

}

void on_input ( i n t signum )
{

i n t c ;
i n t is_changed = 0 ;
char mssge [ 4 0 ] ;

c = getch ( ) ;
switch ( c ) {

case 'Q' :
case 'q ' :

f i n i s h e d = 1 ; /∗ qu i t program ∗/
c l e a r ( ) ;
endwin ( ) ;
/∗ e x i t ( 0 ) ; UNCOMMENT THIS IF YOU WANT IT TO WORK! ! ! ∗/
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break ;
case ' ' :

d i r = (LEFT == d i r )? RIGHT:LEFT; /∗ r e v e r s e d i r e c t i o n ∗/
break ;

case ' f ' :
i f ( 1000/ speed > 2 ) { /∗ i f i n t e r v a l > 2 ∗/

speed = speed + 2 ; /∗ i n c r e a s e ∗/
is_changed = 1 ;

}
break ;

case ' s ' :
i f (1000/ speed < 500 ) { /∗ i f i n t e r v a l <= 500 ∗/

speed = speed − 2 ; /∗ dec r ea se ∗/
is_changed = 1 ;

}
break ;

}
i f ( is_changed ) {

set_timer ( ITIMER_REAL, 1000/ speed , 1000/ speed ) ;
s p r i n t f (mssge , "Current speed : %d ( chars / sec )" , speed ) ;
mvaddstr (LINES−1, 0 , mssge ) ;

}
r e f r e s h ( ) ;

}

void move_msg( i n t signum )
/∗ same as in bouncestr . c , and so omitted here ∗/

void enable_keybd_signals ( )
{

i n t fd_f l ag s ;

f c n t l (0 , F_SETOWN, getp id ( ) ) ;
f d_f l ag s = f c n t l (0 , F_GETFL) ;
f c n t l (0 , F_SETFL, ( fd_f l ag s |O_ASYNC) ) ;

}

Notes.

1. The biggest di�erence between this and the bouncestr.c program is that the input handling
is entirely inside the on_input() handler.

2. The enable_keybd_signals() function sets up the asynchronous input on �le descriptor 0.

3. This program must call exit() from within the handler, otherwise it will never terminate.
If you modify the on_input() handler so that when a 'q' is typed, all it does is to set the
finished �ag to 1, the program will not stop. In fact, the main program will continue to
see the value 0 stored in finished. You can go one step further and delete the main loop
completely, and the program will animate forever. In other words, the signal handler for
SIGALRM continues to run and the endwin() call is never reached. This problem is not related
to NCurses, nor to the timers.
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The problem is that, as the man page for fcntl() notes, " a SIGIO signal is sent whenever
input or output becomes possible on that �le descriptor." From various experiments I have
carried out, I have determined that the problem is that, when the terminal is in non-canonical
mode and signal-driven input has been set up on the input descriptor of the terminal (�le
descriptor 0), if the main program or the SIGIO handler attempts output on the terminal
device, it corrupts the SIGIO signal mechanism so that when the SIGIO handler terminates,
instead of returning to the main program, execution will resume in the handler again, as if the
SIGIO signal was not cleared from the process's state. So the process continues to execute only
in the input handler and the SIGALRM handler if it has not been blocked. If one removes all
output instructions of any kind to "slow devices", meaning the screen, from the signal handler
and the main program, then the program will work correctly. The behavior of programs that
issue writes within the handler or the main program to the screen is apparently unde�ned.

4. The signal handler for the SIGIO must not block SIGALRM, or else the animation will disappear.
The SIGALRM handler can block SIGIO signals though.

What follows is a better version of this same program, also using a SIGIO signal handler that adheres
to all safety rules noted above, and which works correctly.

6.12.3 The bouncestr.c Program Using O_ASYNC : A Proper Solution

In this version, all code has been removed from the SIGIO signal handler except code to set the
value of a state variable of type volatile sig_atomic_t that the main program checks. According
to the CERT Secure Programming Standard, SIG31 [1],

Accessing or modifying shared objects in signal handlers can result in race conditions
that can leave data in an inconsistent state. The exception to this rule is the ability
to read and write to variables of volatile sig_atomic_t. The need for the volatile

keyword is described in rule DCL34-C. Use volatile for data that cannot be cached.
It is important to note that the behavior of a program that accesses an object of any
other type from a signal handler is unde�ned.

The type sig_atomic_t is the integer type of an object that can be accessed as an atomic
entity, even in the presence of asynchronous interrupts. The type of sig_atomic_t is
implementation de�ned, though it provides some guarantees. Integer values ranging
from SIG_ATOMIC_MIN through SIG_ATOMIC_MAX, inclusive, may be safely stored to a
variable of the type.

Further details can be found on the CERT website or in the cited reference.

In our program, if the state variable is set, then the main loop calls getch() to get the input, and
then calls a function to process the input. Otherwise it blocks itself on pause(). The listing follows.

Listing 6.17: bouncestr_async2.c: A safe version of bouncestr_async.c

// #in c l ud e s omitted here

#de f i n e INITIAL_SPEED 30
#de f i n e RIGHT 1
#de f i n e LEFT −1
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#de f i n e ROW 12
#de f i n e MESSAGE "ooooooo=>"
#de f i n e REVMSSGE "<=ooooooo"
#de f i n e BLANK " "

in t d i r ; /∗ Global v a r i ab l e to s t o r e d i r e c t i o n o f movement ∗/
i n t speed ; /∗ Current speed in chars / second ∗/
v o l a t i l e sig_atomic_t input_ready ;

/∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/
/∗ S igna l Handler Prototypes ∗/
/∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/
void on_alarm ( i n t ) ; /∗ handler f o r alarm ∗/
void on_input ( i n t ) ; /∗ handler f o r keybd ∗/

/∗ This i s not a s i g n a l handler −− i t c o n s o l i d a t e s l o g i c f o r updating ∗/
i n t update_from_input ( i n t c , i n t ∗ speed , i n t ∗ d i r ) ;

/∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/
/∗ Main ∗/
/∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/
i n t main ( i n t argc , char ∗ argv [ ] )
{

s t r u c t s i g a c t i o n newhandler ; /∗ f o r i n s t a l l i n g hand le r s ∗/
s i g s e t_t blocked ; /∗ to s e t mask f o r handler ∗/
i n t fd_f l ag s ;
i n t c ;
i n t f i n i s h e d ;

/∗ Set up s i g n a l handl ing ∗/
newhandler . sa_handler = on_input ; /∗ name o f handler ∗/
newhandler . sa_f lags = SA_RESTART; /∗ f l a g i s j u s t RESTART ∗/
s igemptyset (&blocked ) ; /∗ c l e a r a l l b i t s o f b locked s e t ∗/
newhandler . sa_mask = blocked ; /∗ s e t t h i s empty s e t to be the mask ∗/
i f ( s i g a c t i o n (SIGIO , &newhandler , NULL) == −1 ) {

pe r ro r (" s i g a c t i o n " ) ;
r e turn ( 1 ) ;

}

s igemptyset (&blocked ) ; /∗ c l e a r a l l b i t s o f b locked s e t ∗/
newhandler . sa_mask = blocked ; /∗ s e t t h i s empty s e t to be the mask ∗/
newhandler . sa_handler = on_alarm ; /∗ SIGALRM handler func t i on ∗/
i f ( s i g a c t i o n (SIGALRM, &newhandler , NULL) == −1 ){ /∗ t ry to i n s t a l l ∗/

pe r ro r (" s i g a c t i o n " ) ;
r e turn ( 1 ) ;

}

/∗ Prepare the te rmina l f o r the animation ∗/
i n i t s c r ( ) ; /∗ i n i t i a l i z e the l i b r a r y and sc r e en ∗/
cbreak ( ) ; /∗ put te rmina l i n to non−b lock ing input mode ∗/
noecho ( ) ; /∗ turn o f f echo ∗/
c l e a r ( ) ; /∗ c l e a r the s c r e en ∗/
curs_set ( 0 ) ; /∗ hide the cur so r ∗/
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/∗ I n i t i a l i z e the parameters o f the program ∗/
d i r = RIGHT;
f i n i s h e d = 0 ;
speed = INITIAL_SPEED ;
input_ready = 0 ;

/∗ Turn on keyboard s i g n a l s ∗/
f c n t l (0 , F_SETOWN, getp id ( ) ) ;
f d_f l ag s = f c n t l (0 , F_GETFL) ;
f c n t l (0 , F_SETFL, ( fd_f l ag s |O_ASYNC) ) ;

/∗ Star t the r e a l time i n t e r v a l t imer with de lay i n t e r v a l s i z e ∗/
set_timer ( ITIMER_REAL, 1000/ speed , 1000/ speed ) ;

/∗ Put a message in bottom row with cur rent speed . ∗/
mvaddstr (LINES−1, 0 , "Current speed : " ) ;

/∗ Put the message in to the f i r s t p o s i t i o n and s t a r t ∗/
mvaddstr (ROW, 0 , MESSAGE) ;

whi l e ( ! f i n i s h e d ) {
i f ( input_ready ) {

c = getch ( ) ;
f i n i s h e d = update_from_input ( c , &speed , &d i r ) ;
input_ready = 0 ;

}
e l s e

pause ( ) ;
}
c l e a r ( ) ;
endwin ( ) ;
r e turn 0 ;

}

/∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/

i n t update_from_input ( i n t c , i n t ∗ speed , i n t ∗ d i r )
{

i n t is_changed = 0 ;
char mssge [ 4 0 ] ;
switch ( c ) {

case 'Q' :
case 'q ' :

r e turn 1 ; /∗ qu i t program ∗/
case ' ' :

∗ d i r = (LEFT == ∗ d i r )? RIGHT:LEFT; /∗ r e v e r s e d i r e c t i o n ∗/
break ;

case ' f ' :
i f ( 1000/(∗ speed ) > 2 ) { /∗ i f i n t e r v a l > 2 ∗/

∗ speed = ∗ speed + 2 ; /∗ i n c r e a s e ∗/
is_changed = 1 ;

}
break ;
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case ' s ' :
i f (1000/(∗ speed ) < 500 ) { /∗ i f i n t e r v a l <= 500 ∗/

∗ speed = ∗ speed − 2 ; /∗ dec r ea se ∗/
is_changed = 1 ;

}
break ;

}
i f ( is_changed ) {

set_timer ( ITIMER_REAL, 1000/(∗ speed ) , 1000/(∗ speed ) ) ;
s p r i n t f (mssge , "Current speed : %d ( chars / sec )" , (∗ speed ) ) ;
mvaddstr (LINES−1, 0 , mssge ) ;

}

move( LINES−1, COLS−12);
s p r i n t f (mssge , "Last Char:%c " , c ) ;
addstr (mssge ) ;
r e f r e s h ( ) ;
r e turn 0 ;

}

/∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/

void on_input ( i n t signum )
{

input_ready = 1 ;
}

/∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/

void on_alarm ( i n t signum )
{

s t a t i c i n t row = ROW;
s t a t i c i n t c o l = 0 ;

mvaddstr ( row , co l , BLANK ) ; /∗ e r a s e o ld s t r i n g ∗/
co l += d i r ; /∗ advance one column ∗/
move( row , c o l ) ; /∗ move to new l o c a t a i on ∗/
i f ( RIGHT == d i r ) {

addstr ( MESSAGE ) ; /∗ add forward s t r i n g ∗/
i f ( c o l+s t r l e n (MESSAGE) >= COLS−1 )

d i r = LEFT; /∗ r e v e r s e i f h i t t i n g edge ∗/
}
e l s e {

addstr ( REVMSSGE ) ; /∗ add r ev e r s e s t r i n g ∗/
i f ( c o l <= 0 )

d i r = RIGHT; /∗ r e v e r s e i f h i t t i n g edge ∗/
}
r e f r e s h ( ) ;

}
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6.12.4 The bouncestr.c Program Using AIO

The AIO interface is a POSIX interface that provides asynchronous I/O. Whereas setting the
O_ASYNC �ag on a �le descriptor causes a signal to be sent when data is available to be read, using
the AIO interface causes a signal to be sent when the data has actually been read and placed into
a user bu�er. The aio_read() call is an asynchronous read. In essence, it places a read request in
the I/O device driver's queue and returns immediately, as indicated in the man page:

#include <aio.h>

int aio_read(struct aiocb *aiocbp);

The aio_read() function requests an asynchronous

�n = read(fd, buf, count)�

with fd, buf, count given by aiocbp->aio_fildes, aiocbp->aio_buf,

aiocbp->aio_nbytes, respectively. The return status n can be retrieved upon

completion using aio_return(3).

The data is read starting at the absolute file offset aiocbp->aio_offset,

regardless of the current file position. After this request, the value of

the current file position is unspecified.

The �asynchronous� means that this call returns as soon as the request has

been enqueued; the read may or may not have completed when the call returns.

One tests for completion using aio_error(3).

When the request is satis�ed, the driver sends a SIGIO signal. The signal handler can process the
input and then issue a new aio_read() call to get more data.

The program must

• create a bu�er to store the input data, and

• �ll an aiocb structure with appropriate values before issuing the �rst read.

An aiocb structure has the following members:

int aio_fildes //File descriptor.

off_t aio_offset // File offset.

volatile void *aio_buf //Location of buffer.

size_t aio_nbytes //Length of transfer.

int aio_reqprio //Request priority offset.

struct sigevent aio_sigevent // Signal number and value.

int aio_lio_opcode //Operation to be performed.

A program does not have to assign a value to the aio_reqprio member, but all others must be
initialized. The following function, setup_aio_buffer(), demonstrates how to set up a read of a
single character at a time into a bu�er named input. It is given a pointer to an aiocb structure
and �lls its members with the required data. The main program can then give the address of this
structure to the aio_read() function.
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Listing 6.18: setup_aio_bu�er()

void setup_aio_buffer ( s t r u c t a iocb ∗aio_buf )
{

s t a t i c char input [ 1 ] ; /∗ 1 char o f input ∗/

/∗ de s c r i b e what to read ∗/
aio_buf−>a i o_ f i l d e s = 0 ; /∗ f i l e d e s c r i p t o r f o r I /O ∗/
aio_buf−>aio_buf = input ; /∗ address o f bu f f e r f o r I /O ∗/
aio_buf−>aio_nbytes = 1 ; /∗ number o f bytes to read each time ∗/
aio_buf−>a i o_o f f s e t = 0 ; /∗ o f f s e t in f i l e to s t a r t reads ∗/

/∗ de s c r i b e what to do when read i s ready ∗/
aio_buf−>aio_s igevent . s i g ev_not i f y = SIGEV_SIGNAL;
aio_buf−>aio_s igevent . s igev_s igno = SIGIO ; /∗ send SIGIO ∗/

}

The main program should declare the aiocb structure so that it is visible to the various functions
that must access it. The program follows.

Listing 6.19: bouncestr_aio.c

#inc lude <uni s td . h>
#inc lude <s td i o . h>
#inc lude <cur s e s . h>
#inc lude <s i g n a l . h>
#inc lude <s t r i n g . h>
#inc lude <a io . h>
#inc lude " t imers . h"

#de f i n e INITIAL_SPEED 30
#de f i n e RIGHT 1
#de f i n e LEFT −1
#de f i n e ROW 12
#de f i n e MESSAGE "ooooooo=>"
#de f i n e REVMSSGE "<=ooooooo"
#de f i n e BLANK " "

in t d i r ; /∗ Global v a r i ab l e to s t o r e d i r e c t i o n o f movement ∗/
i n t speed ; /∗ Current speed in chars / second ∗/
v o l a t i l e sig_atomic_t input_ready ;

s t r u c t a iocb kbcbuf ; /∗ an a io c on t r o l buf ∗/
vod setup_aio_buffer ( s t r u c t a iocb ∗aio_buf ) ;

void move_msg( i n t signum ) ; /∗ handler f o r alarm ∗/
i n t update_from_input ( i n t ∗ speed , i n t ∗ d i r ) ;

/∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/
/∗ S igna l Handler Prototypes ∗/
/∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/

/∗ SIGALRM s i g n a l handler −− i t i s r e s p on s i b l e f o r animating the s t r i n g ∗/
void move_msg( i n t ) ;
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/∗ SIGIO s i g n a l handler −− i t i s r e s p on s i b l e f o r r e t r i e v i n g user input ∗/
void on_input ( i n t ) ; /∗ handler f o r keybd ∗/

/∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/
/∗ Main ∗/
/∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/

i n t main ( i n t argc , char ∗ argv [ ] )
{

s t r u c t s i g a c t i o n newhandler ; /∗ new s e t t i n g s ∗/
s i g s e t_t blocked ; /∗ s e t o f b locked s i g s ∗/
i n t f i n i s h e d ;

newhandler . sa_handler = on_input ; /∗ handler func t i on ∗/
newhandler . sa_f lags = SA_RESTART; /∗ opt ions ∗/

/∗ then bu i ld the l i s t o f b locked s i g n a l s ∗/
s igemptyset (&blocked ) ; /∗ c l e a r a l l b i t s ∗/
newhandler . sa_mask = blocked ; /∗ s t o r e blockmask ∗/
i f ( s i g a c t i o n (SIGIO , &newhandler , NULL) == −1 )

pe r ro r (" s i g a c t i o n " ) ;

newhandler . sa_handler = move_msg ; /∗ handler func t i on ∗/
i f ( s i g a c t i o n (SIGALRM, &newhandler , NULL) == −1 )

pe r ro r (" s i g a c t i o n " ) ;

/∗ prepare the te rmina l f o r the animation ∗/
i n i t s c r ( ) ; /∗ i n i t i a l i z e the l i b r a r y and sc r e en ∗/
cbreak ( ) ; /∗ put te rmina l i n to non−b lock ing input mode ∗/
noecho ( ) ; /∗ turn o f f echo ∗/
c l e a r ( ) ; /∗ c l e a r the s c r e en ∗/
curs_set ( 0 ) ; /∗ hide the cur so r ∗/

/∗ I n i t i a l i z e the parameters o f the program ∗/
d i r = RIGHT;
f i n i s h e d = 0 ;
speed = INITIAL_SPEED ;

/∗ i n i t i a l i z e a i o bu f f e r f o r the f i r s t read and p lace c a l l ∗/
setup_aio_buffer (&kbcbuf ) ;
aio_read(&kbcbuf ) ;

/∗ Star t the r e a l time i n t e r v a l t imer with de lay i n t e r v a l s i z e ∗/
set_timer ( ITIMER_REAL, 1000/ speed , 1000/ speed ) ;

mvaddstr (LINES−1, 0 , "Current speed : " ) ;
r e f r e s h ( ) ;

/∗ Put the message in to the f i r s t p o s i t i o n and s t a r t ∗/
mvaddstr (ROW, 0 , MESSAGE) ;

whi l e ( ! f i n i s h e d )
i f ( input_ready ) {
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f i n i s h e d = update_from_input(&speed , &d i r ) ;
input_ready = 0 ;

}
e l s e

pause ( ) ;
c l e a r ( ) ;
endwin ( ) ;
r e turn 0 ;

}

/∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/
/∗ SIGIO S igna l Handler ∗/
/∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/

/∗ Handler c a l l e d when aio_read ( ) has s t u f f to read ∗/
void on_input ( i n t s i gno )
{

input_ready = 1 ;
}

/∗ F i r s t check f o r any e r r o r codes , and i f ok , then get the re turn code ∗/

i n t update_from_input ( i n t ∗ speed , i n t ∗ d i r )
{

i n t c ;
i n t is_changed = 0 ;
char ∗cp = ( char ∗) kbcbuf . aio_buf ; /∗ ca s t to char ∗ ∗/
char mssge [ 4 0 ] ;
i n t f i n i s h e d =0;

/∗ check f o r e r r o r s ∗/
i f ( a io_error (&kbcbuf ) != 0 )

pe r ro r (" read ing f a i l e d " ) ;
e l s e

/∗ get number o f chars read ∗/
i f ( a io_return(&kbcbuf ) == 1 ) {

c = ∗cp ;
/∗ ndelay = 0 ; ∗/
switch ( c ) {

case 'Q' :
case 'q ' :

f i n i s h e d = 1 ; /∗ qu i t program ∗/
break ;

case ' ' :
∗ d i r = (∗ d i r == LEFT)? RIGHT:LEFT; /∗ r e v e r s e d i r e c t i o n ∗/
break ;

case ' f ' :
i f ( 1000/(∗ speed ) > 2 ) { /∗ i f i n t e r v a l > 2 ∗/

∗ speed = ∗ speed + 2 ; /∗ i n c r e a s e ∗/
is_changed = 1 ;

}
break ;

case ' s ' :
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i f (1000/(∗ speed ) < 500 ) { /∗ i f i n t e r v a l < 500 ∗/
∗ speed = ∗ speed − 2 ; /∗ dec r ea se ∗/
is_changed = 1 ;

}
break ;

}
i f ( is_changed ) {

set_timer ( ITIMER_REAL, 1000/(∗ speed ) , 1000/(∗ speed ) ) ;
s p r i n t f (mssge , "Current speed : %d ( chars / sec )" , ∗ speed ) ;
mvaddstr (LINES−1, 0 , mssge ) ;

}
/∗ wr i t e the s t a tu s l i n e message ∗/
move( LINES−1, COLS−12);
s p r i n t f (mssge , "Last Char:%c " , c ) ;
addstr (mssge ) ;
r e f r e s h ( ) ;

}
/∗ p lace a new reques t ∗/
aio_read(&kbcbuf ) ;
r e turn f i n i s h e d ;

}

/∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/
/∗ SIGALRM Signa l Handler ∗/
/∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/

/∗ SIGALRM handler −− moves s t r i n g on the s c r e en when the s i g n a l i s r e c e i v ed ∗/
void move_msg( i n t signum )
{

s t a t i c i n t row = ROW;
s t a t i c i n t c o l = 0 ;
mvaddstr ( row , co l , BLANK ) ; /∗ e r a s e o ld s t r i n g ∗/
co l += d i r ; /∗ advance one column ∗/
move( row , c o l ) ; /∗ move to new l o c a t a i on ∗/
i f ( RIGHT == d i r ) {

addstr ( MESSAGE ) ; /∗ add forward s t r i n g ∗/
i f ( c o l+s t r l e n (MESSAGE) >= COLS−1 )

d i r = LEFT; /∗ r e v e r s e i f h i t t i n g edge ∗/
}
e l s e {

addstr ( REVMSSGE ) ; /∗ add r ev e r s e s t r i n g ∗/
i f ( c o l <= 0 )

d i r = RIGHT; /∗ r e v e r s e i f h i t t i n g edge ∗/
}
r e f r e s h ( ) ;

}

/∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/
/∗ Asynchronous I /O Library Setup ∗/
/∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/

/∗ The f o l l ow i n g func t i on i n i t i a l i z e s the AIO s t ru c tu r e to enable ∗/
/∗ asynchronous I /O through the AIO l i b r a r y . ∗/
void setup_aio_buffer ( s t r u c t a iocb ∗aio_buf )
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/∗ Same as in L i s t i n g above ∗/

6.12.5 Simulating Multiple Timers

Even though a process can have only a single timer, it is still possible to animate an unlimited
number of independently moving objects. The key is to simulate in the program exactly what the
kernel does with its timers relatively to the system clock. The idea is to create an array of the
objects to be animated. Each entry of the array can have all of the information needed to animate
a single object, and in particular, the length of the interval between movements of that object. In
the world of animation, these movable creatures are called sprites, so I will call them that here.

In essence, a sprite can be represented by a structure such as the one below.

struct sprite

{

int interval; // number of time units between redraws

int counter; // counter for elapsed time between redraws

char shape; // shape used to draw object

position display_pos; // current location on screen (int,int)

position real_pos; // current real location (double, double)

double dx; // current x-coordinate of direction

double dy; // current y-coordinate of direction

};

For each tick of the process's single interval timer, it can iterate through an array of sprites, decre-
menting each counter. If any counter reaches 0, it copies the interval value into it and issues a
request to move the sprite in the (dx,dy) direction from position real_pos. The particular im-
plementation above uses two positions, a real position and a display position. The idea is to keep
track of the actual position as a �oating point value, and display it in the cell in which its center
of mass resides. The real position is updated by the (dx,dy) value and then the display position
is calculated from that. The (dx,dy) pair is a vector of length 1 that is added to the real position
of the point. The display cell is obtained by rounding the x and y values to the nearest integer.
Moving a sprite can be accomplished with the following function.

Listing 6.20: move_sprite()

void move_sprite ( s p r i t e ∗ sp )
{

e ra s e_sp r i t e (∗ sp ) ;

sp−>real_pos . y += sp−>dy ;
sp−>real_pos . x += sp−>dx ;
sp−>display_pos . r = ( i n t ) ( sp−>real_pos . y + 0 . 5 ) ;
sp−>display_pos . c = ( i n t ) ( sp−>real_pos . x + 0 . 5 ) ;
draw_sprite (∗ sp ) ;

i f ( ( sp−>real_pos . y > LINES−0.5 ) && ( sp−>dy > 0 ) )
sp−>dy = −sp−>dy ;
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e l s e i f ( ( sp−>real_pos . y < 0 .0 ) && ( sp−>dy < 0 ) )
sp−>dy = −sp−>dy ;

i f ( ( sp−>real_pos . x > COLS−0.5 ) && ( sp−>dx > 0 ) )
sp−>dx = −sp−>dx ;

e l s e i f ( ( sp−>real_pos . x < 0 .5 ) && ( sp−>dx < 0 ) )
sp−>dx = −sp−>dx ;

}

An unsafe SIGALRM signal handler would be as follows:

void update_al l ( i n t signum )
{

i n t k ;
f o r ( k = 0 ; k < NUM_OBJS; k++ )

i f ( −−ob j e c t [ k ] . counter == 0 ){
move_sprite (&( ob j e c t [ k ] ) ) ;
ob j e c t [ k ] . counter = ob j e c t [ k ] . i n t e r v a l ;

}
move(LINES−1, COLS−1);
r e f r e s h ( ) ;

}

The rest of this program is relatively easy to piece together. The main program follows in Listing
6.21.

Listing 6.21: Animating multiple objects: frenzy.c

#de f i n e NUM_OBJS 5
s p r i t e ob j e c t [NUM_OBJS] ;
void i n i t_ s p r i t e s ( s p r i t e obj [ ] , i n t i n t v l [ ] , char shape [ ] ,

p o s i t i o n pos [ ] , p o s i t i o n d i r [ ] ) ;
void update_al l ( i n t signum ) ;

i n t main ( i n t argc , char ∗ argv [ ] )
{

i n t done ;
i n t de lay ;
i n t c ;
i n t i n t e r v a l [NUM_OBJS] = { 10 , 15 , 20 , 5 , 8 } ;
char shape [NUM_OBJS] = { 'x ' , ' o ' , '∗ ' , '+ ' , ' s ' } ;
p o s i t i o n s t a r t [NUM_OBJS] = { {0 ,0 ,0 ,0} ,

{10 ,0 ,10 ,0} ,
{0 ,20 ,0 ,20} ,
{0 ,40 ,0 ,40} ,
{20 ,0 ,20 ,0}

} ;
d i r e c t i o n d i r e c t i o n [NUM_OBJS] = { {1 ,2} , {0 ,2} , {1 ,0} , {2 ,1} , {1 ,2} } ;

s t r u c t s i g a c t i o n newhandler ; /∗ f o r i n s t a l l i n g hand le r s ∗/
s i g s e t_t blocked ; /∗ to s e t mask f o r handler ∗/
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newhandler . sa_handler = update_al l ; /∗ name o f handler ∗/
newhandler . sa_f lags = SA_RESTART; /∗ f l a g i s j u s t RESTART ∗/
s igemptyset (&blocked ) ; /∗ c l e a r a l l b i t s o f b locked s e t ∗/
newhandler . sa_mask = blocked ; /∗ s e t t h i s empty s e t to be the mask ∗/

i f ( s i g a c t i o n (SIGALRM, &newhandler , NULL) == −1 ){ /∗ t ry to i n s t a l l ∗/
pe r ro r (" s i g a c t i o n " ) ;
r e turn ( 1 ) ;

}

/∗ prepare the te rmina l f o r the animation ∗/
i n i t s c r ( ) ; /∗ i n i t i a l i z e the l i b r a r y and sc r e en ∗/
cbreak ( ) ; /∗ put te rmina l i n to non−b lock ing input mode ∗/
noecho ( ) ; /∗ turn o f f echo ∗/
c l e a r ( ) ; /∗ c l e a r the s c r e en ∗/
curs_set ( 0 ) ; /∗ supposed to hide the cur so r ∗/

/∗ i n i t i a l i z e the parameters o f the program ∗/
done = 0 ;
de lay = 20 ;

i n i t_ s p r i t e s ( object , i n t e r va l , shape , s t a r t , d i r e c t i o n ) ;

/∗ s t a r t the r e a l time i n t e r v a l t imer with de lay i n t e r v a l s i z e ∗/
set_timer ( ITIMER_REAL, delay , de lay ) ;

whi l e ( ! done ) {
c = getch ( ) ;
switch ( c ) {
case 'Q' :
case 'q ' :

done = 1 ;
break ;

}
}
endwin ( ) ;
r e turn 0 ;

}

6.12.6 Summary

This chapter introduced the NCurses library as a means for controlling the user's terminal in a
simpler and more powerful way than was possible by modifying terminal driver attributes. It barely
scratched the surface of the library's interface. It also introduced timers as a way of introducing
timed events and motion. Finally, it introduced several di�erent models of input/output, including
signal-driven and asynchronous I/O, an well as several di�erent models of terminal processing, such
as raw, cbreak, and non-canonical mode.

More e�cient processing and better control can be achieved by the use of multiple processes. This
is the topic of the next chapter.
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7.1 Introduction

In a typical operating systems course, a process is de�ned to be a program in execution, or something
similar to that. This is a true and accurate abstraction. A program such as the bash shell can have
many, many instances running on a multi-user machine and each individual instance is a separate
and distinct process, although each and every one of these is executing the exact same executable
�le. What this de�nition does not tell you is what a process is in concrete terms. It is like saying
that a baseball game is an instance of the implementation of a set of rules created by Alexander
Cartwright in 1845 by which two teams compete against each other on a playing �eld. Neither
de�nition gives you a mental picture of the thing being de�ned.

In this chapter, we focus on the concrete representation of a process in UNIX: how it is represented
within the kernel, what kinds of resources it requires, how those resources are materialized and
managed, what attributes it has, and what system calls are related to its control and management.
As a �rst step we will look at processes from the command level. Afterward, we will look at how
UNIX systems arrange their address spaces and manage them in virtual and physical memory. Then
we will look at how processes are created and how they communicate and synchronize with each
other.

7.2 Examining Processes on the Command Line

The ps command is used for viewing one or more processes currently known to the operating
system. I say "currently known" as opposed to "active" because the list may include processes
that are technically not active, so called zombie processes. The set of options available for the ps

command is very system dependent. There were di�erent versions of it in BSD systems and in
Version 7, and then there are options added by GNU. RedHat Linux systems support all of the
historical options, and so there are many di�erent ways to use this command in Linux. In Linux,
users also have the option of running the top command. The top command is very much like ps,
except that it displays the dynamic, real-time view of the state of the system. It is like the Windows
task manager, and also like a terminal-based version of the Gnome System Monitor. Here we will
describe the standard syntax rather than the BSD style or GNU syntax.

The ps command without options displays the list of processes of the login id that executes it, in a
short form:
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$ ps

PID TTY TIME CMD

14244 pts/1 00:00:00 bash

14572 pts/1 00:00:00 ps

You will notice that it always contains a line for the command itself because it itself has to run to
do its job, obviously. The -f option causes it to display a full listing:

$ ps -f

UID PID PPID C STIME TTY TIME CMD

sweiss 2508 2507 0 12:09 pts/8 00:00:00 -bash

sweiss 3132 2508 0 12:22 pts/8 00:00:00 ps -f

The UID column is the user login name. The PID column is the process id of the process. The
PPID column is the parent process's process id. The C �eld is rarely of interest; it gives processor
utilization information. The STIME �eld is the starting time in hours, minutes, and seconds. The
TIME column is the cumulative execution time, which for short commands will be zero, since the
smallest unit of measurement in this column is seconds. The CMD column is the command line being
executed by this process; in this case there are two: bash and "ps -f". All command line arguments
are displayed; if any are suppressed, the command will appear in square brackets:

root 3080 1 0 Jan29 ? 00:00:00 [lockd]

The TTY column is the controlling terminal attached to this process. Some processes have no
terminal, in which case a "?" will appear.

The -e option displays all processes, which will be quite long. If I want to know which process is
the parent of my bash process, I can use ps -ef and �lter using grep:

$ ps -ef | grep 2507

sweiss 2507 2504 0 12:09 ? 00:00:00 sshd: sweiss@pts/8

sweiss 2508 2507 0 12:09 pts/8 00:00:00 -bash

sweiss 3207 2508 0 12:30 pts/8 00:00:00 grep 2507

From this output you see that I am connected via ssh on pseudo-terminal pts/8 and that the ssh
daemon sshd is the parent of my bash process.

You can learn a lot about a system just by running ps. For example, on our Linux system, the �rst
few processes in the system are:

$ ps -ef | head -4

UID PID PPID C STIME TTY TIME CMD

root 1 0 0 Jan29 ? 00:00:01 init [5]

root 2 1 0 Jan29 ? 00:00:02 [migration/0]

root 3 1 0 Jan29 ? 00:00:00 [ksoftirqd/0]

whereas on our Solaris 9 server, the list is:
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$ ps -ef | head -4

UID PID PPID C STIME TTY TIME CMD

root 0 0 0 Mar 13 ? 0:23 sched

root 1 0 0 Mar 13 ? 0:00 /etc/init -

root 2 0 0 Mar 13 ? 0:00 pageout

Notice that in Solaris, the (CPU) process scheduler itself is the very �rst process in the system.
It is absent in Linux. In all UNIX systems, the process with PID 1 is always init. In Solaris, the
pageout process is responsible for writing pages to disk, and fsflush �ushes system bu�ers to disk.

The -u and -U options are useful for viewing all of your processes or those of others in a supplied
user list. The list of users must be comma-separated, with no intervening spaces. For example:

$ ps -f -U sweiss,wgrzemsk

UID PID PPID C STIME TTY TIME CMD

sweiss 2507 2504 0 12:09 ? 00:00:00 sshd: sweiss@pts/8

sweiss 2508 2507 0 12:09 pts/8 00:00:00 -bash

wgrzemsk 2572 2570 0 12:10 ? 00:00:00 sshd: wgrzemsk@notty

wgrzemsk 2575 2573 0 12:10 ? 00:00:00 /bin/sh

While there are dozens of other options, I will only mention one more: the -o option. You can
customize the output of the ps command to include any of the dozens of attributes available to be
displayed using -o. The man page gives the general format for this. Some examples from the man
page:

ps -eo pid,tid,class,rtprio,ni,pri,psr,pcpu,stat,wchan:14,comm

ps axo stat,euid,ruid,tty,tpgid,sess,pgrp,ppid,pid,pcpu,comm

ps -eopid,tt,user,fname,tmout,f,wchan

Note that there are no spaces in the list. In general never use spaces in any of the lists because
the shell will then treat them as separate words rather than a single word to be passed to the ps

command itself.

A related command is pgrep. If you need the process id of a command or program that is running,
typing pgrep <executable name> will give you a list of processes running that program, one per
line. For example

$ pgrep bash

2508

3502

3621

showing that three instances of bash are running, with pids 2508, 3502, and 3621.
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7.3 Process Groups

UNIX systems allow processes to be placed into groups. There are several reasons for grouping
processes. One is that a signal can be sent to an entire process group rather than a single process.
For example, the shell arranges that all processes created in order to carry out the command line
are in a single group, so that if the user needs to terminate that command, a single signal sent via
Ctrl-C will kill all processes in the group. The alternative would require using the ps command to
�nd all processes that were created to carry out the command.

Every process has a process group-id (of type pid_t). There is a single process in each group that
is considered to be the leader of the group. It can be identi�ed easily, because it is the only process
whose process group-id is the same as its process-id. You can view the process group-id of a process
in the output of ps by using the -o option and specifying the format in either AIX format, such as

ps -o'%U %p %P %r %C %x %y %a'

or in standard format, as in

ps -ouser,pid,ppid,pgrp,%cpu,cputime,tty,args

If you run the command

$ cat | sort -u | wc

and then view the processes using one of the above ps commands, you will see the group formation:

$ psg -u sweiss | egrep 'TIME|cat|sort|wc'

USER PID PPID PGID %CPU TIME TTY COMMAND

sweiss 17198 17076 17198 0.0 00:00:00 pts/2 cat

sweiss 17199 17076 17198 0.0 00:00:00 pts/2 sort -u

sweiss 17200 17076 17198 0.0 00:00:00 pts/2 wc

Notice that the cat command's process group-id (pgid) is the same as its process-id (pid) and that
the three processes belong to the same group. If the full listing were displayed you would see that
no other process is in this group.

7.4 Foreground and Background Processes

UNIX allows processes to run in the foreground or in the background. Processes invoked from a shell
command line are foreground processes, unless they have been explicitly placed into the background
by appending an ampersand '&' to the command line. There can be only one process group in the
foreground at any time, because you cannot enter a new command until the currently running one
terminates and the shell prompt returns. Foreground processes can read from and write to the
terminal.
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In contrast, there is no limit to the number of background processes, but in a POSIX-compliant
system, they cannot read from or write to the terminal. If they try to do either, they will be stopped
by the kernel (via SIGTTIN or SIGTTOU signals). The default action of a SIGTTOU signal is to stop
the process, but many shells override the default action to allow background processes to write to
the terminal.

Background and foreground processes use the terminal as their control terminal, but background
processes do not receive all signals from that terminal. A Ctrl-C, for example, will not cause a
SIGINT to be sent to background processes. However, a SIGHUP will be sent to all processes that
use that terminal as their control terminal, including background processes. This is so that, if a
terminal connection is broken, all processes can be noti�ed of it and killed by default. If you want
to start a background process and then logout from a session, you can use the nohup command to
run it while ignoring SIGHUP signals, as in

$ nohup do_backup &

which will let do_backup run after the terminal is closed. In this case, the do_backup program must
not read or write a terminal.

7.5 Sessions

Every process belongs to a session. More accurately, every process group belongs to a session, and
by transitivity, each process belongs to a session. Every session has a unique session-id of type
pid_t. The primary purpose of sessions is to organize processes around their controlling terminals.
When a user logs on, the kernel creates a session, places all processes and process groups of that user
into the session, and links the session to the terminal as its controlling terminal. Sessions usually
consist of a single foreground process group and zero or more background process groups. Just as
process groups have leaders, sessions have leaders. The session leader can be distinguished because
its process-id is the same as the session-id.

Processes may secede from their sessions, and unlike countries, they can do this without causing
wars. Any process other than a process group leader can form a new session and automatically be
placed into a new group as well. The new session will have no control terminal. This is exactly how
a daemon is created � it detaches itself from the session into which it was born and goes o� on its
own. Later we will see how programs can do this.

You can add output to the ps command to see the session-id by adding the "sid" output format
to the standard syntax, as in

$ ps -ouser,pid,ppid,pgrp,sid,%cpu,cputime,tty,args

7.6 The Memory Architecture of a Process

Although earlier chapters made allusions as to how a process is laid out in virtual memory, here
the process layout is described in detail. In addition, we provide a program that displays enough
information about the locations of its own symbols in virtual memory that one can infer its layout
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from them. In particular, the program will display the addresses of various local and global symbols
in hexadecimal and decimal notation. These locations are clues to how the process is laid out in its
logical address space.
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Figure 7.1: Typical layout of a process in virtual memory.

7.6.1 Overview

To start, we look at the big picture of what a process looks like in its logical address space. This
picture should enable you to construct a mental image of the physical layout of a process in its own
logical address space, how it looks in a �le, and how that �le relates to the virtual memory image
of the process. Di�erent UNIX systems use di�erent layouts for processes, but for the most part,
most modern systems adhere to a format known as the Executable and Linkable Format (ELF ).

The resources needed by a process executing in user mode include the CPU state (general purpose
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registers, program status register, stack related registers, etc.), some environment information, and
three memory segments called the text segment, the data segment, and the stack segment. The text
segment contains the program code. The stack segment is reserved for the run-time stack of the
user phase1 of the process, and the data segment is for program data. More will be said about these
below.

The resources needed when the process is executing in kernel phase include the CPU state (same
as above) as well as the resources needed for the kernel to provide the services for the process and
schedule it appropriately. These resources include the parameters to the system call, the process's
identity and properties, scheduling information, open �le descriptors, and so on. This set of kernel
resources is separated into two main structures, a process structure and a user structure, and a few
minor ones. Together these structures constitute what is usually called the process image. The
process structure and user structure are kept in kernel memory. The layout of the process address
space is shown in Figure 7.1.

The process structure contains the information that must be memory-resident even when the process
is swapped out, including the process privileges and rights, identi�ers associated with the process,
its memory map, descriptors, pending events, and maximum and current resource utilization. The
user structure contains information that is not needed in memory when the process is swapped out,
including the process control block2, accounting and statistics, and a few other pieces of information,
and is therefore swapped out along with the rest of the process.

7.6.2 The Process Structure

The kernel maintains a process structure for every running process. This structure contains the infor-
mation that the kernel needs to manage the process, such as various process descriptors (process-id,
process group-id, session-id, and so on), a list of open �les, a memory map and possibly other process
attributes. In all of the versions of UNIX with which I am familiar, this structure is known as the
process structure. In Linux, the terms process structure and task structure are used interchangeably,
and the actual data structure that represents it is the task_struct. In some versions of UNIX,
there is much less information in the process structure and more in the user structure.

Up until the introduction of threads, or so called light-weight processes (LWPs), the process structure
was a very �heavy� structure �lled with a large amount of information. One reason that the concept
of a light-weight process was invented was to reduce the amount of information associated with each
executable unit, so that they did not take up as much memory and so that creating new ones would
be faster. The process structure was redesigned in 4.4BSD to support these threads by moving
much of the information that had been in it into smaller structures that could be pointed to by
the process structure. Each thread could share the information in the substructures by pointing
to them, rather than keeping complete copies of them. This way, each thread could have its own
unique identi�ers, such as a process-id, and also have access to the shared data, such as open �les
and memory maps.

The exact information present in any process structure will vary from one implementation to another,
but all process structures minimally include

• Process id
1User phase and user mode are used interchangeably here.
2The process control block is used in UNIX only to store the state of the CPU � the contents of the registers and

so on.
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• Parent process id (or pointer to parent's process structure)

• Pointer to list of children of the process

• Process priority for scheduling, statistics about CPU usage and last priority.

• Process state

• Signal information (signals pending, signal mask, etc.)

• Machine state

• Timers

Usually the process structure is a very large object containing much more additional information.
The task structure in Linux 2.6.x, for example, may contain over 150 di�erent members. Typical
substructures referenced in the process structure may include such things as the

• Process's group id

• User ids associated with the process

• Memory map for the process (where all segments start, and so on)

• File descriptors

• Accounting information

• Other statistics that are reported such as page faults, etc.

• Signal actions

• Pointer to the user structure.

The substructure generally contains information that all threads would share, and the process
structure itself contains thread-speci�c information.

The process structure is located in kernel memory. Di�erent versions of UNIX store it in di�erent
ways. In BSD, the kernel maintains two lists of process structures called the zombie list and the
allproc list. Zombies are processes that have terminated but that cannot be destroyed, the reasons
for which will be made clear a little later in this chapter. Zombie processes have their structures on
the zombie list. The allproc list contains those that are not zombies. In Linux 2.6.x, the process or
task structures are kept in one, circular, doubly-linked list. In Solaris, the process structure is in a
struct proc_t and the collection of these are maintained in a table.

7.6.3 The User Structure

The user structure contains much less information than the process structure. The user structure
gets swapped in and out with the process; keeping it small reduces the swapping overhead. His-
torically, the most important purpose of the user structure was that it contained the per-process

execution stack for the kernel.

This work is copyrighted by Stewart Weiss and licensed under the Creative Commons Attribution-

ShareAlike 4.0 International License.
8

http://creativecommons.org/licenses/by-sa/4.0/ 
http://creativecommons.org/licenses/by-sa/4.0/ 


UNIX Lecture Notes

Chapter 7 Process Architecture and Control

Prof. Stewart Weiss

Every process in UNIX needs its own, small kernel stack. When a process issues a system call and
the kernel phase begins, the kernel needs a stack for its function calls. Since the kernel might be
interrupted in the middle of servicing a call, it must be able to switch from one process's service call
to another. This implies that it needs a di�erent stack for each process. The UNIX kernel designers
carefully designed all functions in the kernel so that they are non-recursive and do not use large
automatic variables. Furthermore, they can trace the possible sequences of call chains in the kernel
so that they know exactly the largest possible stack size. Thus, unlike ordinary user programs, the
kernel itself has a known upper bound on its required stack size. Because the stack size is known
in advance, the kernel stack can be allocated in a �xed size chunk of virtual address space. This is
why, in Figure 7.1, you see that it is bounded above and below by �xed boundaries. As you can see
from the �gure, the stack is at the high end of the address space, above the environment variables
and program parameters. Its exact placement varies from one version of UNIX to another.

Depending on the version of UNIX, the user structure can contain various other pieces of information.
In BSD, the memory maps are all in the process structure or its substructures. In Linux, the user
structure, de�ned in struct user (in <user.h>) contains the memory maps. The memory maps
generally include the starting and ending addresses of the text, data, and stack segments, the various
base and limit registers for the rest of the address space, and so on1. The user structure usually
contains the process control block. This contains the CPU state and virtual memory state (page
table base registers and so on.)

7.6.4 The Text Segment

The text segment (also called the instruction segment) is the program's executable code. It is almost
always a sharable, read-only segment, shared by all other processes executing the same program.
The C compiler, by default, creates shared text segments. The advantage of using shared text
segments is not so much that it conserves memory to do so, but that it reduces the overhead of
swapping. When a process is active, its text segment resides in primary memory. There are various
reasons why the process might be swapped to secondary storage. Often it is that it issues a wait for
a slow event; in this case the system will swap it to secondary storage to make room in memory for
other more productive processes. When it becomes active again, it is brought back into memory.
Since a read-only text segment can never be modi�ed, there is no reason to copy it to secondary
storage when a process executing it is swapped out. Similarly, if a copy of a text segment already
resides in primary memory, there is no reason to copy the text segment from secondary storage into
primary memory. Thus, there is a savings in swapping overhead.

UNIX keeps track of the read-only text segment of each user process. It records the location of the
segment in secondary storage and, if it is loaded, its primary memory address, and a count of the
number of processes that are currently executing it. When a process �rst executes the segment,
the segment is loaded from secondary storage, the count is set to one, and a table entry is created.
When a process terminates, the count is decremented. When the count reaches zero, the segment
is freed and its primary and secondary memory are de-allocated.

7.6.5 The Stack Segment

The user stack segment serves as the run-time stack for the user phase of the process. That is,
when the process makes calls to other parts of the user code, the calls are stacked in this segment.
The stack segment provides storage for the automatic identi�ers and register variables, and serves
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its usual role of managing the linkage of subroutines called by the user process. The stack is always
�upside-down� in UNIX, meaning that pushes cause the top to become a smaller memory address.
If the stack ever meets the top of the heap, it causes an exception. In a 32-bit architecture, a
user process is typically allocated a virtual address space of 4 Gbytes. If the stack meets the heap,
the process exceeds its virtual memory allotment and it is time to port the application to a 64-bit
machine!

7.6.6 The Data Segment

The data segment is memory allocated for the program's initialized and uninitialized data. The
initialized data is separated from the uninitialized data, which is stored in a section called the bss,
which is an acronym for Block Started by Symbol, an old FORTRAN machine instruction. Initialized
data are items such as named constants and initialized static variables. They come from the symbol
table. Uninitialized data has no starting value. The system only needs to reserve the space for
them, which it does by setting the address of the top of the data segment. The data segment grows
or shrinks by explicit memory requests to shift its boundary. The system call to shift the boundary
is the brk() call; sbrk() is a C wrapper function around brk().The data segment always grows
toward the high end of memory, i.e., the brk() call increases the boundary to increase memory.
Most programmers use the C library functions malloc() and calloc() to allocate more memory
instead of the low-level brk() primitives. These C routines call brk() to adjust the size of the data
segment.

Programmers often refer to the part of memory that is used by malloc() and calloc(), the "heap".
People usually think of the heap as the part of memory that is not yet allocated, lying between the
top of the stack and the end of the bss.

7.6.7 From File to Memory

How is an executable program �le arranged and how does it get loaded? When you run the gcc

compiler and do not speci�cally name the executable �le, as in

$ gcc myprog.c

the compiler (actually the linker) creates a �le named a.out. The name a.out is short for "assembler
output" and was not just the name of the output �le, but was also name of the format of all binary
executable �les on UNIX systems for many years. The a.out �le format could be read in the a.out
man page as well as in the <a.out> header �le.

In the mid 1990's, a more portable and extensible format known as Executable and Linking Format

(ELF ) was created by the UNIX System Laboratories as part of the Application Binary Interface

(ABI ). It was later revised by the Tool Interface Standards (TIS) Committee, an industry con-
sortium that included most major companies (Intel, IBM, Microsoft, and so on). While compilers
continue to create �les named a.out, they are ELF �les on most modern machines.

The ELF speci�cation de�nes exactly how an executable �le is organized, and is general enough to
encompass three di�erent types of �les:

• Relocatable �les holding code and data suitable for linking with other object �les, to create
an executable or a shared object �le (.o �les),
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Figure 7.2: Linking and execution views of an ELF �le.

• Executable �les holding a program suitable for execution, and

• Shared object �les that can be used by the dynamic linker to create a process image (.so �les).

An ELF �le begins with a structure called the ELF header. This header is essentially a road map
to the rest of the �le. It contains identi�cation information and the addresses and sizes of the rest
of the components of the �le. An ELF �le is characterized by the fact that it contains two di�erent,
parallel, yet overlapping views: the linking view and the execution view as shown in Figure 7.2.

The linking view is the view of the �le needed by the link editor in order to link and relocate
components in the �le. Information within it is organized into sections, which contain such things
as the instructions, data, symbol table, string table, and relocation information. A section header

table serves as a table of contents for the sections and is generally located at one end of the �le.

The execution view, in contrast, is the view of the �le needed in order to execute it. It organizes
its information in segments. Segments correspond conceptually to virtual memory segments; when
the executable is loaded into memory, ELF segments are mapped to virtual memory segments.
Thus, for example, for an executable program, there is a text segment containing instructions, an
uninitialized data segment, and an initialized data segment, as well as several others. A program

header table serves as a table of contents for the segments and usually follows the ELF header.

Neither the sections nor the segments in the �le have to be in any particular order because the
tables de�ne their positions. The two separate views are overlapped in the �le, as shown in Figure
7.3. The �gure also shows that segments can consist of multiple sections.

The symbol table is a table that the compiler creates to map symbolic names to logical addresses
and store the attributes of these symbols. The compiler uses the table to construct the code, but in
addition, it is the symbol table that makes it possible for a debugger to associate memory addresses
with the names of variables. When the debugger runs, the symbol table is loaded into memory with
the program. The string table is a table containing all of the strings used in the program. The
strings command is a handy command to know about � it displays a list of all of the strings in a
binary �le. The strings command works because the string table is part of the �le and the command
simple has examine it.
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Section header table

.data

.rodata

...

ELF header

.text

Program header table

...

Figure 7.3: Overlapped views of the ELF �le.

The readelf command can be used to examine an executable �le.

$ readelf [options] elffile ...

The information displayed depends upon the options provided on the command line. With -a, all
information is provided. The -h option displays the contents of the ELF header (in human readable
form of course):

$ readelf -h /bin/bash

ELF Header:

Magic: 7f 45 4c 46 01 01 01 00 00 00 00 00 00 00 00 00

Class: ELF32

Data: 2's complement, little endian

Version: 1 (current)

OS/ABI: UNIX - System V

ABI Version: 0

Type: EXEC (Executable file)

Machine: Intel 80386

Version: 0x1

Entry point address: 0x805c7b0

Start of program headers: 52 (bytes into file)

Start of section headers: 733864 (bytes into file)

Flags: 0x0

Size of this header: 52 (bytes)

Size of program headers: 32 (bytes)
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Number of program headers: 8

Size of section headers: 40 (bytes)

Number of section headers: 32

Section header string table index: 31

You can see from this output that the ELF header has information about the executable's format:
32-bit, 2's complement, for Intel 80386 on UNIX System V. It also has the location of the program
header (byte 52 into the �le) and the section header table (733864 bytes into the �le).

The file command uses the ELF header to provide its output:

$ file /bin/bash

/bin/bash: ELF 32-bit LSB executable, Intel 80386, version 1 (SYSV),

dynamically linked (uses shared libs), for GNU/Linux 2.6.9, stripped

You can experiment with some of the executables to see how much you can learn about the structure
of executable programs.

Notice in the output above that the entry point address of the executable is 0x805c7b0. This is
the address of the �rst executable instruction in the bash executable. The starting virtual address
is not 0. In modern UNIX systems, the starting address is always after 0x8048000. The addresses
below that are reserved for the system to use. One reason for this is that the debugger will run in
the lower addresses when the program runs under the debugger.

Figure 7.4 shows the virtual addresses of a hypothetical executable, taken from a version of the
ELF standard. Notice in this example that the text segment is not at the start of the virtual
address space, and that each segment is padded as needed so that it aligns on 0x1000 (4096) byte
boundaries, because page sizes are 4096 bytes. Notice too that the data segment and uninitialized
data segment follow the text segment.

7.6.8 A Program To Display The Virtual Memory Boundaries

In this section we will explore the virtual address space of a process with the aid of a program that
I found in a book on interprocess communication [1] and subsequently modi�ed. It displays the
boundaries of the di�erent components of the virtual address space of its executable image. The
program declares the following types of memory objects:

• Global, initialized pointer variable: cptr

• Global uninitialized string: buffer1

• Automatic variable in main program: i

• Parameters to main program: argc, argv, envp

• Static uninitialized local in main program: diff

• Main function main()

• Non-main function showit()
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Figure 7.4: Example of ELF process image segments.

• Automatic pointer variable, dynamically allocated: buffer2

• Automatic variable in non-main function: num

It displays the locations of each of these objects as hexadecimal and decimal virtual addresses. The
locations of these objects will lie within the ranges that are speci�ed by the text, data, and stack
segment positions described earlier. For example, the location of the uninitialized global buffer1
and the initialized global *cptr will be between the �rst and last addresses of the data segment, one
in the bss and the other, not. The remaining variables each pinpoint the location of a particular
segment: "Hello World", the pointer variable cptr itself, the symbols main() and showit(), which
are globals, and the local variables num and buffer2 in showit(). The location of a local variable,
which is supposed to be on the run-time stack, will show where that stack is in virtual memory.

Three external integer variables etext, edata, and end are de�ned in global scope in the C library
and may be accessed by any C program3. They are boundaries of three speci�c segments:

etext The address of etext is the �rst location after the program text.

edata The address of edata is the �rst location after the initialized data region.

end The address of end is the �rst location after the uninitialized data region.

The value of etext is an upper bound on the size of the executable image. The initialized and
uninitialized data regions are the regions where constants and globals are stored. Uninitialized data

3They may be declared as macros.
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are globals whereas initialized data are constants. These symbols are incorporated into the program,
displayed in Listing 7.1.

Listing 7.1: displayvm.c

#inc lude <s td i o . h>
#inc lude <s t d l i b . h>
#inc lude <s t r i n g . h>
#inc lude <sys / types . h>
#inc lude <uni s td . h>

/∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/
/∗ Global Constants ∗/
/∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/

#de f i n e SHW_ADR(ID , I ) \
p r i n t f (" %s \ t i s at addr :%8X\ t%20u\n" ,\

ID , ( unsigned i n t )(& I ) , ( unsigned i n t )(& I ) )

/∗ These are system var i ab l e s , de f i ned in the un i s td . h header f i l e ∗/
extern i n t etext , edata , end ;

char ∗ cptr = "He l lo World\n " ; /∗ cptr i s an i n i t i a l i z e d g l oba l ∗/
char bu f f e r 1 [ 4 0 ] ; /∗ u n i n i t i a l i z e d g l oba l ∗/

void showit ( char ∗ ) ; /∗ Function prototype −− has no s to rage ∗/

i n t main ( i n t argc , char ∗ argv [ ] , char ∗ envp [ ] )
{

i n t i = 0 ; /∗ on stack ∗/
s t a t i c i n t d i f f ; /∗ g l oba l in u n i n i t i a l i z e d data segment ∗/

s t r cpy ( bu f f e r1 , " Layout o f v i r t u a l memory\n " ) ;
wr i t e (1 , bu f f e r1 , s t r l e n ( bu f f e r 1 )+1);

p r i n t f ("Adr e t ex t : %8X \ t Adr edata : %8X \ t Adr end : %8X \n\n" ,
( unsigned i n t )&etext , ( unsigned i n t ) &edata , ( unsigned i n t ) &end ) ;

p r i n t f (" ID \ t HEX_ADDR\ t DECIMAL_ADDR\n " ) ;
SHW_ADR("main " , main ) ;
SHW_ADR(" showit " , showit ) ;
SHW_ADR(" e t ex t " , e t ex t ) ;
d i f f = ( i n t ) &showit − ( i n t ) &main ;
p r i n t f (" showit i s %d bytes above main\n" , d i f f ) ;
SHW_ADR(" cptr " , cpt r ) ;
d i f f = ( i n t ) &cptr − ( i n t ) &showit ;
p r i n t f (" cptr i s %d bytes above showit \n" , d i f f ) ;
SHW_ADR(" bu f f e r 1 " , bu f f e r 1 ) ;
SHW_ADR(" d i f f " , d i f f ) ;
SHW_ADR(" edata " , edata ) ;
SHW_ADR(" end " , end ) ;
SHW_ADR(" argc " , argc ) ;
SHW_ADR(" argv " , argv ) ;
SHW_ADR(" envp " , envp ) ;
SHW_ADR(" i " , i ) ;
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showit ( cptr ) ;
r e turn 0 ;

}
/∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/

void showit ( char ∗ p)
{

char ∗ bu f f e r 2 ;
SHW_ADR(" bu f f e r 2 " , bu f f e r 2 ) ;
i f ( ( bu f f e r 2= ( char ∗) mal loc ( ( unsigned ) ( s t r l e n (p)+1))) != NULL){

s t r cpy ( bu f f e r2 , p ) ;
p r i n t f ("%s " , bu f f e r 2 ) ;
f r e e ( bu f f e r 2 ) ;

}
e l s e {

p r i n t f (" A l l o ca t i on e r r o r . \ n " ) ;
e x i t ( 1 ) ;

}
}

When you run this program, you should get output similar to the following. The last column is the
decimal value of the location. Notice that i in main() and buffer2 in showit() are high addresses.
They are in the stack. Notice that envp, which is a pointer to an array of strings, is above the
stack, as Figure 7.1 depicts. Notice that the addresses of these descend, because the stack grows
downward. Notice too that diff in main() and buffer1 lie between edata and end, showing that
they are in the uninitialized data region, but that cptr is between etext and edata because it is
initialized. You should see that buffer1 is the last variable in the bss, since it is 40 bytes long and
its address is 40 bytes from the end. Also, notice that the address of etext is the same as the value
of etext. This is because etext is not a real variable. It is just a mnemonic name for the actual
location, as determined by the linker.

Layout o f v i r t u a l memory
Adr e t ex t : 8048958 Adr edata : 8049C90 Adr end : 8049CE8

ID HEX_ADDR DECIMAL_ADDR
main i s at addr : 8048544 134513988
showit i s at addr : 8048806 134514694
e t ex t i s at addr : 8048958 134515032

showit i s 706 bytes above main
cptr i s at addr : 8049C8C 134519948

cptr i s 5254 bytes above showit
bu f f e r 1 i s at addr : 8049CC0 134520000
d i f f i s at addr : 8049CA8 134519976
edata i s at addr : 8049C90 134519952
end i s at addr : 8049CE8 134520040
argc i s at addr :BF9ECDC0 3214855616
argv i s at addr :BF9ECDC4 3214855620
envp i s at addr :BF9ECDC8 3214855624
i i s at addr :BF9ECD9C 3214855580
bu f f e r 2 i s at addr :BF9ECD6C 3214855532

He l lo World

Notice that the main program starts at virtual address 0x08048544. The start of the virtual address
space is at 0x08048000. The di�erence is 1348 bytes. If you look at the output of the readelf

This work is copyrighted by Stewart Weiss and licensed under the Creative Commons Attribution-

ShareAlike 4.0 International License.
16

http://creativecommons.org/licenses/by-sa/4.0/ 
http://creativecommons.org/licenses/by-sa/4.0/ 


UNIX Lecture Notes

Chapter 7 Process Architecture and Control

Prof. Stewart Weiss

-a command, you will see that there are several sections of code that reside in this small pocket
before the main program. There you will �nd the code that must be run before main() starts (what
I like to call the "glue" routine), the code that runs when the program �nishes, and special code
for dynamic linking and relocation. When a program starts, before the operating system transfers
control to the program, there are initializations and possible linking and relocation; the code there
serves that purpose.

7.7 Creating New Processes Using fork

Now that you have a better idea of what processes actually are, we can start exploring their world.
We will begin with process creation, since that is, after all, the beginning of all things.

Once the operating system has bootstrapped itself, the only way for any process to be created is
via the fork() system call4. All processes are created with fork():

#include <sys/types.h>

#include <unistd.h>

pid_t fork(void);

The fork() call is a hard one to accept at �rst; you probably have never seen a function quite like
it before. It is very appropriately named, because the statement

pid_t processid = fork();

causes the kernel to create a new process that is almost an exact copy of the calling process, such
that after the call, there are two processes, each continuing its execution at the point immediately
after the call in the executing program! So before the instruction is executed, there is a single
process about to execute the instruction, and by the time it has returned, there are two. There has
been a fork in the stream of instructions, just like a fork in a road. It is almost like process mitosis.

The process that calls fork() is called the parent process and the new one is the child process. They
are distinguished by the values returned by fork(). Each process is able to identify itself by the
return value. The value returned to the parent is the process-id of the newly created child process,
which is never 0, whereas the value returned to the child is 0. Therefore, each process simply needs
to test whether the return value is 0 to know who it is. The child process is given an independent
copy of the memory image of the parent and the same set of resources. It is essentially a clone of the
parent and is almost identical in every respect5. Unlike cellular mitosis though, it is not symmetric.

The typical use of the fork() call follows the pattern

processid = fork();

4This is a simpli�cation. There are other system calls, depending on the version of UNIX. For example, Linux

revived the old BSD vfork() system call, which was introduced in 3.0BSD and later removed in 4.4BSD for good

reason. Linux also provides a clone() library function built on top of the kernel's sys_clone() function. Section

7.7.1 below.
5There are a few minor di�erences. For example, a call to getppid() will return di�erent values, since this returns

the process-id of the parent process.
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if (processid == 0)

// child's code here

else

// parent's code here

The true branch of the if-statement is code executed by the child and not by the parent. The false
branch is just the opposite. This may seem like a useless way to create processes, since they always
have to share the same code as the parent, so they do nothing di�erent. The fork() call is valuable
when used with exec() and wait(), as will be shown shortly.

Our �rst example, forkdemo1.c, in Listing 7.2 demonstrates a bit about how fork() works.

Listing 7.2: forkdemo1.c

#inc lude <uni s td . h>
#inc lude <s td i o . h>
#inc lude <s t d l i b . h>

in t g l oba l = 10 ;

i n t main ( i n t argc , char ∗ argv [ ] )
{

i n t l o c a l = 0 ;
pid_t pid ;

p r i n t f (" Parent p roce s s : ( Before f o rk ( ) ) " ) ;
p r i n t f (" l o c a l = %d , g l oba l = %d \n" , l o c a l , g l oba l ) ;

i f ( ( pid = fo rk ( ) ) == −1 ) {
pe r ro r (" f o rk " ) ;
e x i t ( 1 ) ;

}
e l s e i f ( 0 == pid ) {

/∗ ch i l d execute s t h i s branch ∗/
p r i n t f (" After the f o rk in the ch i l d : " ) ;
l o c a l++;
g l oba l++;
p r i n t f (" l o c a l = %d , g l oba l = %d\n" , l o c a l , g l oba l ) ;

}
e l s e {

/∗ parent execute s t h i s branch ∗/
s l e e p ( 2 ) ; /∗ s l e e p long enough f o r ch i ld ' s output to appear ∗/

}

/∗ both p ro c e s s e s execute t h i s p r i n t statement ∗/
p r i n t f (" pid = %d , l o c a l = %d , g l oba l = %d \n" ,

ge tp id ( ) , l o c a l , g l oba l ) ;

r e turn 0 ;
}

In this program, the return value from fork() is stored in pid, which is tested in the if-statement.
fork() returns -1 on failure, and one should always check whether it failed or not.
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The child's code is the next branch, in which 0 == pid is true. The child increments the values of
two variables, one, global, declared globally and one, local, locally in main(). It then prints out
their values, jumps over the parent code and executes the printf(), obtaining its process-id using
the getpid() system call and displaying the values of local and global again.

In the meanwhile, the parent sleeps for two seconds, enough time so that the child's output will
appear �rst. It then executes the printf(), obtaining its process-id using the getpid() system call
and displaying the values of local and global. The sleep() prevents intermingling of the output,
which can happen because the child shares the terminal with the parent.

Bearing in mind that the child is given a copy of the memory image of the parent, what should the
output of the parent be? Hopefully you said that local = 0 and global = 10. This is because the
child changed their values in the copy of the memory image, not in a shared memory. The point of
this program is simply to demonstrate this important fact.

Let us make sure we understand fork() arithmetic before continuing. Before running the program
forkdemo2.c shown in Listing 7.3, predict the number of lines of output. Do not redirect the output
or pipe it. This will be explained afterward.

Listing 7.3: forkdemo2.c

#inc lude <uni s td . h>
#inc lude <s td i o . h>
#inc lude <s t d l i b . h>

in t main ( i n t argc , char ∗ argv [ ] )
{

i n t i ;
p r i n t f ("About to c r e a t e many p ro c e s s e s . . . \ n " ) ;
f o r ( i = 0 ; i < N; i++ )

i f ( −1 == fo rk ( ) )
e x i t ( 1 ) ;

p r i n t f (" Process id = %d\n" , getp id ( ) ) ;
f f l u s h ( stdout ) ; /∗ f o r c e output be f o r e s h e l l prompt ∗/
s l e e p ( 1 ) ; /∗ g ive time to the s h e l l to d ip lay prompt ∗/
return 0 ;

}

Did you correctly predict?

Each time the bottom of the loop is reached, the number of processes in existence is twice what
it was before the loop was entered, because each existing process executes the fork() call, making
a copy of itself. If N were 1, the loop would execute once and there would be 2 processes, each
printing their process ids to the screen. If N were 2, the loop would execute a second time, and the
2 processes would make 2 more, 4 in total. In general, there will be 2N processes when the loop
�nishes, and that many lines of output on the screen, together with the �rst line,

About to create many processes...

for a total, when N = 4, of 17 lines. Now try redirecting the output of the program to wc, to make
it easier to count how many lines are there.
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$ forkdemo2 | wc

32 144 832

$

Why are there 32 lines and not 17? Try instead redirecting the output to a �le and looking at it
there:

$ forkdemo2 > temp; wc temp

24 108 624 temp

$

If you look at the �le temp, you will see something like

About to create many processes...

Process id = 6708

About to create many processes...

Process id = 6707

About to create many processes...

Process id = 6717

About to create many processes...

Process id = 6709

About to create many processes...

Process id = 6716

...

and there will be fewer than 16 lines with process ids. So what is going on here? Why is that line
replicated for each process and why are there fewer than 16 lines stating the process ids?

• Remember this important fact about fork(): when a process is created by a call to fork(),
it is an almost exact duplicate of the original process. In particular it gets copies of all open
�le descriptors and naturally, all of the process's user space memory image.

• What this means is that when a child process is created, its standard output descriptor points
to the same open �le structure as the parent and all other processes forked by the parent, and
therefore the children and parent share the �le position pointer.

• Operations such as printf() are part of the C I/O library and act on objects of type FILE,
which are called streams. The C I/O Library uses stream bu�ering for all operations that act
of FILE streams. (We noted this in Chapter 5.) There are three di�erent kinds of bu�ering
strategies:

� Unbu�ered streams: Characters written to or read from an unbu�ered stream are trans-
mitted individually to or from the �le as soon as possible.

� Line bu�ered streams: Characters written to a line bu�ered stream are transmitted to
the �le in blocks when a newline character is found.

� Fully bu�ered streams: Characters written to or read from a fully bu�ered stream are
transmitted to or from the �le in blocks of arbitrary size.
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• By default, when a stream is opened, it is fully bu�ered, except for streams connected to
terminal devices, which are line bu�ered.

• The bu�ers created by the C I/O Library are in the process's own address space, not the
kernel's address space. (When your program calls a function such as printf(), the library is
linked into that program; all memory that it uses is in its virtual memory.) This means that
when fork() is called, the child gets a copy of the parent's library bu�ers, and all children
get copies of these bu�ers. They are not shared ; they are duplicated.

• The C I/O library �ushes all output bu�ers

� When the process tries to do output and the output bu�er is full.

� When the stream is closed.

� When the process terminates by calling exit().

� When a newline is written, if the stream is line bu�ered.

� Whenever an input operation on any stream actually reads data from its �le.

� When fflush() is called on that bu�er.

• As a corollary to the preceding statement, until the bu�er has been �ushed, it contains all
characters that were written to it since the last time it was �ushed.

• No C I/O Library function is atomic. It is entirely possible that output can be intermingled
or even lost if the timing of calls by separate processes sharing a �le position pointer leads to
this.

Now we put these facts together. The forkdemo2 program begins with the instruction

printf("About to create many processes...\n");

If output has not been redirected, then stdout is pointed to a terminal device and it is line bu�ered.
The string "About to create many processes...\n" is written to the terminal and removed from
the bu�er. When the process forks the children, they get empty bu�ers and write their individual
messages to the terminal. Unless by poor timing a line is written over by another process, each
process will produce exactly one line of output. It is quite possible that this will happen if there are
a large enough number, N , of processes, as the probability of simultaneous writes increases rapidly
towards 1.0 as N increases.

Let us do a bit of mathematical modeling. The printf() instruction

printf("Process id = %d\n", getpid());

writes to standard output. If the fraction of time that each process spends in the portion of
the printf() function in which a race condition might occur is p, then there is a probability of
1−(1−p)N that at least two processes are in that portion of code at the same time. If, for example,
p = 0.05 and N = 16, then the probability of a race (and hence lost output) is 1 − 0.9516 u 0.56.
If N = 32, it is 0.81 and when N = 64, it is 0.96. So you see that as the number of processes
increases, it becomes almost inevitable that lines will be lost, regardless of whether they are written
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to the terminal or to a di�erent �le descriptor, because the race condition is independent of how
the output stream is bu�ered.

If standard output is redirected to a �le or to a pipe, it no longer points to a terminal device and
the library will fully bu�er it instead of line bu�ering it. The block size used for bu�ering is much
larger than the total size of the strings given to the printf() function. The consequence is that the
string "About to create many processes...\n" will remain in the bu�ers of all child processes
when they are forked, and when they each call

printf("Process id = %d\n", getpid());

fflush(stdout);

each line of the output will be of the form

About to create many processes...

Process id = 8810

and there will be twice as many lines written as there were to the terminal.

Since the command

forkdemo2 | wc

redirects the standard output of forkdemo2 to a pipe, wc will see twice as many lines as appear on
the terminal. Similarly, the command

forkdemo2 > temp

redirects the standard output to a �le, and the �le will contain twice as many lines as what appears
on the terminal.

The foregoing statement about the output to the �le is true only if the executions of the printf()

instructions do not overlap and no output is lost. We return to this issue shortly. The claim
regarding the pipe is unconditionally true.

How can we make the behavior of the program the same regardless of whether it is to a terminal or
is redirected? We can force the �rst string to be �ushed from the bu�er by calling fflush(stdout).
Since there is no need to do this if it is a terminal, we can insert the two lines

if ( !isatty(fileno(stdout)) );

fflush(stdout);

just after the �rst printf().

What about the problem of lost output? How can we prevent this race condition? The answer is
that we must not use the stream library but must use the lower level write() system call and �le
descriptors. Writes are unbu�ered and we can set the O_APPEND �ag on �le descriptor 1 so that the
race condition is eliminated. (Recall from Chapter 4 that this is how writes to the utmp �le avoid
race conditions.)

To use write(), we must �rst create the output string using the sprintf() function:
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char str[32];

sprintf(str, "Process id = %d\n", getpid());

Then we can call write():

write(1, str, strlen(str));

But �rst we must start the program by setting O_APPEND on standard output's descriptor:

int flags;

flags = fcntl(1, F_GETFL);

flags |= (O_APPEND);

if (fcntl( 1, F_SETFL,flags) == -1 )

exit(1);

This solves the problems. The corrected program is listed below.

Listing 7.4: forkdemo3.c

#inc lude <uni s td . h>
#inc lude <s td i o . h>
#inc lude <s t d l i b . h>
#inc lude <s t r i n g . h>
#inc lude <f c n t l . h>
#inc lude <termios . h>

in t main ( i n t argc , char ∗ argv [ ] )
{

i n t i ;
i n t N;
char s t r [ 3 2 ] ;
i n t f l a g s ;

/∗ Put standard output in to atomic append mode ∗/
f l a g s = f c n t l (1 , F_GETFL) ;
f l a g s |= (O_APPEND) ;
i f ( f c n t l ( 1 , F_SETFL, f l a g s ) == −1 )

e x i t ( 1 ) ;

/∗ Get the command l i n e va lue and convert to an i n t .
I f none , use d e f au l t o f 4 . I f i nva l i d , e x i t . ∗/

N = ( argc > 1 )? a t o i ( argv [ 1 ] ) : 4 ;
i f ( 0 == N )

ex i t ( 1 ) ;

/∗ Print a message and f l u s h i t i f t h i s i s not a te rmina l ∗/
p r i n t f ("About to c r e a t e many p ro c e s s e s . . . \ n " ) ;
i f ( ! i s a t t y ( f i l e n o ( stdout ) ) )

f f l u s h ( stdout ) ;

This work is copyrighted by Stewart Weiss and licensed under the Creative Commons Attribution-

ShareAlike 4.0 International License.
23

http://creativecommons.org/licenses/by-sa/4.0/ 
http://creativecommons.org/licenses/by-sa/4.0/ 


UNIX Lecture Notes

Chapter 7 Process Architecture and Control

Prof. Stewart Weiss

/∗ Now fo rk the ch i l d p r o c e s s e s . Check return va lues and e x i t
i f we have a problem . Note that the e x i t ( ) may be executed
only f o r some ch i l d r en and not o the r s . ∗/

f o r ( i = 0 ; i < N; i++ )
i f ( −1 == fo rk ( ) )

e x i t ( 1 ) ;

/∗ Create the output s t r i n g that the proce s s w i l / write , and wr i t e us ing
system c a l l . ∗/

s p r i n t f ( s t r , " Process id = %d\n" , getp id ( ) ) ;
wr i t e (1 , s t r , s t r l e n ( s t r ) ) ;
f f l u s h ( stdout ) ; /∗ to f o r c e output be f o r e s h e l l prompt ∗/
s l e e p ( 1 ) ; /∗ to g ive time to the s h e l l to d ip lay prompt ∗/
return 0 ;

}

7.7.1 Other Versions of fork()

The vfork() system call is a di�erent version of the fork() call that is designed to be more e�cient.
Rather than making a complete copy of the address space of the old process, the vfork() call creates
a new process without copying the data and stack segments of the parent and instead allows the
child process to share these. This saves time and memory but also raises the possibility that the
child will inadvertently corrupt the state of the parent process. It is not intended to be used to allow
the child and parent to share data; on the contrary, its purpose is to avoid the extensive memory
copying in the case that the child will replace its code anyway using exec() (to be discussed soon.)

There is also a clone() system call in Linux systems. The clone() function, which is technically a
library routine wrapping a system call, allows the child to share the address space with its parent,
and also lets the programmer pass a function and arguments for the child to execute. We will look
at it in detail later.

7.7.2 Synchronizing Processes with Signals

The next program, synchdemo1.c, demonstrates how to use fork() and signals to synchronize a
child and its parent.

Listing 7.5: synchdemo1.c

#inc lude <uni s td . h>
#inc lude <s td i o . h>
#inc lude <s t d l i b . h>
#inc lude <s i g n a l . h>
#inc lude <sys / types . h>
#inc lude <sys /wait . h>

void c_action ( i n t signum )
{

/∗ nothing to do here ∗/
}

/∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/
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i n t main ( i n t argc , char ∗ argv [ ] )
{

pid_t pid ;
i n t s t a tu s ;
s t a t i c s t r u c t s i g a c t i o n ch i ldAct ;

switch ( pid = fo rk ( ) ) {
case −1:

/∗ f o rk f a i l e d ! ∗/
pe r ro r (" f o rk ( ) f a i l e d ! " ) ;
e x i t ( 1 ) ;

case 0 : {
/∗ ch i l d execute s t h i s branch ∗/
/∗ s e t SIGUSR1 ac t i on f o r ch i l d ∗/
i n t i , x=1;
ch i ldAct . sa_handler = c_action ;
s i g a c t i o n (SIGUSR1 , &chi ldAct , NULL) ;
pause ( ) ;
p r i n t f (" Child p roce s s : s t a r t i n g computation . . . \ n " ) ;
f o r ( i = 0 ; i < 10 ; i++ ) {

p r i n t f ("2^%d = %d\n" , i , x ) ;
x = 2∗x ;

}
e x i t ( 0 ) ;

}
d e f au l t :

/∗ parent code ∗/
p r i n t f (" Parent p roce s s : "

"Wil l wait 2 seconds to prove ch i l d wait s . \ n " ) ;
s l e e p ( 2 ) ; /∗ to prove that ch i l d waits f o r s i g n a l ∗/
p r i n t f (" Parent p roce s s : "

"Sending ch i l d no t i c e to s t a r t computation . \ n " ) ;
k i l l ( pid , SIGUSR1 ) ;

/∗ parent wait s f o r c h i l d to re turn here ∗/
i f ( ( pid = wait(& s ta tu s ) ) == −1)
{

pe r ro r (" wait f a i l e d " ) ;
e x i t ( 2 ) ;

}
p r i n t f (" Parent p roce s s : c h i l d terminated . \ n " ) ;
e x i t ( 0 ) ;

}
}

Comments.

• First note that the style of this program is slightly di�erent. It uses the switch statement to
distinguish the failed fork(), child, and parent.

• The SIGUSR1 signal is a signal value that is reserved for user programs to use as they choose.
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In this program, we can use it to synchronize two processes. One process delays itself using
pause(), and waits for a signal to arrive. The second sends the signal to wake up the �rst.
The signal handler does not have to do anything special in this case.

• The parent calls wait(), a function we will explore shortly. The wait() call makes the parent
wait until the child terminates or is killed.

• The program displays output on the terminal just to demonstrate how the signaling works.

The next demo, synchdemo2.c, is a little more interesting than the preceding one. It demonstrates
how the parent and child can work in lockstep using the SIGUSR1 signal. It also shows that the
child process inherits the open �les of the parent, and that writes by the child and parent to the
same descriptor advance the shared �le position pointer.

Listing 7.6: synchdemo2.c

#inc lude <sys / types . h>
#inc lude <sys / s t a t . h>
#inc lude <f c n t l . h>
#inc lude <uni s td . h>
#inc lude <s i g n a l . h>
#inc lude <s td i o . h>
#inc lude <s t d l i b . h>
#inc lude <s t r i n g . h>

/∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/
void p_action ( i n t s i g ) ;
void c_action ( i n t s i g ) ;
void on_sig int ( i n t s i g ) ;
/∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/

i n t nS igna l s = 0 ;
v o l a t i l e sig_atomic_t s i g i n t_r e c e i v ed = 0 ;

/∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/
i n t main ( i n t argc , char ∗ argv [ ] )
{

pid_t pid , ppid ;

s t a t i c s t r u c t s i g a c t i o n parentAct , ch i ldAct ;
i n t fd ;
i n t counter = 0 ;
char ch i l dbu f [ 4 0 ] ;
char parentbuf [ 4 0 ] ;

i f ( argc < 2 ) {
p r i n t f (" usage : synchdemo2 f i l ename \n " ) ;
e x i t ( 1 ) ;

}

i f ( −1 == ( fd = open ( argv [ 1 ] , O_CREAT|O_WRONLY|O_TRUNC, 0644 ) ) )
{

pe r ro r ( argv [ 1 ] ) ;
e x i t ( 1 ) ;
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}
switch ( pid = fo rk ( ) ) {
case −1:

pe r ro r (" f a i l e d " ) ;
e x i t ( 1 ) ;

case 0 :
/∗ s e t ac t i on f o r c h i l d ∗/
ch i ldAct . sa_handler = c_action ;
s i g a c t i o n (SIGUSR1 , &chi ldAct , NULL) ;
ppid = getppid ( ) ; /∗ get parent id ∗/
f o r ( ; ; ) {

s p r i n t f ( ch i ldbu f , "Child counter = %d\n" , counter++);
wr i t e ( fd , ch i ldbu f , s t r l e n ( ch i l dbu f ) ) ;
p r i n t f (" Sending s i g n a l to parent −− " ) ;
f f l u s h ( stdout ) ;
k i l l ( ppid , SIGUSR1 ) ;
s l e e p ( 3 ) ;

}

d e f au l t :
/∗ s e t SIGUSR1 ac t i on f o r parent ∗/
parentAct . sa_handler = p_action ;
s i g a c t i o n (SIGUSR1 , &parentAct , NULL) ;

/∗ s e t SIGINT handler f o r parent ∗/
parentAct . sa_handler = on_sig int ;
s i g a c t i o n (SIGINT , &parentAct , NULL) ;

f o r ( ; ; ) {
s l e e p ( 3 ) ;
s p r i n t f ( parentbuf , "Parent counter = %d\n" , counter++);
wr i t e ( fd , parentbuf , s t r l e n ( parentbuf ) ) ;
p r i n t f (" Sending s i g n a l to ch i l d −− " ) ;
f f l u s h ( stdout ) ;
k i l l ( pid , SIGUSR1 ) ;
i f ( s i g i n t_r e c e i v ed ) {

c l o s e ( fd ) ;
e x i t ( 0 ) ;

}
}

}
}

/∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/

void p_action ( i n t s i g )
{

p r i n t f (" Parent caught s i g n a l %d\n" , ++nS igna l s ) ;
}

void c_action ( i n t s i g )
{

p r i n t f (" Child caught s i g n a l %d\n" , ++nS igna l s ) ;
}
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void on_sig int ( i n t s i g )
{

s i g i n t_r e c e i v ed = 1 ;
}

Comments.

• Writes to the �le are in lockstep and there is no race condition because of the arrangement of
the sleep() and kill() calls in the child and parent. The parent writes after it is awakened
from its sleep() and before it signals the child, whereas the child writes before it signals the
parent the �rst time, and then after it is awakened by the parent. If the parent is writing, the
child must be sleeping, and vice verse.

• The use of the sleep() instead of pause() prevents deadlock. Had we used pause(), then
there would be a very small but nonzero probability that one process could issue a kill() to
the other and, before it then executes its pause(), the other is woken up, executes all of its
code and issues a kill() to the �rst one. In this case, the signal would be lost, because it
happened before the pause(). That process would then be blocked waiting for a second signal
to wake it, but the other process will enter its pause() and never be able to send that signal.
They are thus deadlocked. The sleep() will eventually terminate, so nether process will wait
inde�nitely.

• The call to fflush() is needed to force writes to the screen by each process to happen
immediately, otherwise they will occur in the wrong order.

• The main program has a SIGINT handler so that the program can clean up after itself. When
Ctrl-C is typed, both the parent and the child will receive it. The parent closes the open �le
descriptor before exiting, and the child is automatically killed.

We now turn to the question of how a process can change the code it executes.

7.8 Executing Programs: The exec family

Being able to create a new process is not so useful unless that new process has a way to execute a
di�erent program. The exec() family of calls ful�lls that purpose. All versions of the exec() call
have one thing in common � they cause the calling process to execute a program named in one way
or another in the argument list, and they all are library wrappers for the execve() system call.

7.8.1 The execve() System Call

The man page for the execve() system call de�nes it as follows:

#include <unistd.h>

int execve(const char *filename, char *const argv[],

char *const envp[]);
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execve() executes the program pointed to by its �rst argument. The �lename must be a binary
executable or a script whose �rst line is

#! interpreter [optional-arg]

The �lename must be the absolute pathname or relative pathname of the program. execve()

does not look at the PATH environment variable to resolve command names. The second and third
arguments are NULL-terminated arrays of arguments and environment strings respectively. In other
words, each is an array of strings followed by a NULL pointer. The environment strings are expected
to be in the proper format: key=value.

You should remember that arrays are sometimes called vectors by computer scientists, and that
the reason that the name of this system call is execve is that it expects vectors as its second and
third arguments. In particular, you need to remember that execve() will pass these vectors to the
program being executed, which will be able to access them in its own argument list:

int main( int argc, char* argv[], char* envp[])

Since all programs expect the program name in argv[0] and the �rst real argument in argv[1], it is
important that you arrange the argument list to satisfy this condition before you invoke execve().
The examples will demonstrate.

The man page provides all of the details about the call. In general, execve() causes the stack,
data segment, bss, and text segment to be replaced, and pretty much clears all signals and closes
anything the process had open before the call except for �le descriptors, which remain open. The
current working directory remains the same. Because the same process continues to execute, process
relationships are also preserved. For the details consult the man page.

To start we will look at how to use the execve() system call, after which we will look at the di�erent
wrappers for it. The �rst program, execdemo1.c, is in Listing 7.7 below.

Listing 7.7: execdemo1.c

#inc lude <s td i o . h>
#inc lude <s t d l i b . h>
#inc lude <uni s td . h>

in t main ( i n t argc , char ∗ argv [ ] , char ∗ envp [ ] )
{

i f ( argc < 2 ) {
p r i n t f (" usage : execdemo1 arg1 [ arg2 . . . ] \ n " ) ;
e x i t ( 1 ) ;

}
execve ("/ bin / echo " , argv , envp ) ;
f p r i n t f ( s tde r r , " execve ( ) f a i l e d to run . \ n " ) ;
e x i t ( 1 ) ;

}

This program calls execve(), passing /bin/echo as the program to run, followed by its own com-
mand line arguments and environment strings. These are passed to /bin/echo. This program works
correctly even though argv[0] contains the string "execdemo1" and not "echo" because echo pretty
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much ignores argv[0] and only starts paying attention to arguments starting with argv[1]. This
is not the best way to use execve() � it only works in a few circumstances.

Are you wondering about the printf() after the call? The printf() statement will only be executed
if the execve() call fails; the only reason that execve() returns is failure to execute the program.

The next program, execvedemo2.c, uses execve() to execute the �rst command line argument of
the program, passing to it the remaining arguments from the command line. In other words, if we
supply a line like

$ execvedemo2 /bin/ls -l ..

it will execute it as if you typed the /bin/ls -l .. on a line by itself.

Listing 7.8: execvedemo2.c

#inc lude <s td i o . h>
#inc lude <s t d l i b . h>
#inc lude <uni s td . h>

in t main ( i n t argc , char ∗ argv [ ] , char ∗ envp [ ] )
{

i f ( argc < 2) {
f p r i n t f ( s tde r r , "Usage : %s program args \n" , argv [ 0 ] ) ;
e x i t ( 1 ) ;

}
execve ( argv [ 1 ] , argv+1, envp ) ;
f p r i n t f ( s tde r r , " execve ( ) f a i l e d to run . \ n " ) ;
e x i t ( 1 ) ;

}

Notice that it uses pointer arithmetic to pass the array argv[1 .. argc-1] rather than argv[0

.. argc-1].

7.8.2 The exec() Library Functions

Because it is a little inconvenient to arrange everything for execve(), the designers of UNIX created
a family of �ve functions that act as front-ends to execve(), each expecting a di�erent set of
parameters. They are

#include <unistd.h>

extern char **environ;

int execl(const char *path, const char *arg, ...);

int execlp(const char *file, const char *arg, ...);

int execle(const char *path, const char *arg,..., char* const envp[]);

int execv(const char *path, char * const argv[]);

int execvp(const char *file, char * const argv[]);

Each of these contains either an 'l' or a 'v' in its name. The versions that contain an 'l', execl(),
execlp() and execle(), expect a null-terminated list of null-terminated string arguments whereas
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the versions that contain a 'v', execv() and execvp(), expect a vector of null-terminated string
arguments. All versions cause the kernel to load the executable �le whose name is either path
or �le, given above, overlaying the current program for the process, and passing it the remaining
arguments.

The functions are also characterized by whether or not they contain a 'p' in their names. The
versions that contain a 'p', execlp() and execvp(), expect the �rst argument to be a simple �le
name rather than a full path name, whereas the ones that do not contain a 'p': execl(), execle(),
and execv(), require the full pathname for the �rst argument. The versions containing the 'p' will
use the PATH environment variable to search for the �le whose name is supplied, provided it does
not contain any slashes. If it has a slash, then that is treated as a pathname, either relative or
absolute, to the �le to be loaded.

For all of these functions, the parameters named arg or argv above that follow the path or �le
parameter are passed to the executable as its own arguments. The �rst of these arguments must be
a pointer to the executable �le, because in UNIX, by convention, the �rst argument to a program
(argv[0]) is always the name of the program itself, stripped of the preceding pathname. For
example, to execute "/bin/ls -l" using execl(), you would use the syntax

execl( �/bin/ls�, �ls�, �-l�, (char *) 0);

In other words, the name of the executable occurs twice � �rst with the full pathname, and second
with just the name of the �le itself.

The di�erences between the di�erent versions can be summarized as follows:

execl, execle, execlp expect the arguments to be presented as a comma-separated
list of strings, terminated by a NULL pointer cast to a string,
as in

execl( �/bin/ls�, �ls�, �-l�, (char *) 0);

execv, execvp expect the arguments to be presented as a vector (array )
whose last element is a NULL pointer as in:

strcpy(argvec[0], "ls");

strcpy(argvec[1], "-l");

argvec[2] = NULL;

execv( "/bin/ls", argvec );

execlp, execvp do not require a full path name:

execlp( �ls�, �ls�, �-l�, (char *) 0);

strcpy(argvec[0], "ls");

strcpy(argvec[1], "-l");

argvec[2] = NULL;

execvp( "ls", argvec );

execle is the same as execl() except that it has a third argument
that is an array of pointers to environment strings exactly as
execve() expects, with a NULL pointer as its last entry.
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The functions other than execle() obtain the environment settings for the new process from the
values in the external environ variable.

To illustrate , the following program, execvpdemo.c, uses its �rst argument as the executable to
run, and the remaining arguments as its arguments.

Listing 7.9: execvpdemo.c

#inc lude <s td i o . h>
#inc lude <s t d l i b . h>
#inc lude <uni s td . h>

in t main ( i n t argc , char ∗ argv [ ] , char ∗ envp [ ] )
{

i f ( argc < 2) {
f p r i n t f ( s tde r r , "Usage : %s program args \n" , argv [ 0 ] ) ;
e x i t ( 1 ) ;

}
execvp ( argv [ 1 ] , argv +1 ) ;
pe r ro r (" execvp " ) ;
e x i t ( 1 ) ;

}

Since it searches the PATH environment variable, it can be called, for example, with

$ execvpdemo cp origfile newfile ..

7.9 Synchronizing Parents and Children: wait and exit

7.9.1 Exit() Stage Left

We have used the exit() function many times in various programs, but the only reason for doing
so was that it was a way to terminate the calling process and return a non-zero integer value when
some error condition arose. The exit() function does much more than this. Its synopsis is

#include <stdlib.h>

void exit(int status);

Three actions take place when exit() is called:

1. The process's registered exit functions run;

2. the system gets a chance to clean up after the process; and

3. the process gets a chance to have a status value delivered to its parent.

By an exit function, we mean a function that is run when exit() is called.

Before continuing, you may wonder why we would want a special function to run when exit() is
called. Imagine that when your program terminates, it has to update a log �le. Suppose the function
that does this is named update_log(). Suppose also that the program is very large, that there are
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multiple points at which exit() is called, and that more than one programmer is maintaining this
program. If the exit() function did not provide a means of invoking user-de�ned exit routines, then
each time that anyone modi�ed the program to insert a new call to exit(), he or she would have
to remember to call update_log() �rst. However, by registering update_log() to run whenever
exit() is called, it makes the programmer's job easier, since she does not have to worry about
forgetting to include the call when the program is modi�ed.

When exit() is called, the following actions take place in the given order:

1. All functions registered to run with the atexit() or on_exit() functions are run (in the
reverse order in which they were registered with these routines).

2. All of the �le streams opened through the Standard I/O Library are �ushed and closed.

3. The kernel's _exit() function is called, passing the status argument to it.

Programmers can register a function to run when a process calls exit() using either atexit() or
on_exit(). The preferred choice is atexit() since it is more portable. The man pages for both
contain the details for how to register such exit functions. If more than one function is registered,
they are run in the reverse order of the order in which they were registered (i.e., in last-in-�rst-out
order). After the registered functions run, the exit() function �ushes the streams and closes the
�les. The exit() function then calls _exit(status). The kernel's _exit() function makes sure
that

1. any open �le descriptors are closed (not just those opened through Standard I/O Library
functions),

2. all memory belonging to the process is released,

3. all children of the process (including zombies, de�ned below) are "adopted" by the init()

process (meaning that init() is made the parent of these children,

4. the low-order eight bits of the integer argument to exit(), called its exit status, are made
available to the parent process, and

5. under appropriate conditions, a SIGCHLD signal is sent to the parent process.

Actions (4) and (5) will be explained shortly. There are other actions that must take place within
the clean-up routines of the kernel. This is just a partial list, including the most basic operations.

The following example shows how atexit() can be used to register a few exit functions:

Listing 7.10: atexitdemo.c

#inc lude <s td i o . h>
#inc lude <uni s td . h>
#inc lude <s t d l i b . h>

void Worker ( void )
{

p r i n t f ("Worker #1 : Fin i shed f o r the day . \ n " ) ;
}
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void Foreman ( void )
{

p r i n t f ("Foreman : Workers can stop f o r the day . \ n " ) ;
}

void Boss ( void )
{

p r i n t f (" F i r s t Boss : Foreman , t e l l a l l workers to stop work . \ n " ) ;
}

i n t main ( void )
{

long max_exit_functions = syscon f (_SC_ATEXIT_MAX) ;

p r i n t f ("Maximum number o f e x i t f unc t i on s i s %ld \n" ,
max_exit_functions ) ;

i f ( ( a t e x i t (Worker ) ) != 0) {
f p r i n t f ( s tde r r , " cannot s e t e x i t f unc t i on \n " ) ;
r e turn EXIT_FAILURE;

}

i f ( ( a t e x i t (Foreman ) ) != 0) {
f p r i n t f ( s tde r r , " cannot s e t e x i t f unc t i on \n " ) ;
r e turn EXIT_FAILURE;

}

i f ( ( a t e x i t ( Boss ) ) != 0) {
f p r i n t f ( s tde r r , " cannot s e t e x i t f unc t i on \n " ) ;
r e turn EXIT_FAILURE;

}
return EXIT_SUCCESS;

}

7.9.2 Waiting for Children to Terminate

After a process forks a child, how will it know if and when the child has �nished whatever task it
set out to accomplish? Typically, a process has to wait until the child or children �nish completing
their tasks before it can continue. The fork(), exec(), and exit() system calls need one more
partner to form a complete ensemble, and that is the wait() family of calls. Generally speaking,
the purpose of wait() is two-fold:

• to delay the parent until a child has terminated, and

• to obtain the status of a child that has terminated.

There are only two ways for a process to terminate: either "normally" by calling one of various
exit functions6 such as exit(), or "abnormally" and involuntarily as a result of receiving a signal
that killed it, or calling abort(). (When a program either reaches the end of its code or executes
a return, this results in an implicit call to exit().) In either case, the parent can call wait()

6There are two other exit functions, including _exit() and _Exit().
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Figure 7.5: Two-byte exit status.

to determine the cause of termination. There are three di�erent POSIX-compliant wait() system
calls:

#include <sys/types.h>

#include <sys/wait.h>

pid_t wait(int *status);

pid_t waitpid(pid_t pid, int *status, int options);

int waitid(idtype_t idtype, id_t id, siginfo_t *infop, int options);

The wait() function causes the executing process to suspend its execution until any one of its
children terminates. When a child terminates, the kernel sends a SIGCHLD signal to its parent,
unless the parent has indicated that it does not want these signals. Upon receipt of a SIGCHLD

signal, the parent resumes in the wait() code. The return value of wait() is the process-id of the
child that just terminated or was just killed. It does not matter which child terminates. The process
is resumed if any child terminates. If a process calls wait() but it has no children, wait() returns
immediately with a -1.

The purpose of the status parameter is to receive information about how the child terminated. It
is a pointer to a two-byte integer. If the child terminated normally using the exit() call, then the
high-order byte of the value received by wait() contains the low-order byte of the integer passed in
the exit() call's argument, and the low-order byte of the received value is 07. If the child terminated
abnormally because of an unhandled signal, then the low-order byte of the received value contains
the signal value. If the child was terminated by a signal, then in particular bit 7 is set if there was
a core dump8. Figure 7.5 shows how the two bytes of the status are arranged.

Based on these facts, the following code can be used for querying and extracting the status and
signal state:

if ((status & 0x000000FF) ==0)

/* low-order byte is zero, so high-order byte has status */

exitStatus = status >�> 8; /* exitStatus contains exit status */

else {

signum = status%128; /* signum contains signal */

if ( status & 0x00000080 )

7The convention when using exit() is to supply a zero on success and some non-zero value on failure.
8The fact that a core dump is supposed to occur does not mean that there will be a core �le in your working

directory. If your shell has been con�gured so that core dumps are disabled, then you will not see the �le. On

some systems, you can enable the core dump by running the command �ulimit -c unlimited�, which allows your

processes to create core �les of unlimited size. The ulimit command is part of bash and you can read the bash man

page for more details.
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/* core dump took place */

}

However, using the following macros, which are de�ned in <sys/wait.h>, makes the code more
portable:

if (WIFEXITED(status))

/* true implies exit() was called to terminate the child */

exit_status = WEXITSTATUS(status); /* extract exit status */

else if ( WIFSIGNALED(status) ) {

/* true if signal killed child */

signum = WTERMSIG(status); /* extract signal that killed child */

#ifdef WCOREDUMP

if ( WCOREDUMP(status) )

/* true if a core dump took place */

#endif

}

• The WIFEXITED(status) macro returns true if the child terminated normally, i.e., by calling
exit(3) or _exit(2), or by returning from main(). In this case the WEXITSTATUS(status)

macro returns the exit status of the child. This macro should only be employed if WIFEXITED()
returned true.

• The WIFSIGNALED(status) macro returns true if the child process was terminated by a sig-
nal. If it returns true, then the WTERMSIG(status) macro returns the number of the signal
that caused the child process to terminate. The WTERMSIG() macro should only be used if
WIFSIGNALED() returned true.

• The WCOREDUMP(status) macro returns true if the child produced a core dump. This macro
should only be used if WIFSIGNALED returned true. This macro is not speci�ed in POSIX.1-

2001 ; only use this enclosed in

#ifdef WCOREDUMP ... #endif.

7.9.3 Using wait()

Listing 7.11 contains an example that puts together the use of fork(), exit(), and wait(). It is
the typical way in which these three primitives are used. In this example the user is prompted to
supply an exit value for the child, which is then passed to the exit() call, to show that the value
is then available to the parent in the wait() call.

Listing 7.11: waitdemo2.c

#inc lude <s td i o . h>
#inc lude <uni s td . h>
#inc lude <s t d l i b . h>
#inc lude <sys /wait . h>
#inc lude <s i g n a l . h>
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void ch i l d ( )
{

i n t exit_code ;
p r i n t f (" I am the ch i l d and my proce s s id i s %d . \ n" , ge tp id ( ) ) ;
s l e e p ( 2 ) ;
p r i n t f (" Enter a value f o r the ch i l d e x i t code : " ) ;
s can f ("%d",&exit_code ) ;
e x i t ( exit_code ) ;

}

i n t main ( i n t argc , char ∗ argv [ ] )
{

i n t pid ;
i n t s t a tu s ;

p r i n t f (" S ta r t i ng up . . . \ n " ) ;
i f ( −1 == ( pid = fo rk ( ) ) ) {

pe r ro r (" f o rk " ) ;
e x i t ( 1 ) ;

}
e l s e i f ( 0 == pid )

ch i l d ( ) ;
e l s e { /∗ parent code ∗/

p r i n t f ("My ch i l d has pid %d and my pid i s %d . \ n" , pid , ge tp id ( ) ) ;
i f ( ( pid = wait(& s ta tu s ) ) == −1) {

pe r ro r (" wait f a i l e d " ) ;
e x i t ( 2 ) ;

}
i f (WIFEXITED( s ta tu s ) ) { /∗ low order byte o f s t a tu s equa l s 0 ∗/

p r i n t f (" Parent : Child %d ex i t ed with s t a tu s %d . \ n" ,
pid , WEXITSTATUS( s t a tu s ) ) ;

}
e l s e i f ( WIFSIGNALED( s t a tu s ) ) {

p r i n t f (" Parent : Child %d ex i t ed with e r r o r code %d .\ n" ,
pid , WTERMSIG( s t a tu s ) ) ;

#i f d e f WCOREDUMP
i f ( WCOREDUMP( s ta tu s ) )

p r i n t f (" Parent : A core dump took p lace . \ n " ) ;
#end i f

}
}
re turn 0 ;

}

Notes.

• When the child process displays a message such as

I am the child and my process id is 5666.

Enter a value for the child exit code:

enter an exit code and observe that it is printed by the parent after the parent's call to wait()
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�nishes. Then run the program again but this time send a signal to the child process from
another terminal using the kill command, i.e.,

$ kill -10 5666

and observe that the parent displays the message

Parent: Child 5666 exited with error code 6.

Parent: A core dump took place.

• The conditional compilation macro is used because the WCOREDUMP macro is not available on
all UNIX systems, as noted above.

Sometimes a parent does not care very much about how its children terminate. A parent can
explicitly tell the kernel that it doesn't care if and when its children terminate by setting the
SA_NOCLDWAIT �ag, which prevents the delivery of SIGCHLD signals to itself. It does this using the
sigaction() call:

const struct sigaction act;

act.sa_flags = SA_NOCLDWAIT;

sigaction (SIGCHLD, &act, NULL);

Notice that it is not necessary to set a signal handler in this call; it is enough to just pass the
sa_flags �eld. If a process has so indicated to the kernel its lack of interest in its children, then
when a child terminates, the child's status will not be delivered to its parent. The child will be
completely terminated immediately. Similarly, when the parent sets the action for SIGCHLD to
SIG_IGN, the status will be discarded and the child completely terminated.

If the parent process has set neither SA_NOCLDWAIT nor the action for SIGCHLD to SIG_IGN and is
presently executing any of the wait() calls described below, then the status will be delivered to the
parent and a SIGCHLD signal sent to it. If the parent is not currently waiting, then when the parent
does invoke wait(), it will receive the status. If the parent is not executing any form of wait(),
though, the child process is transformed into a zombie process. A zombie process is an inactive
process and it will be deleted at some later time when its parent process executes a wait() call.
Zombie processes exist simply to provide their parents with their status values at a future time.

The �ip side of this issue is what happens when a process terminates before its children. When a
process terminates and has children, these children are not terminated also. In comes the init()

process. The init() process adopts orphans, so if a process terminates and has any children, they
are adopted by init(). When the children terminate, their exit status will be sent to init().

7.9.4 Using waitpid()

The waitpid() function has three parameters. The �rst is the process-id of the child to wait for,
the second is a pointer to the variable in which to store the status, and the last is an optional
set of �ags. If the pid is -1, then it tells the kernel that the process will wait for any child, like
wait(). Setting the pid to 0 means to wait for only those children in the same process group as
the parent. Setting the pid to -G, for some positive integer G, means to wait for any child whose
process group-id is G.
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There are three �ags that can be passed to waitpid():

WNOHANG return immediately if no child has exited.
WUNTRACED also return if a child has stopped (but not traced via ptrace(2)).

Status for traced children which have stopped is provided even if
this option is not speci�ed.

WCONTINUED (Since Linux 2.6.10) also return if a stopped child has been resumed
by delivery of SIGCONT.

The program in Listing 7.12 below combines some of the preceding ideas and demonstrates the use
of waitpid() with the WNOHANG �ag.

Listing 7.12: waitpiddemo.c

#inc lude <s td i o . h>
#inc lude <uni s td . h>
#inc lude <s t d l i b . h>
#inc lude <sys /wait . h>
#inc lude <s i g n a l . h>

void ch i l d ( )
{

i n t exit_code ;

p r i n t f (" I am the ch i l d and my proce s s id i s %d . \ n" , ge tp id ( ) ) ;
s l e e p ( 2 ) ;
p r i n t f (" Enter a value f o r the ch i l d e x i t code f o l l owed by <ENTER>.\n " ) ;
s can f ("%d",&exit_code ) ;
e x i t ( exit_code ) ;

}

i n t main ( i n t argc , char ∗ argv [ ] )
{

pid_t pid ;
i n t s t a tu s ;
i n t signum ;

p r i n t f (" S ta r t i ng up . . . \ n " ) ;
i f ( −1 == ( pid = fo rk ( ) ) ) {

pe r ro r (" f o rk " ) ;
e x i t ( 1 ) ;

}
e l s e i f ( 0 == pid ) {

ch i l d ( ) ;
}
e l s e {

/∗ wait f o r s p e c i f i c c h i l d p roce s s with waitp id ( )
I f no ch i l d has terminated , do not block in waitp id ( )
Ins tead j u s t s l e e p . (Would do something u s e f u l i n s t ead . )

∗/
whi l e (0 == waitp id ( pid , &status , WNOHANG) ) {

p r i n t f (" s t i l l wa i t ing f o r c h i l d \n " ) ;
s l e e p ( 1 ) ;

}
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/∗ pid i s the pid o f the ch i l d that terminated ∗/
i f (WIFEXITED( s ta tu s ) ) {

p r i n t f (" Exit s t a tu s o f c h i l d %d was %d .\ n" ,
pid , WEXITSTATUS( s t a tu s ) ) ;

}
e l s e i f ( WIFSIGNALED( s t a tu s ) ) {

signum = WTERMSIG( s t a tu s ) ;
p r i n t f (" Parent : Child %d ex i t ed by s i g n a l %d . \ n" , pid ,

signum ) ;
#i f d e f WCOREDUMP

i f ( WCOREDUMP( s ta tu s ) )
p r i n t f (" Parent : A core dump took p lace . \ n " ) ;

#end i f
}

}
re turn 0 ;

}

Notes.

• The parent is in a busy waiting loop in this example, waiting for the child to terminate. The
WNOHANG �ag to waitpid() allows it to continue polling the waitpid() call and do something
else in the meanwhile. The body of the loop would be replaced with a task that the parent
could do while waiting for the child. The advantage of this is that the parent does not have
to block, waiting for the child, but can instead do work. If there is no work to do, then this
paradigm is not the one to use.

• You can send a signal to the child in the same way as for the program in Listing 7.11 to
observe that the parent code detects the error return.

7.9.5 Non-blocking waits

Instead of calling wait() or waitpid(), a process can establish a SIGCHLD handler that will run
when a child terminates. The SIGCHLD handler can then call wait(). This frees the process from
having to poll the wait() function. It only calls wait() when it is guaranteed to succeed. The
following example (rabbits2.c in the demos directory) demonstrates how this works.

Listing 7.13: rabbits2.c

#inc lude <s td i o . h>
#inc lude <uni s td . h>
#inc lude <s t d l i b . h>
#inc lude <s i g n a l . h>
#inc lude <l im i t s . h>
#inc lude <sys /wait . h>
#inc lude <termios . h>

#de f i n e NUM_CHILDREN 5
#de f i n e SLEEPTIME 30

/∗∗ ch i l d ( ) The code that i s executed by each ch i l d p roce s s
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∗ Al l t h i s does i s r e g i s t e r the SIGINT s i g n a l handler and then
∗ s l e e p SLEEPTIME seconds . I f a c h i l d i s d e l i v e r e d a SIGINT , i t
∗ e x i t s with the e x i t code 99 . See on_sig int ( ) below .
∗/
void ch i l d ( ) ;

/∗∗ on_sig int ( ) S i gna l handler f o r SIGINT
∗ Al l i t does i t c a l l e x i t with a code o f 99 .
∗/
void on_sig int ( i n t s i gno ) ;

/∗∗ on_sigchld ( ) S i gna l handler f o r SIGCHLD
∗ This c a l l s wait ( ) to r e t r i e v e the s t a tu s o f the terminated ch i l d
∗ and get i t s pid . These are both s to r ed in to g l oba l v a r i a b l e s that
∗ the parent can ac c e s s in the main program . I t a l s o s e t s a g l oba l
∗ f l a g .
∗/
void on_sigchld ( i n t signum ) ;

/∗ These v a r i a b l e s are dec l a r ed with the v o l a t i l e q u a l i f i e r to t e l l the
compi le r that they are used in a s i g n a l handler and t h e i r va lue s
change asynchronous ly . This prevents the compi le r from performing an
opt imiza t i on that might corrupt the program s t a t e . Al l th ree are
shared by the main parent p roce s s and the SIGCHLD handler .

∗/
v o l a t i l e i n t s t a tu s ;
v o l a t i l e pid_t pid ;
v o l a t i l e sig_atomic_t chi ld_terminated ;

/∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
Main Program

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/

i n t main ( i n t argc , char ∗ argv [ ] )
{

i n t count = 0 ;
const i n t NumChildren = NUM_CHILDREN;
i n t i ;
s t r u c t s i g a c t i o n newhandler ; /∗ f o r i n s t a l l i n g hand le r s ∗/

p r i n t f ("About to c r e a t e many l i t t l e r abb i t s . . . \ n " ) ;
f o r ( i = 0 ; i < NumChildren ; i++) {

i f ( −1 == ( pid = fo rk ( ) ) ) {
pe r ro r (" f o rk " ) ;
e x i t (−1);

}
e l s e i f ( 0 == pid ) { /∗ ch i l d code ∗/

/∗ Close standard output so that ch i l d r en do not p r i n t
parent ' s output again . ∗/

c l o s e ( 1 ) ;
c h i l d ( ) ;
e x i t ( 1 ) ;

}
e l s e { /∗ parent code ∗/
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i f ( 0 == i )
p r i n t f (" Another " ) ;

e l s e i f ( i < NumChildren−1 )
p r i n t f (" and another " ) ;

e l s e
p r i n t f (" and another . \ n " ) ;

}
}
/∗ parent cont inues here ∗/
/∗ Set up s i g n a l handl ing ∗/
newhandler . sa_handler = on_sigchld ;
s igemptyset (&newhandler . sa_mask ) ;
i f ( s i g a c t i o n (SIGCHLD, &newhandler , NULL) == −1 ) {

pe r ro r (" s i g a c t i o n " ) ;
r e turn ( 1 ) ;

}

/∗ Enter a loop in which work could happen whi le the g l oba l f l a g
i s checked to see i f any ch i l d has terminated . ∗/

chi ld_terminated = 0 ; /∗ Set f l a g to 0 ∗/
whi l e ( count < NumChildren ){

i f ( chi ld_terminated ) {
i f ( WIFEXITED( s t a tu s ) )

p r i n t f (" Rabbit %d died with code %d .\ n" ,
pid , WEXITSTATUS( s t a tu s ) ) ;

e l s e i f ( WIFSIGNALED( s t a tu s ) )
p r i n t f (" Rabbit %d was k i l l e d by s i g n a l %d . \ n" ,

pid , WTERMSIG( s t a tu s ) ) ;
e l s e

p r i n t f (" Rabbit %d d i e s with s t a tu s %d . \ n" , pid , s t a tu s ) ;
ch i ld_terminated = 0 ;
count++;

}
e l s e {

/∗ do something u s e f u l here . f o r now j u s t de lay a b i t ∗/
s l e e p ( 1 ) ;

}
}

p r i n t f (" Al l r abb i t s have terminated and been l a i d to r e s t . \ n " ) ;
r e turn 0 ; /∗ main r e tu rn s ; c h i l d never reaches here ∗/

}

void on_sig int ( i n t s i gno )
{

e x i t ( 9 9 ) ;
}

void ch i l d ( )
{

s t r u c t s i g a c t i o n newhandler ;

newhandler . sa_handler = on_sig int ;
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s igemptyset (&newhandler . sa_mask ) ;
i f ( s i g a c t i o n (SIGINT , &newhandler , NULL) == −1 ) {

pe r ro r (" s i g a c t i o n " ) ;
e x i t ( 1 ) ;

}
s l e e p (SLEEPTIME) ;

}

void on_sigchld ( i n t signum )
{

i n t ch i ld_sta tus ;

i f ( ( pid = wait(&ch i ld_sta tus ) ) == −1) {
pe r ro r (" wait f a i l e d " ) ;

}
chi ld_terminated = 1 ;
s t a tu s = ch i ld_sta tus ;

}

Notes.

• The C Standard I/O Library by default uses bu�ered streams. This means that when a
process uses the C output functions such as printf(), the output is placed into a bu�er
before being delivered to the terminal device. When each child is created, it is given a copy of
the parent's bu�ers at the time of creation. If we did not close the �le descriptor in the child
immediately, then when the child terminated, its bu�er would be �ushed and multiple copies
of the parent's output would appear in the terminal window. We cannot use fclose(stdout)
because fclose() is designed to �ush the bu�ers and would also cause the output to appear.
We must use the lower-level �le descriptors. Try commenting out the line �close(1)� and
running the program.

• The child is designed to catch a SIGINT and exit within the signal handler. The reason for
this is to allow the user to send a SIGINT ( by issuing a kill -2 to the child on the command
line) in order to show that even if a signal caused the signal handler to run, the fact that the
child called exit() means that the parent will see that the child died by calling exit(), not
as a result of being sent a signal.

• If the child is not killed by a signal, then it terminates normally after a 30 second sleep.

• The on_sigchld() handler, after calling wait(), sets an atomic �ag and lets the main program
do the work of handling the child's exit.

• The program does not test the return value of fork() for failure, just to save space here.

• Although POSIX does not permit it, some systems allow signals to be lost, and it is possible
to lose a SIGCHLD signal in this code. If multiple children terminate in a small time sequence,
and the parent is in the SIGCHLD handler, then some of the SIGCHLD signals may be merged
into a single signal. GNU C allows this for example. The �x requires much more complex code
that maintains a list of the child processes and which inspects that list within the handler.
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7.9.6 Waiting for State Changes in Children

The wait() family was extended in Linux 2.6.9 with the inclusion of waitid(), which can be used
to gather information about other changes in the state of child processes besides their termination:

int waitid(idtype_t idtype, id_t id, siginfo_t *infop, int options);

The idtype can be one of P_PID, P_PGID, or P_ALL. If it is P_PID, it waits for the process whose
process-id is passed as the second argument. If it is P_PGID, it waits for any process whose group-id
is the second argument. If P_ALL, the second argument is ignored and it acts like the ordinary
wait().

The options parameter is the OR of one or more of the �ags

WEXITED Wait for children that have terminated.
WSTOPPED Wait for children that have been stopped by delivery of a signal.
WCONTINUED Wait for (previously stopped) children that have been resumed by

delivery of SIGCONT.

and optionally the WNOHANG �ag described earlier as well as the WNOWAIT �ag, which leaves the child
process as if the parent never called wait(), in case it wants to retrieve the status at a later time.

If waitid() completes successfully, it �lls in the siginfo_t structure pointed to by the infop pa-
rameter . The siginfo_t structure is the same structure used by the sigaction() function. It is
a union, so the members �lled in by sigaction() are not exactly the same as those �lled in by
waitid(). waitid() provides the following members:

si_pid The process-id of the child

si_uid The real user-id of the child

si_signo SIGCHLD

si_status Either the exit status or the signal that caused the child's state to change.

si_code Exactly one of CLD_EXITED if the child exited, CLD_KILLED if the child was killed by a
signal, CLD_STOPPED if the child was stopped by a signal, or CLD_CONTINUED if it was
continued by a SIGCONT.

The way to use waitid() is to inspect the value of infop->si_code to determine the state of the
child before accessing infop-status. The following listing, modi�ed from the one in the man page
for wait(), demonstrates how to use waitid().

Listing 7.14: waitiddemo.c

#inc lude <s td i o . h>
#inc lude <uni s td . h>
#inc lude <s t d l i b . h>
#inc lude <sys /wait . h>
#inc lude <s i g n a l . h>

#de f i n e SLEEPTIME 60
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i n t main ( i n t argc , char ∗ argv [ ] )
{

pid_t pid ;
s i g i n f o_t s i g i n f o ;

i f ( −1 == ( pid = fo rk ( ) ) ) {
pe r ro r (" f o rk " ) ;
e x i t ( 1 ) ;

}
e l s e i f ( 0 == pid ) {

p r i n t f (" Child pid i s %d\n" , getp id ( ) ) ;
s l e e p (SLEEPTIME) ;
e x i t ( 0 ) ;

}
/∗ Parent code ∗/
e l s e do {

/∗ Zero out s i_pid in case the s ig_info_t s t r u c t does not get ∗/
/∗ i n i t i a l i z e d because no ch i l d r en are wa i tab l e . ∗/
s i g i n f o . s i_pid = 0 ;

/∗ Wait f o r changes in the s t a t e o f the ch i l d c rea ted above , ∗/
/∗ s p e c i f i c a l l y , stopping , resuming , ex i t i ng , and return ∗/
/∗ immediately i f no ch i l d i s wa i tab l e . ∗/
i f (−1 == wai t id (P_PID, pid , &s i g i n f o ,

WEXITED | WSTOPPED | WCONTINUED | WNOHANG) ) {
pe r ro r (" wa i t id " ) ;
e x i t (EXIT_FAILURE) ;

}
i f ( s i g i n f o . s i_pid == 0 )

/∗ no ch i l d i s wa i tab l e . ∗/
cont inue ;

switch ( s i g i n f o . s i_code ) {
case CLD_EXITED:
p r i n t f (" Child ex i t ed with s t a tu s %d\n" ,

s i g i n f o . s i_s ta tu s ) ;
break ;
case CLD_KILLED:

case CLD_DUMPED:
p r i n t f (" Child k i l l e d by s i g n a l %d\n" ,

s i g i n f o . s i_s ta tu s ) ;
break ;
case CLD_STOPPED:
p r i n t f (" Child stopped by s i g n a l %d\n" ,

s i g i n f o . s i_s ta tu s ) ;
break ;
case CLD_CONTINUED:
p r i n t f (" Child cont inued \n " ) ;
break ;

}
} whi l e ( s i g i n f o . s i_code != CLD_EXITED &&

s i g i n f o . s i_code != CLD_KILLED &&
s i g i n f o . s i_code != CLD_DUMPED ) ;

re turn 0 ;
}
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Notes.

• The si_status �eld does not need to be bit-manipulated to extract its value. The value
contained there has already been shifted as necessary.

• The while-loop in the parent continues until the child is killed or terminated to give you a a
chance to stop and continue the child.

• If you run this program in one terminal, and then from another issue kill commands, or run
it in the background on one terminal and issue kill commands on the same terminal, you will
see output like the following:

$ waitiddemo 77

Child pid is 15243

Child exited with status 77

$

Then do it again without the command-line argument:

$ waitiddemo &

Child pid is 15245

$ kill -STOP 15245

Child stopped by signal 19

$ kill -CONT 15245

Child continued

$ kill -TERM 15245

Child killed by signal 15

[1]+ Done waitid2

$

7.10 Summary

The four principal tools in process creation and control are fork(), exec(), exit(), and wait()

and their related functions. Add to the toolbox the things you have learned about signals and
signal handling and you have the means of creating and managing processes e�ectively. What is
still lacking is a means for these processes to exchange and share data e�ectively. At this point
the only way they can share data other than provided by the signal mechanism is through the �le
system, which is extremely slow. Inter-process communication is the topic of the next chapter.

Because the new process is a copy of the parent process, it shares all open �les and all library bu�ers.
When the two processes both use the C I/O Library, care must be taken to prevent unexpected
consequences of this.

Process creation is a time-consuming activity in the kernel, with high overhead in memory copying.
When the objective is to use shared variables and common code, light-weight processes, or threads,
are the better solution. This topic follows as well.
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Chapter 8 Interprocess Communication, Part I

Concepts Covered

Pipes
I/O Redirection
FIFOs
Concurrent Servers
Daemons

Multiplexed I/O with select()
API: dup, dup2, fpathconf, mk�fo, mknod, pipe,
pclose, popen, select, setsid, shutdown, syslog,
tee.

8.1 Introduction

Processes that cooperate in order to complete one or more tasks almost always need to communicate
with each other. Sometimes the communication requires sharing data. One method of sharing
data is by sharing a common �le. If at least one of the processes modi�es the �le, then the �le
must be accessed in mutual exclusion. Sharing a �le is essentially like sharing a memory-resident
resource in that both are a form of communication that uses a shared resource that is accessed in
mutual exclusion. Another paradigm involves passing data back and forth through some type of
communication channel that provides the required mutual exclusion. A pipe is an example of this,
as is a socket. This type of communication is broadly known as a message-passing solution to the
problem.

This chapter is concerned only with message-passing types of communication. We will begin with
unnamed pipes, after which we will look at named pipes, also known as FIFO 's, and then look at
sockets. Part I is exclusively related to pipes.

8.2 Unnamed Pipes

You are familiar with how to use pipes at the command level. A command such as

$ last | grep 'reboot'

connects the output of last to the input of grep, so that the only lines of output will be those
lines of last that contain the word 'reboot'. The '|' is a bash operator; it causes bash to start the
last command and the grep command simultaneously, and to direct the standard output of last
into the standard input of grep.

Although '|' is a bash operator, it uses the lower-level, underlying pipe facility of UNIX, which was
invented by Douglas Mcilroy, and was incorporated into UNIX in 1973. You can visualize the pipe
mechanism as a special �le or bu�er that acts quite literally like a physical pipe, connecting the
output of last to the input of grep, as in Figure 8.1.

The last program does not know that it is writing to a pipe and grep does not know that it is
reading from a pipe. Moreover, if last tries to write to the pipe faster than grep can drain it, last
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Figure 8.1: A pipe connecting last to grep.

will block, and if grep tries to read from an empty pipe because it is reading faster than last can
write, grep will block, and both of these actions are handled behind the scenes by the kernel.

What then is a pipe? Although a pipe may seem like a �le, it is not a �le, and there is no �le
pointer associated with it. It is conceptually like a conveyor belt consisting of a �xed number of
logical blocks that can be �lled and emptied. Each write to the pipe �lls as many blocks as are
needed to satisfy it, provided that it does not exceed the maximum pipe size, and if the pipe size
limit was not reached, a new block is made available for the next write. Filled blocks are conveyed
to the read-end of the pipe, where they are emptied when they are read. These types of pipes are
called unnamed pipes because they do not exist anywhere in the �le system. They have no names.

An unnamed pipe1 in UNIX is created with the pipe() system call.

#include <unistd.h>

int pipe(int filedes[2]);

The system call pipe(fd), given an integer array fd of size 2, creates a pair of �le descriptors,
fd[0] and fd[1], pointing to the "read-end" and "write-end" of a pipe inode respectively. If it is
successful, it returns a 0, otherwise it returns -1. The process can then write to the write-end, fd[1],
using the write() system call, and can read from the read-end, fd[0], using the read() system
call. The read and write-ends are opened automatically as a result of the pipe() call. Written
data are read in �rst-in-�rst-out (FIFO) order. The following program (pipedemo0.c in the demos
directory) demonstrates this simple case.

Listing 8.1: pipedemo0.c

#inc lude <s td i o . h>
#inc lude <s t r i n g . h>
#inc lude <uni s td . h>
#inc lude <s t d l i b . h>

#de f i n e READ_END 0
#de f i n e WRITE_END 1
#de f i n e NUM 5
#de f i n e BUFSIZE 32

i n t main ( i n t argc , char ∗ argv [ ] )
{

i n t i , nbytes ;
i n t fd [ 2 ] ;
char message [BUFSIZE+1] ;

1Unless stated otherwise, the word "pipe" will always refer to an unnamed pipe.
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i f ( −1 == pipe ( fd ) ) {
pe r ro r (" pipe c a l l " ) ;
e x i t ( 2 ) ;

}

f o r ( i = 1 ; i <= NUM; i++ ) {
s p r i n t f ( message , " h e l l o #%2d\n" , i ) ;
wr i t e ( fd [WRITE_END] , message , s t r l e n ( message ) ) ;

}
c l o s e ( fd [WRITE_END] ) ;

p r i n t f ("%d messages sent ; s l e e p i n g a b i t . P lease wait . . . \ n" , NUM) ;
s l e e p ( 3 ) ;

whi l e ( ( nbytes = read ( fd [READ_END] , message , BUFSIZE) ) != 0 )
{

i f ( nbytes > 0 ) {
message [ nbytes ] = ' \ 0 ' ;
p r i n t f ("%s " , message ) ;

}
e l s e

e x i t ( 1 ) ;
}
f f l u s h ( stdout ) ;
e x i t ( 0 ) ;

}

Notes.

• In this program, the write calls are not error-checked, which they should be. The read()

in the while loop condition is error-checked: if it returns something strictly less than zero,
exit(1) is executed.

• The read() call is a blocking read by default; you have to explicit make it non-blocking if you
want it to be so. By design, a blocking read on a pipe will block waiting for data as long as
the write-end of the pipe is held open. If the program does not close the write-end of the pipe
before the read-loop starts, it will hang forever, because read() will continue to wait for data.
This could be avoided if the read-loop knew in advance exactly how many bytes to expect,
because in that case it could just read exactly that many bytes and then exit the loop, but
it is rarely the case that one knows how much data to expect. Naturally, the process has to
write the data into the pipe before the read loop begins, otherwise there will be nothing to
read!

• Notice that the read() calls always read the same amount of data. This example demonstrates
that the reader can read �xed-size chunks and assemble them into larger chunks, because the
data arrives in the order it was sent (unlike data sent across a network.) Pipes have no concept
of message boundaries � they are simply byte streams.

• Finally, observe that before calling printf() to print the string on the standard output, the
string has to be null-terminated.
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Figure 8.2: Parent and child sharing a pipe.

The semantics of reading from a pipe are much more complex than reading from a �le. The following
table summarizes what happens when a process tries to read n bytes from a pipe that currently has
p bytes in it that have not yet been read.

Pipe Size (p)

At least one process has the pipe open for writing No processes

have the

pipe open

for writing

Blocking read Non-

blocking

read

At least one writer

is sleeping

No writer is

sleeping

p = 0 Copy n bytes and
return n, waiting for
data as necessary
when the pipe is
empty.

Block until data is
available, copy it
and return its size.

Return
-EAGAIN.

Return 0.

0 < p < n Copy p bytes and return p, leaving the bu�er empty.

p ≥ n Copy n bytes and return n leaving p-n bytes in the pipe bu�er.

The semantics depend upon whether or not a writer has been put to sleep because it tried to write
into the pipe previously but the pipe was full. On a non-blocking read request, if the number of
bytes requested, n, is greater than what is currently in the pipe and at least one writer is in this
sleeping state, then the read will attempt to read n bytes, because as he pipe is emptied, the writer
will be awakened to write into the pipe. If no writer is sleeping and the pipe is empty, however,
then the read will block until some data becomes available.

8.2.1 Parent and Child Sharing a Pipe

Of course there is little reason for a process to create a pipe to write messages to itself. Pipes exist
in order to allow two di�erent processes to communicate. Typically, a process will create a pipe,
and then fork a child process. After the fork, the parent and child will each have copies of the read
and write-ends of the pipe, so there will be two data channels and a total of four descriptors, as
shown in Figure 8.2.

On some Unix systems, such as System V Release 4 Unix, pipes are implemented in this full-duplex
mode, allowing both descriptors to be written into and read from at the same time. POSIX allows
only half-duplex mode, which means that data can �ow in only one direction through the pipe, and
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Figure 8.3: Pipe in half-duplex mode.

each process must close one end of the pipe. The following illustration depicts this half-duplex
mode.

The paradigm for half-duplex use of a pipe by two processes is as follows:

if ( -1 == pipe(fd))

exit(2); // failed to create pipe

switch ( fork() ) {

// child process:

case 0:

close(fd[1]); // close write-end

bytesread = read( fd[0], message, BUFSIZ);

// check for errors afterward of course

break;

// parent process:

default:

close(fd[0]); // close read-end

byteswritten = write(fd[1], buffer, strlen(buffer) );

// and so on

break;

}

Linux follows the POSIX model but does not require each process to close the end of the pipe it is
not going to use. However, for code to be portable, it should follow the POSIX model. All examples
here will assume half-duplex mode. The following is the �rst example of two-process communication
through a pipe. The parent process reads the command line arguments and sends them to the child
process, which prints them on the screen. As we get more deeply involved with pipes, you will
discover that it is easy to make mistakes when coding for them, as there are many intricacies to be
aware of. This �rst program exposes a few of them.

Listing 8.2: pipedemo1.c

#inc lude <s td i o . h>
#inc lude <s t r i n g . h>
#inc lude <uni s td . h>
#inc lude <s t d l i b . h>
#inc lude <sys /wait . h>

#de f i n e READ_FD 0
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#de f i n e WRITE_FD 1

in t main ( i n t argc , char ∗ argv [ ] )
{

i n t i ;
i n t bytesread ;
i n t fd [ 2 ] ;
char message [BUFSIZ ] ;

/∗ check proper usage ∗/
i f ( argc < 2 ) {

f p r i n t f ( s tde r r , "Usage : %s message\n" , argv [ 0 ] ) ;
e x i t ( 1 ) ;

}

/∗ t ry to c r e a t e pipe ∗/
i f ( −1 == pipe ( fd ) ) {

pe r ro r (" pipe c a l l " ) ;
e x i t ( 2 ) ;

}

/∗ c r e a t e ch i l d p roce s s ∗/
switch ( f o rk ( ) ) {
case −1:

/∗ f o rk f a i l e d −− e x i t ∗/
pe r ro r (" f o rk ( ) " ) ;
e x i t ( 3 ) ;

case 0 : /∗ ch i l d code ∗/
/∗ Close wr i t e end , o therw i se ch i l d w i l l never terminate ∗/
c l o s e ( fd [WRITE_FD] ) ;
/∗ Loop whi le not end o f f i l e or not a read e r r o r ∗/
whi l e ( ( bytesread = read ( fd [READ_FD] , message , BUFSIZ) )

!= 0 )
i f ( bytesread > 0 ) { /∗ more data ∗/

message [ bytesread ] = ' \ 0 ' ;
p r i n t f (" Child r e c e i v ed the word : '%s ' \ n" , message ) ;
f f l u s h ( stdout ) ;

}
e l s e { /∗ read e r r o r ∗/

pe r ro r (" read ( ) " ) ;
e x i t ( 4 ) ;

}
e x i t ( 0 ) ;

d e f au l t : /∗ parent code ∗/
c l o s e ( fd [READ_FD] ) ; /∗ Close read end , s i n c e parent i s wr i t i ng ∗/
f o r ( i = 1 ; i < argc ; i++ )

/∗ send each word s epa r a t e l y ∗/
i f ( wr i t e ( fd [WRITE_FD] , argv [ i ] , s t r l e n ( argv [ i ] ) ) != −1 )
{

p r i n t f (" Parent sent the word : '%s ' \ n" , argv [ i ] ) ;
f f l u s h ( stdout ) ;

}
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e l s e {
pe r ro r (" wr i t e ( ) " ) ;
e x i t ( 5 ) ;

}
c l o s e ( fd [WRITE_FD] ) ;

/∗ wait f o r c h i l d so i t does not remain a zombie ∗/
/∗ don ' t care about i t ' s s tatus , so pass a NULL po in t e r ∗/
i f ( wait (NULL) == −1) {

pe r ro r (" wait f a i l e d " ) ;
e x i t ( 2 ) ;

}
}
e x i t ( 0 ) ;

}

Notes.

• It is now critical that the child closes the write-end of its pipe before it starts to read. As was
noted earlier, reads are blocking by default and will remain waiting for input as long as ANY
write-end of the pipe is open, including its own. Therefore, not only do we want to close the
unused end of the pipe for the code to be more portable, but also for it to be correct!

• The parent waits for the child process because if it does not, the child will become a zombie
in the system. You should make a habit of waiting for all processes that you create.

• The output of the parent and child on the terminal may occur in any order. This program
makes no attempt to coordinate the use of the terminal simply because it would distract from
its purpose as a demonstration of how to use pipes.

8.2.2 Atomic Writes

In a POSIX-compliant system, a single write will be executed atomically as long as the number of
bytes to be written does not exceed PIPE_BUF. This means that if several processes are each writing
to the pipe at the same time, as long as each limits the size of each write to N ≤ PIPE_BUF bytes,
the data will not be intermingled. If there is not enough room in the pipe to store N ≤ PIPE_BUF

bytes, and writes are blocking (the default), then write() will be blocked until room is available.
On the other hand, if N > PIPE_BUF, there is no guarantee that the writes will be atomic.

To use the value of PIPE_BUF in a program, include the header �le <limits.h>. For example,

#include <limits.h>

char chunk[PIPE_BUF];

In the event that your <limits.h> header �le does not de�ne PIPE_BUF, it means that the value is
greater than the POSIX minimum value for this constant, which is POSIX_PIPE_BUF, and is usually
512 bytes. POSIX does not require that PIPE_BUF be de�ned in this case. Therefore, you should
write the above code snippet as

This work is copyrighted by Stewart Weiss and licensed under the Creative Commons Attribution-
ShareAlike 4.0 International License.

7

http://creativecommons.org/licenses/by-sa/4.0/ 
http://creativecommons.org/licenses/by-sa/4.0/ 


UNIX Lecture Notes
Chapter 8 Interprocess Communication, Part I

Prof. Stewart Weiss

#include <limits.h>

#ifndef PIPE_BUF

#define PIPE_BUF POSIX_PIPE_BUF;

#endif

char chunk[PIPE_BUF];

An alternative that may work on your system is to use the fpathconf() system call to determine the
value of the atomic write size dynamically. The fpathconf() system call returns the value of various
system dependent con�guration values associated with an open �le descriptor. The fpathconf()

function's synopsis and description is

#include <unistd.h>

long fpathconf(int filedes, int name);

long pathconf(char *path, int name);

DESCRIPTION

fpathconf() gets a value for the configuration option name

for the open file descriptor filedes.

The second argument to fpathconf() is a mnemonic name de�ned in the man page. These are
names such as _PC_NAME_MAX, _PC_PATH_MAX, and _PC_PIPE_BUF. Each name has a di�erent usage,
and its validity depends upon whether the given �le descriptor is that of a �le, a directory, a pipe, or
a terminal. If filedes is a pipe, then the constant _PC_PIPE_BUF is supposed to tell fpathconf()
to return the maximum number of bytes that may be written atomically to that pipe. It may not
return this value. This will be explained below.

Although it is not necessary to know the value of PIPE_BUF, it is an interesting exercise to learn
its value and make sure that it has the magical properties it is supposed to have. The following
program is designed to demonstrate (but not prove) that writes of up to PIPE_BUF bytes are atomic,
and that larger writes may not be atomic. It also demonstrates how to create multiple writers and a
single reader. The program creates two writer processes and one reader. One writer writes 'X's into
the pipe, the other 'y's. They each write the same number of characters each time. The command
line argument speci�es the number of writes that each makes to the pipe. The idea is that if the
number is large enough the scheduler will time slice them often enough so that one will write for
a while, then the next, and so on. The parent is the reader. It reads the data from the pipe and
stores it in a �le. The parent reads smaller chunks since it does not matter.

Listing 8.3: pipedemo2.c

#inc lude <s td i o . h>
#inc lude <s t r i n g . h>
#inc lude <uni s td . h>
#inc lude <s t d l i b . h>
#inc lude <f c n t l . h>
#inc lude <l im i t s . h>
#inc lude <s i g n a l . h>
#inc lude <sys /wait . h>
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#de f i n e READ_FD 0
#de f i n e WRITE_FD 1
#de f i n e RD_CHUNK 10
#de f i n e ATOMIC

#i f n d e f PIPE_BUF
#de f i n e PIPE_BUF POSIX_PIPE_BUF

#end i f

void do_nothing ( i n t s i gno )
{

re turn ;
}

i n t main ( i n t argc , char ∗ argv [ ] )
{

i n t i , r epeat ;
i n t bytesread ;
i n t mssglen ;
pid_t ch i ld1 , ch i l d2 ;
i n t fd [ 2 ] ;
i n t out fd ;
char message [RD_CHUNK+1] ;
char ∗Child1_Chunk , ∗Child2_Chunk ;
long Chunk_Size ;

s t a t i c s t r u c t s i g a c t i o n s i g a c t ;

s i g a c t . sa_handler = do_nothing ;
s i g f i l l s e t (&( s i g a c t . sa_mask ) ) ;
s i g a c t i o n (SIGUSR1 , &s i gac t , NULL) ;

/∗ check proper usage ∗/
i f ( argc < 2 ) {

f p r i n t f ( s tde r r , "Usage : %s s i z e \n" , argv [ 0 ] ) ;
e x i t ( 1 ) ;

}

/∗ t ry to c r e a t e pipe ∗/
i f ( −1 == pipe ( fd ) ) {

pe r ro r (" pipe c a l l " ) ;
e x i t ( 2 ) ;

}

repeat = a t o i ( argv [ 1 ] ) ;
#i f de f i ned ATOMIC

Chunk_Size = PIPE_BUF;
#e l s e

Chunk_Size = PIPE_BUF + 200 ;
#end i f
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p r i n t f ("Chunk s i z e = %ld \n" , Chunk_Size ) ;
p r i n t f (" Value o f PIPE_BUF i s %d\n" , PIPE_BUF) ;

Child1_Chunk = c a l l o c (Chunk_Size , s i z e o f ( char ) ) ;
Child2_Chunk = c a l l o c (Chunk_Size , s i z e o f ( char ) ) ;
i f ( ( NULL == Child1_Chunk ) | |

( NULL == Child2_Chunk ) ) {
pe r ro r (" c a l l o c " ) ;
e x i t ( 2 ) ;

}

/∗ c r e a t e the s t r i n g that ch i l d1 wr i t e s ∗/
Child1_Chunk [ 0 ] = ' \ 0 ' ; /∗ j u s t to be s a f e ∗/
f o r ( i = 0 ; i < Chunk_Size−2; i++)

s t r c a t (Child1_Chunk , "X" ) ;
s t r c a t (Child1_Chunk ,"\n " ) ;

/∗ c r e a t e the s t r i n g that ch i l d2 wr i t e s ∗/
Child2_Chunk [ 0 ] = ' \ 0 ' ; /∗ j u s t to be s a f e ∗/
f o r ( i = 0 ; i < Chunk_Size−2; i++)

s t r c a t (Child2_Chunk , "y " ) ;
s t r c a t (Child2_Chunk ,"\n " ) ;

/∗ c r e a t e f i r s t c h i l d p roce s s ∗/
switch ( ch i l d1 = fo rk ( ) ) {
case −1: /∗ f o rk f a i l e d −− e x i t ∗/

pe r ro r (" f o rk ( ) " ) ;
e x i t ( 3 ) ;

case 0 : /∗ ch i l d1 code ∗/
mssglen = s t r l e n (Child1_Chunk ) ;
pause ( ) ;
f o r ( i = 0 ; i < repeat ; i++ ) {

i f ( wr i t e ( fd [WRITE_FD] , Child1_Chunk , mssglen )
!= mssglen ) {
pe r ro r (" wr i t e " ) ;
e x i t ( 4 ) ;

}

}
c l o s e ( fd [WRITE_FD] ) ;
e x i t ( 0 ) ;

d e f au l t : /∗ parent c r e a t e s second ch i l d p roce s s ∗/
switch ( ch i l d2 = fo rk ( ) ) {
case −1: /∗ f o rk f a i l e d −− e x i t ∗/

pe r ro r (" f o rk ( ) " ) ;
e x i t ( 5 ) ;

case 0 : /∗ ch i l d2 code ∗/
mssglen = s t r l e n (Child2_Chunk ) ;
pause ( ) ;
f o r ( i = 0 ; i < repeat ; i++ ) {

i f ( wr i t e ( fd [WRITE_FD] , Child2_Chunk , mssglen )
!= mssglen ) {
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per ro r (" wr i t e " ) ;
e x i t ( 6 ) ;

}

}
c l o s e ( fd [WRITE_FD] ) ;
e x i t ( 0 ) ;

d e f au l t : /∗ parent code ∗/
out fd = open (" pd2_output " ,

O_WRONLY | O_CREAT | O_TRUNC, 0644) ;
i f ( −1 == outfd ) {

pe r ro r (" open " ) ;
e x i t ( 7 ) ;

}

c l o s e ( fd [WRITE_FD] ) ;
k i l l ( ch i ld1 , SIGUSR1 ) ;
k i l l ( ch i ld2 , SIGUSR1 ) ;
whi l e ( ( bytesread = read ( fd [READ_FD] , message , RD_CHUNK) )

!= 0 )
i f ( bytesread > 0 ) { /∗ more data ∗/

wr i t e ( outfd , message , bytesread ) ;
}
e l s e { /∗ read e r r o r ∗/

pe r ro r (" read ( ) " ) ;
e x i t ( 8 ) ;

}

c l o s e ( out fd ) ;
/∗ c o l l e c t zombies ∗/
f o r ( i = 1 ; i <= 2 ; i++ )

i f ( wait (NULL) == −1) {
pe r ro r (" wait f a i l e d " ) ;
e x i t ( 9 ) ;

}
c l o s e ( fd [READ_FD] ) ;
f r e e (Child1_Chunk ) ;
f r e e (Child2_Chunk ) ;

}
e x i t ( 0 ) ;

}
}

Notes.

• The parent process is the reader; the two child processes are writers. Each child calls pause()
to start so that neither gets to grab the processor immediately. The parent sends a SIGUSR1

signal to them when it is ready to start reading from the pipe.

• Each child write a chunk of size Chunk_Size into the pipe. Chunk_Size is either PIPE_BUF or
200 bytes larger than it.
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• The parent reads from the pipe and writes the data into a �le named pd2_output. When the
read() returns 0, the children have �nished writing and closed the pipe, so the parent closes
the output �le and calls wait() to collect the exit status of the children.

• The program prints the value of PIPE_BUF and the actual chunk size before the pipe operations
begin.

First compile the program as it is written, naming the executable pipedemo2. When pipedemo2 is
run, the output will show that writes are atomic � each string written by each child in a single write
has a newline at its end, and in the output, every sequence of X's will be terminated by a newline
and every sequence of y's will end in a newline. There will be no occurrence of the string Xy or
yX in the output because the kernel serializes the concurrent writes, and each time a child process
writes, it writes its entire string, either X's or y's. The output does not prove it is atomic; it just
shows that no output was intermingled, and thus no write was interrupted.

Each child should write two thousand times or more in order for us to see the possibility of their
each competing for the shared pipe, so the program should be run with a command line argument
of 2000 or more. It would be tedious to check the output by hand to determine whether there are
any lines with intermingled output. The following script is designed to do this automatically:

#!/bin/bash

if [[ $# < 1 ]]

then

printf "Usage: %b repeats\n" $0

exit

fi

pipedemo2 $1

printf "Number of X lines : "

grep X pd2_output | wc -l

printf "Number of y lines : "

grep y pd2_output | wc -l

printf "X lines in first %b : " $1

head -$1 pd2_output | grep X | wc -l

printf "y lines in first %b : " $1

head -$1 pd2_output | grep y | wc -l

printf "X lines in last %b : " $1

tail -$1 pd2_output | grep X | wc -l

printf "y lines in last %b : " $1

tail -$1 pd2_output | grep y | wc -l

printf "Xy lines : "

grep Xy pd2_output | wc -l

printf "yX lines : "

grep yX pd2_output | wc -l

The command line argument is the number of chunks that each child should write. The script
summarizes the output. If repeats is 1000, You should see output something like
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Number of X lines : 1000

Number of y lines : 1000

X lines in first 1000 : 515

y lines in first 1000 : 485

X lines in last 1000 : 485

y lines in last 1000 : 515

Xy lines : 0

yX lines : 0

The last two lines show that all writes were atomic because there are no lines that contain an Xy or
yX combination. Now edit the program by commenting out the line

#define ATOMIC

and recompile it. This �ag determines how large the chunk is. When it is turned o�, the chunk is
larger than PIPE_BUF bytes. Run the script again. The output will most likely look something like
this:

Number of X lines : 1443

Number of y lines : 1437

X lines in first 1000 : 758

y lines in first 1000 : 718

X lines in last 1000 : 685

y lines in last 1000 : 719

Xy lines : 577

yX lines : 586

which shows that when the chunk size of a write exceeds PIPE_BUF, the writes will not be atomic.

8.2.2.1 More About fpathconf()

Almost all systems comply with the POSIX requirement that result of the call

pipe_size = fpathconf(fd, _PC_PIPE_BUF);

is the system's current value of PIPE_BUF. But not all do. Some systems using recent versions of the
GNU C Library will use a di�erent version of fpathconf(). This version returns the pipe capacity,
not the value of PIPE_BUF, but only if the kernel supports it. Linux kernels after 2.6.35 do for
certain. What this implies is that you cannot reliably use the result of fpathconf() to determine
the maximum number of bytes in an atomic write on all systems.
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8.2.3 Pipe Capacity

The capacity of a pipe may be larger than PIPE_BUF. There is no exposed system constant that
indicates the total capacity of a pipe; however, the following program, based on one from [Haviland
et al ], can be run on any system to test the maximum capacity of a pipe, and also to prove that a
process cannot write to a pipe unless it has at least PIPE_BUF bytes available.

Listing 8.4: pipesizetest.c

#inc lude <s td i o . h>
#inc lude <s t r i n g . h>
#inc lude <uni s td . h>
#inc lude <s t d l i b . h>
#inc lude <s i g n a l . h>
#inc lude <l im i t s . h>

in t count = 0 ;
sig_atomic_t f u l l = 0 ;

/∗∗
∗ The SIGALRM handler . This s e t s the f u l l f l a g to i nd i c a t e that the
∗ wr i t e c a l l blocked , and i t p r i n t s the number o f cha ra c t e r s wr i t t en
∗ to the pipe so f a r .
∗/
void on_alarm ( i n t s i gno )
{

p r i n t f ("\ nwri te ( ) blocked with %d chars in the pipe . \ n" , count ) ;
f u l l = 1 ;

}

i n t main ( i n t argc , char ∗ argv [ ] )
{

i n t fd [ 2 ] ;
i n t p ipe_s ize ;
i n t bytesread ;
i n t amount_to_remove ;

char bu f f e r [PIPE_BUF ] ;
char c = 'x ' ;
s t a t i c s t r u c t s i g a c t i o n s i g a c t ;

s i g a c t . sa_handler = on_alarm ;
s i g f i l l s e t (&( s i g a c t . sa_mask ) ) ;
s i g a c t i o n (SIGALRM, &s i gac t , NULL) ;

i f ( −1 == pipe ( fd ) ) {
pe r ro r (" pipe f a i l e d " ) ;
e x i t ( 1 ) ;

}

/∗ Check whether the _PC_PIPE_BUF constant r e tu rn s the pipe capac i ty
or the atomic wr i t e s i z e

∗/
p ipe_s ize = fpathcon f ( fd [ 0 ] , _PC_PIPE_BUF) ;
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whi le (1 ) {
/∗ Set an alarm long enough that i f wr i t e f a i l s i t w i l l f a i l ∗/
/∗ with in t h i s amount o f time . 8 seconds i s long enough . ∗/
alarm ( 4 ) ;
wr i t e ( fd [ 1 ] , &c , 1 ) ;
/∗ Unset the alarm ∗/
alarm ( 0 ) ;

/∗ Did alarm exp i r e ? I f so , wr i t e f a i l e d and we stop the loop ∗/
i f ( f u l l )

break ;

/∗ Report how many chars wr i t t en so f a r ∗/
i f ( (++count % 1024) == 0 )

p r i n t f ( "%d chars in pipe \n" , count ) ;
}

p r i n t f ( "The maximum number o f bytes that the pipe s to r ed i s %d . \ n" ,
count ) ;

p r i n t f ( "The value returned by fpathcon f ( fd ,_PC_PIPE_BUF) i s %d . \ n\n" ,
p ipe_s ize ) ;

p r i n t f ( "Now we remove cha ra c t e r s from the pipe and demonstrate that "
" we cannot\n"
"wr i t e i n to the pipe un l e s s i t has %d (PIPE_BUF) f r e e bytes . \ n" ,
PIPE_BUF) ;

amount_to_remove = PIPE_BUF−1;

p r i n t f ( " F i r s t we remove %d cha ra c t e r s (PIPE_BUF−1) and try to "
"wr i t e i n to the pipe . \ n" , amount_to_remove ) ;

f u l l = 0 ;
bytesread = read ( fd [ 0 ] , &bu f f e r , amount_to_remove ) ;
i f ( bytesread < 0 ) {

pe r ro r (" e r r o r read ing pipe " ) ;
e x i t ( 1 ) ;

}
count = count − bytesread ;
alarm ( 4 ) ;
wr i t e ( fd [ 1 ] , &c , 1 ) ;
/∗ Unset the alarm ∗/
alarm ( 0 ) ;
i f ( f u l l )

p r i n t f ( "We could not wr i t e in to the pipe . \ n " ) ;
e l s e

p r i n t f ( "We s u c c e s s f u l l y wrote in to the pipe . \ n " ) ;

amount_to_remove = PIPE_BUF − amount_to_remove ;
f u l l = 0 ;

p r i n t f ( "\nNow we remove one more charac t e r and try to "
"wr i t e i n to the pipe . \ n " ) ;
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bytesread = read ( fd [ 0 ] , &bu f f e r , amount_to_remove ) ;
i f ( bytesread < 0 ) {

pe r ro r (" e r r o r read ing pipe " ) ;
e x i t ( 1 ) ;

}
count = count − bytesread ;
alarm ( 4 ) ;
wr i t e ( fd [ 1 ] , &c , 1 ) ;
/∗ Unset the alarm ∗/
alarm ( 0 ) ;
i f ( f u l l )

p r i n t f ( "We could not wr i t e in to the pipe . \ n " ) ;
e l s e

p r i n t f ( "We s u c c e s s f u l l y wrote in to the pipe . \ n " ) ;

r e turn 0 ;
}

Notes.

• The main program is the only process, and within its loop it repeatedly writes a single character
to the pipe.

• Since the program never reads from the pipe, the pipe will eventually �ll up. When the process
attempts to write to the pipe after it is full, it will be blocked. To prevent it from being blocked
forever, it sets an alarm before each write() call and unsets it afterwards. The alarm interval,
10 seconds, is long enough so that the alarm will never expire before a successful write �nishes.
When the pipe is full however, the write will be blocked inde�nitely, and therefore the alarm
will expire, interrupting the write(), and the alarm handler will display the total number of
bytes written so far and then terminate the program.

• The program reports the value of fpathconf(fd,_PC_PIPE_BUF) in order to compare it to
the actual pipe capacity. On Linux systems using recent versions of the GNU C Library, this
value will be the pipe capacity, not the current value of PIPE_BUF.

• Once the pipe is full, the program removes PIPE_BUF-1 bytes from the pipe and attempts to
write to it. This will fail. It then removes one more byte so that the pipe has PIPE_BUF bytes
free, and writes to it again. This time the write will succeed.

• The program displays messages to indicate the various successes and failures.

8.2.4 Caveats and Reminders Regarding Blocking I/O and Pipes

Quite a bit can go wrong when working with pipes. These are some important facts to remember
about using pipes and non-blocking reads and writes. Some of these have been mentioned already,
some not. This section consolidates them into a single place.

1. If a write() is made to a pipe that is not open for reading by any process, a SIGPIPE signal
will be sent to the writing process, which, if not caught, will terminate that process. If it is
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caught, after the SIGPIPE handler �nishes, the write() will return with a -1, and errno will
be set to the value EPIPE.

2. If there are one or more processes writing to a pipe, if a reading process closes its read-end of
the pipe and no other processes have the pipe open for reading, each writer will be sent the
SIGPIPE signal, and the same rules mentioned above regarding handling of the signal apply
to each process.

3. As long as one writer has a pipe open for writing, a call to read() will remain blocked until
there is data in the pipe. Therefore, if all writers �nish writing to the pipe, but a single
writer fails to close the write-end of the pipe, if a reader calls read(), the reader will remain
permanently blocked. Once all writers close the write-ends of the pipe, the read() will return
zero.

4. A write() to a full pipe will block the writer until there are PIPE_BUF free bytes in the pipe.

5. Unlike reads from a �le, read() requests to a pipe drain the pipe of the data that was read.
Therefore, when multiple readers read from the same pipe, no two read the same data.

6. Writes are atomic as long as the number of bytes is smaller than PIPE_BUF.

7. Reads are atomic in the sense that, if there is any data in the pipe when the call is initiated,
the read() will return with as much data as is available, up to the number of bytes requested,
and it is guaranteed not to be interrupted.

8. Processes cannot seek() on a pipe.

The situation is entirely di�erent with non-blocking reading and writing. These will be discussed
later. However, before continuing with the discussion of pipes, we will take a slight detour to look
at I/O redirection in general, because studying I/O redirection will give us insight into some of the
ways in which pipes are used.

8.3 I/O Redirection Revisited

8.3.1 Simulating Output Redirection

How does the shell implement I/O redirection? The key to understanding this rests on one simple
principle used by the kernel: the open() system call always chooses the lowest numbered available
�le descriptor.

Suppose that you have entered the command

$ ls > listing

The steps taken by the shell are

1. fork() a new process.

2. In the new process, close() �le descriptor 1 (standard output).
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3. In the new process, open() (with the O_CREAT �ag) the �le named listing.

4. Let the new process exec() the ls program.

After step 1, the child and parent each have copies of the same �le descriptors. After step 2, the
child has closed standard output, so �le descriptor 1 is free. In step 3, the kernel sees descriptor 3
is free, so it uses descriptor 3 to point to the �le structure for the �le named listing. Then the
child calls exec() passing it the string "ls". The ls program writes to �le descriptor 1, usually
standard output, but in fact it is really writing to the �le named listing. In the meanwhile, the
shell continues to have descriptor 1 pointing to the standard output device, so it is una�ected by
this secret trick it played on the ls command.

The following program, called redirectout.c, illustrates how this works. It simulates the shell's
'>' operator. It forks a child, closes standard output descriptor 1, opens the output �le speci�ed
in argv[2] for writing, and execs argv[1]. The parent simply waits for the child to terminate.
Compile it and name it redirectout, and then try a command such as the following:

$ redirectout who whosloggedon

Redirecting standard input works similarly. The only di�erence is that the process has to close the
standard input descriptor 0, and then open a �le for reading.

Listing 8.5: redirectout.c

#inc lude <s td i o . h>
#inc lude <uni s td . h>
#inc lude <s t d l i b . h>
#inc lude <f c n t l . h>
#inc lude <sys /wait . h>

in t main ( i n t argc , char ∗ argv [ ] )
{

i n t fd ;

i f ( argc < 3 ) {
f p r i n t f ( s tde r r , "Usage : %s command output− f i l e \n" , argv [ 0 ] ) ;
e x i t ( 1 ) ;

}

switch ( f o rk ( ) ) {
case −1:

pe r ro r (" f o rk " ) ;
e x i t ( 1 ) ;

case 0 : /∗ ch i l d code ∗/
/∗ Close standard output ∗/
c l o s e ( 1 ) ;
/∗ Open the f i l e i n to which to r e d i r e c t standard output ∗/
/∗ and check that i t succeeds ∗/
i f ( ( fd = open ( argv [ 2 ] , O_WRONLY | O_CREAT | O_TRUNC, 0644 ) )

== −1 )
e x i t ( 1 ) ;

/∗ execute the command in argv [ 1 ] ∗/
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exec lp ( argv [ 1 ] , argv [ 1 ] , NULL ) ;

/∗ should not reach here ! ∗/
pe r ro r (" exec lp " ) ;
e x i t ( 1 ) ;

d e f au l t : /∗ parent code ; j u s t wai t s f o r c h i l d ∗/
wait (NULL) ;

}
re turn 0 ;

}

8.3.2 Simulating the '|' Shell Operator

The pertinent question now is, how can we write a similar program that can simulate how the shell
carries out a command such as

$ last | grep 'pts/2'

This cannot be accomplished using just the open(), close(), and pipe() system calls, because
we need to connect one end of a pipe to the standard output for last, and the other end to the
standard input for grep. Just closing �le descriptors cannot do this. There are two system calls
that can be used for this purpose: dup() and dup2(). dup() is the progenitor of dup2(), which
superseded it. We will �rst look at a solution using dup().

The dup() system call duplicates a �le descriptor. From the man page:

#include <unistd.h>

int dup(int oldfd);

After a successful return from dup(), the old and new file descriptors

may be used interchangeably. They refer to the same open file description

(see open(2)) and thus share file offset and file status flags;

for example, if the file offset is modified by using lseek(2) on one

of the descriptors, the offset is also changed for the other.

In other words, given a �le descriptor, oldfd, dup() creates a new �le descriptor that points to the
same kernel �le structure as the old one. But again the critical feature of dup() is that it returns
the lowest-numbered available �le descriptor. Therefore, consider the following sequence of actions.

int fd[2]; /* Declare descriptors for a pipe */

pipe(fd); /* Create the pipe */

switch ( fork() ) /* Fork a child */

case 0: /* In the child: */

close(fileno(stdout)); /* close standard output */

dup(fd[1]); /* dup write-end of pipe */

close(fd[0]); /* close read-end of pipe */

exec("last", "last", NULL); /* exec the command that writes to the pipe */
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The dup() call will �nd the standard output �le descriptor available, and since that is the lowest
numbered available descriptor, it will make that point to the same structure as fd[1] points to.
Therefore, when the last command writes to standard output, it will really be writing to the
write-end of the pipe.

Now it is not hard to imagine what the parent's job is. It has to close the standard input descriptor,
then dup(fd[0]), and exec the grep command. We can put these ideas together in a more general
program, called shpipe1.c, which follows.

Listing 8.6: shpipe1.c

#inc lude <s td i o . h>
#inc lude <uni s td . h>
#inc lude <s t d l i b . h>
#inc lude <f c n t l . h>

in t main ( i n t argc , char ∗ argv [ ] )
{

i n t fd [ 2 ] ;

i f ( argc < 3 ) {
f p r i n t f ( s tde r r , "Usage : %s command1 command2\n" , argv [ 0 ] ) ;
e x i t ( 1 ) ;

}

i f ( −1 == pipe ( fd ) ) {
pe r ro r (" pipe c a l l " ) ;
e x i t ( 2 ) ;

}

switch ( f o rk ( ) ) {
case −1:

pe r ro r (" f o rk " ) ;
e x i t ( 1 ) ;

case 0 :
c l o s e ( f i l e n o ( stdout ) ) ;
dup ( fd [ 1 ] ) ;
c l o s e ( fd [ 0 ] ) ; /∗ c l o s e read end s i n c e ch i l d does not use i t ∗/
c l o s e ( fd [ 1 ] ) ; /∗ c l o s e wr i t e end s i n c e i t i s not needed now ∗/
exec lp ( argv [ 1 ] , argv [ 1 ] , NULL ) ;
pe r ro r (" exec lp " ) ;
e x i t ( 1 ) ;

d e f au l t :
c l o s e ( f i l e n o ( s td in ) ) ;
dup ( fd [ 0 ] ) ;
c l o s e ( fd [ 1 ] ) ; /∗ c l o s e wr i t e end to prevent ch i l d from block ing ∗/
c l o s e ( fd [ 0 ] ) ; /∗ c l o s e read end s i n c e i t i s not needed now ∗/
exec lp ( argv [ 2 ] , argv [ 2 ] , NULL ) ;
e x i t ( 2 ) ;

}
re turn 0 ;

}

If you compile this and name it shpipe1, then you can try commands such as
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$ shpipe1 last more

and

$ shpipe1 ls wc

There is a problem here. For one, the parent cannot wait for the child because it uses execlp() to
replace its image. This can be solved by forking two children and letting the second do the work of
the reading process. More importantly, this solution is not general, because there are two steps �
close standard output and then dup() the write end of the pipe. There is a small window of time
between closing standard output and duplicating the write-end of the pipe in which the child could
be interrupted by a signal whose handler might close �le descriptors so that the descriptor returned
by dup() will not be the one that was just closed.

This is the reason that dup2() was created. dup2(fd1, fd2) will duplicate fd1 in fd2, closing fd2

if necessary, as a single atomic operation. In other words, if fd2 is open, it will close it, and make
fd2 point to the same �le structure to which fd1 pointed. Its man page entry is

#include <unistd.h>

int dup2(int oldfd, int newfd);

.....

dup2() makes newfd be the copy of oldfd, closing newfd first if necessary.

(dup() and dup2() share the same page. I deleted dup2()'s description above. This is the relevant
part of it.)
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System File Structure Table

Figure 8.4: Initial state of open �le table.

A picture best illustrates how dup2() works. Assume the initial state of the �le descriptors for the
process is as shown in Figure 8.4. Now suppose that the process makes the call

dup2( fd2 , fileno(stdin));

Then, after the call the table is as shown in Figure 8.5. Descriptor 0 (standard input) became a
copy of fd2 as a result of the call. Descriptor fd2 is now redundant and can be closed if stdin is
going to be used instead.

The following listing is of a program, shpipe2.c , which is an improved version of shpipe1.c. that
uses the dup2() call instead of dup().

This work is copyrighted by Stewart Weiss and licensed under the Creative Commons Attribution-
ShareAlike 4.0 International License.

21

http://creativecommons.org/licenses/by-sa/4.0/ 
http://creativecommons.org/licenses/by-sa/4.0/ 


UNIX Lecture Notes
Chapter 8 Interprocess Communication, Part I

Prof. Stewart Weiss

0

6

5

4

3

2

1

Process’s File Descriptor Table
            (Open File Table)

stdin

stdout

stderr

fd1

fd2

System File Structure Table

Figure 8.5: State of open �le table after dup2(fd2,�leno(stdin));

Listing 8.7: shpipe2.c

#inc lude <s td i o . h>
#inc lude <uni s td . h>
#inc lude <s t d l i b . h>
#inc lude <f c n t l . h>
#inc lude <sys /wait . h>

in t main ( i n t argc , char ∗ argv [ ] )
{

i n t fd [ 2 ] ;
i n t i ;
pid_t ch i ld1 , ch i l d2 ;

i f ( argc < 3 ) {
f p r i n t f ( s tde r r , "Usage : %s command1 command2\n" , argv [ 0 ] ) ;
e x i t ( 1 ) ;

}

i f ( −1 == pipe ( fd ) ) {
pe r ro r (" pipe c a l l " ) ;
e x i t ( 2 ) ;

}

switch ( ch i l d1 = fo rk ( ) ) {
case −1:

pe r ro r (" f o rk " ) ;
e x i t ( 1 ) ;

case 0 : /∗ ch i l d1 ∗/
dup2 ( fd [ 1 ] , f i l e n o ( stdout ) ) ; /∗ now stdout po in t s to fd [ 1 ] ∗/
c l o s e ( fd [ 0 ] ) ; /∗ c l o s e input end o f pipe ∗/
c l o s e ( fd [ 1 ] ) ; /∗ c l o s e output end o f pipe ∗/
exec lp ( argv [ 1 ] , argv [ 1 ] , NULL ) ; /∗ run the f i r s t command ∗/
pe r ro r (" exec lp " ) ;
e x i t ( 1 ) ;

d e f au l t :
switch ( ch i l d2 = fo rk ( ) ) {
case −1:

pe r ro r (" f o rk " ) ;
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e x i t ( 1 ) ;
case 0 : /∗ ch i l d2 ∗/

dup2 ( fd [ 0 ] , f i l e n o ( s td in ) ) ; /∗ now s td in po in t s to fd [ 0 ] ∗/
c l o s e ( fd [ 0 ] ) ; /∗ c l o s e input end o f pipe ∗/
c l o s e ( fd [ 1 ] ) ; /∗ c l o s e output end o f pipe ∗/
exec lp ( argv [ 2 ] , argv [ 2 ] , NULL ) ; /∗ run the f i r s t command ∗/
pe r ro r (" exec lp " ) ;
e x i t ( 2 ) ;

d e f au l t :
c l o s e ( fd [ 0 ] ) ; /∗ parent must c l o s e i t s ends o f the f i r s t p ipe ∗/
c l o s e ( fd [ 1 ] ) ;

f o r ( i = 1 ; i <= 2 ; i++ )
i f ( wait (NULL) == −1) {

pe r ro r (" wait f a i l e d " ) ;
e x i t ( 3 ) ;

}
re turn 0 ;

}
}
return 0 ;

}

There are a couple of things you can try to do at this point to test your understanding of pipes.

1. There is a UNIX utility called tee that copies its input stream to standard output as well as
to its �le argument:

$ ls -l | tee listing

will copy the output of "ls -l" into the �le named listing as well as to standard output. Try
to write your own version of tee.

2. Extend shpipe2 to work with any number of commands so that

$ shpipe3 cmmd cmmd ... cmmd

will act like

$ cmmd | cmmd | ... | cmmd

8.3.3 The popen() Library Function

The sequence

1. generate a pipe,

2. fork a child process,

3. duplicate �le descriptors, and

4. execute a new program in order to redirect the input or output of that program to the parent,
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is so common that the developers of the C library added a pair of functions, popen() and pclose()

to streamline this procedure:

#include <stdio.h>

FILE *popen(const char *command, const char *type);

int pclose(FILE *stream);

The popen() function creates a pipe, forks a new process to execute the shell /bin/sh (which is
system dependent), and passes the command to that shell to be executed by it (using the -c �ag
to the shell, which tells it to expect the command as an argument.)

popen() expects the second argument to be either "r" or "w". If it is "r" then the process invoking
it will be returned a FILE pointer to the read-end of the pipe and the write-end will be attached to
the standard output of the command. If it is "w", then the process invoking it will be returned a
FILE pointer to the write-end of the pipe, and the read-end will be attached to the standard input
of the command. The output stream is fully bu�ered.

File streams created with popen() must be closed with pclose(), which will wait for the invoked
process to terminate and returns its exit status or -1 if wait4() failed.

An example will illustrate. We will write a third version of the shpipe program, called shpipe3,
using popen() and pclose() instead of the pipe(), fork(), dup() sequence. See Listing 8.8 below.

Listing 8.8: shpipe3.c

#inc lude <s td i o . h>
#inc lude <uni s td . h>
#inc lude <s t d l i b . h>
#inc lude <l im i t s . h>

in t main ( i n t argc , char ∗ argv [ ] )
{

i n t nbytes ;
FILE ∗ f i n ; /∗ read−end o f pipe ∗/
FILE ∗ f out ; /∗ write−end o f pipe ∗/
char bu f f e r [PIPE_BUF ] ; /∗ bu f f e r f o r t r a n s f e r r i n g data ∗/

i f ( argc < 3 ) {
f p r i n t f ( s tde r r , "Usage : %s command1 command2\n" , argv [ 0 ] ) ;
e x i t ( 1 ) ;

}

i f ( ( f i n = popen ( argv [ 1 ] , " r " ) ) == NULL ) {
f p r i n t f ( s tde r r , "popen ( ) f a i l e d \n " ) ;
e x i t ( 1 ) ;

}

i f ( ( f out = popen ( argv [ 2 ] , "w") ) == NULL ) {
f p r i n t f ( s tde r r , "popen ( ) f a i l e d \n " ) ;
e x i t ( 1 ) ;

}

whi l e ( ( nbytes = read ( f i l e n o ( f i n ) , bu f f e r , PIPE_BUF) ) > 0 )
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wr i t e ( f i l e n o ( fout ) , bu f f e r , nbytes ) ;

p c l o s e ( f i n ) ;
p c l o s e ( f out ) ;
r e turn 0 ;

}

8.4 Named Pipes

Unnamed pipes are an elegant mechanism, however, they have several drawbacks. They can only
be shared by processes with a common ancestor, such as a parent and child, or multiple children
or descendants of a parent that created the pipe. Also, they cease to exist as soon as the processes
that are using them terminate, so they must be recreated every time they are needed. If you are
trying to write a server program with which clients can communicate, the clients will need to know
the name of the pipe through which to communicate, but an unnamed pipe has no such name.

Named pipes make up for these shortcomings. A named pipe, or FIFO, is very much like an unnamed
pipe in how you use it. You read from it and write to it in the same way. It behaves the same way
with respect to the consequences of opening and closing it when various processes are either reading
or writing or doing neither. In other words, the semantics of opening, closing, reading, and writing
named and unnamed pipes are the same.

What distinguishes named pipes from unnamed pipes is that

• They exist as directory entries in the �le system and therefore have associated permissions
and ownership2.

• They can be used by processes that are not related to each other.

• They can be created and deleted at the shell level or at the programming level.

8.4.1 Named Pipes at the Command Level

Before we look at how they are created within a program, let us look at how they are created at
the user level. There are two commands to create a FIFO. The older command is mknod. mknod is
a general purpose utility for creating device special �les. There is also a mkfifo command, which
can only be used for creating a FIFO �le. We will look at how to use mknod. You can read about
the mkfifo command in the man pages.

$ mknod PIPE p

creates a FIFO named "PIPE". The lowercase p , which must follow the �le name, indicates to
mknod that PIPE should be a FIFO (p for pipe.) After typing this command, look at the working
directory:

2Although they have directory entries, they do not exist in the �le system. They have no disk blocks and their
data is not on disk when they are in use.
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$ ls -l PIPE

prw-r--r-- 1 stewart stewart 0 Apr 30 22:29 PIPE|

The 'p' �le type indicates that PIPE is a FIFO. Notice that it has 0 bytes. Try the following
command sequence:

$ cat < PIPE &

$ ls -l > PIPE; wait

If we do not put the cat command into the background it will hang because a process trying to read
from a pipe will block until there is at least one process trying to write to it. The cat command
is trying to read from PIPE and so it will not return and you will not get the shell prompt back
without backgrounding it. The cat command will terminate as soon as it receives the return value
0 from its read() call, which will be delivered when the writer closes the �le after it is �nished
writing. In this case the writer is the process that executes "ls -l". When the output of ls -l is
written to the pipe, cat will read it and display it on the screen. The wait command's only purpose
is to delay the shell's prompt until after cat exits.

By the way, if you reverse this procedure:

$ ls -l > PIPE &

$ ls -l PIPE

$ cat < PIPE; wait

and expect to see that the PIPE does not have 0 bytes when the second ls -l is executed, you will
be disappointed. That data is not stored in the �le system.

8.4.2 Programming With Named Pipes

We turn to the creation and use of named pipes at the programming level. A named pipe can
be created either by using the mknod() system call, or the mkfifo() library function. In Linux,
according to the mknod() (2) man page,

"Under Linux, this call cannot be used to create directories. One should make directories with
mkdir(2), and FIFOs with mk�fo(3)."

Therefore, we will stick to using mkfifo() for creating FIFOs. The other advantage of mkfifo()
over mknod() is that it is easier to use and does not require superuser privileges:

#include <sys/types.h>

#include <sys/stat.h>

int mkfifo(const char *pathname, mode_t mode);

The call mkfifo("MY_PIPE", 0666) creates a FIFO named MY_PIPE with permission 0666 & ~umask.
The convention is to use UPPERCASE letters for the names of FIFOs. This way they are easily
identi�ed in directory listings.
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It is useful to distinguish between public and private FIFOs. A public FIFO is one that is known
to all clients. It is not that there is a speci�c function that makes a FIFO public; it is just that it
is given a name that is easy to remember and that its location is advertised so that client programs
know where to �nd it. Some authors call these well-known FIFOs, because they are analogous to
well-known ports used for sockets, which are covered later. A private FIFO, in contrast, is given
a name that is not known to anyone except the process that creates it and the processes to which
it chooses to divulge it. In our �rst example, we will use only a single public FIFO. In the second
example, the server will create a public FIFO and the clients will create private FIFOs that they
will each use exclusively for communicating with the server.

8.4.2.1 Example

This is a simple example that demonstrates the basic principles. In it, the server creates a public
FIFO and listens for incoming messages. When a message is received, it just prints it on the console.
Client programs know the name of the FIFO because its pathname is hard-coded into a publicly
available header �le that they can include. In fact, for this example, the server and the clients share
this common header �le. Ideally the FIFO's name should be chosen so that no other processes in
the system would ever choose the same �le name, but for simplicity, we use a name that may not
be unique. 3.

The server will execute a loop of the form

while ( 1 ) {

memset(buffer, 0, PIPE_BUF);

if ( ( nbytes = read( publicfifo, buffer, PIPE_BUF)) > 0 ) {

buffer[nbytes] = '\0';

printf("Message %d received by server: %s", ++count, buffer);

fflush(stdout);

}

else

break;

}

In each iteration, it begins by zeroing the bu�er into which it will copy the FIFO's contents. It
reads at most PIPE_BUF bytes at a time into the bu�er. When read() returns, if nbytes is positive,
it null-terminates the bu�er and writes what it received onto its controlling terminal. Because the
input data may not have a terminating newline, it forces the write by calling fflush(stdout). If
nbytes is negative, there was an error and the server quits. If nbytes is 0, it means that read()
returned without any data, and so there is nothing for it to write. We could design the loop so that
it does not exit in this case but just re-executes the read(), but there are reasons not to, as we now
explain.

The server has to perform blocking reads (the O_NONBLOCK and O_NDELAY �ags are clear), otherwise
it would continually run in a loop, needlessly calling read() until a client actually wrote to the
FIFO. This would be a waste of CPU cycles. By using a blocking read, it relinquishes the CPU
so that it can be used for other purposes. The problem is that the read() call will return 0 when

3There are programs that can generate unique keys of an extremely large size that can be used in the name of the
�le. If all applications cooperate and use this method, then all pipe names would be unique.
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there are no processes writing to the FIFO, so if no clients attempt to write to the server, or if all
clients that were writing close their ends of the FIFO and exit, the server would receive a 0 from the
read(). If we designed the loop so that it was re-entered when read() returned 0, this would not
be a problem. However, it is a cleaner design to let the server open the FIFO for writing, so that
there is always at least one process holding the FIFO open for writing, and so that the return value
of read() will be either positive or negative, unless there is some unanticipated error condition.

Therefore, the server begins by creating the FIFO and opening it for both reading and writing,
even though it will only read from it. Since the server never writes to this pipe, it does not matter
whether or not writes are non-blocking, but POSIX does not specify how a system is supposed to
handle opening a �le in blocking mode for both reading and writing, so it is safer to open it with
the O_NONBLOCK �ag set, since POSIX does not specify how a system is supposed to handle opening
a �le in blocking mode for both reading and writing, we avoid possibly unde�ned behavior.

The server is run as a background process and is the process that must be started �rst, so that it
can create the FIFO. If the server is not running and a client is started up, it will exit, because the
FIFO does not exist.

The common header �le is listed �rst, in Listing 8.9, followed by the server code.

Listing 8.9: �fo1.h

#inc lude <s td i o . h>
#inc lude <s t d l i b . h>
#inc lude <uni s td . h>
#inc lude <f c n t l . h>
#inc lude <s t r i n g . h>
#inc lude <l im i t s . h>
#inc lude <errno . h>
#inc lude <sys / s t a t . h>

#de f i n e PUBLIC "/tmp/FIFODEMO1_PIPE"

Listing 8.10: rcv�fo1.c

#inc lude <s i g n a l . h>
#inc lude " f i f o 1 . h"

i n t dummyfifo ; /∗ f i l e d e s c r i p t o r to write−end o f PUBLIC ∗/
i n t p u b l i c f i f o ; /∗ f i l e d e s c r i p t o r to read−end o f PUBLIC ∗/

/∗∗ on_signal ( )
∗ This c l o s e s both ends o f the FIFO and then removes i t , a f t e r
∗ which i t e x i t s the program .
∗/
void on_signal ( i n t s i g )
{

c l o s e ( p u b l i c f i f o ) ;
c l o s e ( dummyfifo ) ;
un l ink (PUBLIC) ;
e x i t ( 0 ) ;

}
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i n t main ( i n t argc , char ∗argv [ ] )
{

i n t nbytes ; /∗ number o f bytes read from popen ( ) ∗/
i n t count = 0 ;
s t a t i c char bu f f e r [PIPE_BUF] ; / ∗ bu f f e r to s t o r e output o f command ∗/
s t r u c t s i g a c t i o n handler ; /∗ s i g a c t i o n f o r r e g i s t e r i n g hand le r s ∗/

/∗ Reg i s t e r the s i g n a l handler to handle a few s i g n a l s ∗/
handler . sa_handler = on_signal ; /∗ handler func t i on ∗/
handler . sa_f lags = SA_RESTART;
i f ( ( ( s i g a c t i o n (SIGINT , &handler , NULL) ) == −1 ) | |

( ( s i g a c t i o n (SIGHUP, &handler , NULL) ) == −1 ) | |
( ( s i g a c t i o n (SIGQUIT, &handler , NULL) ) == −1) | |
( ( s i g a c t i o n (SIGTERM, &handler , NULL) ) == −1)

) {
pe r ro r (" s i g a c t i o n " ) ;
e x i t ( 1 ) ;

}

/∗ Create pub l i c FIFO . I f i t e x i s t s a lready , the c a l l w i l l r e turn −1 and
s e t errno to EEXIST . This i s not an e r r o r in our case . I t j u s t means
we can reuse an e x i s t i n g FIFO that we crea ted but never removed . Al l
other e r r o r s cause the program to e x i t .

∗/
i f ( mkf i fo (PUBLIC, 0666) < 0 )

i f ( e r rno != EEXIST ) {
pe r ro r (PUBLIC) ;
e x i t ( 1 ) ;

}

/∗
We open the FIFO f o r reading , with the O_NONBLOCK f l a g c l e a r . The POSIX
semant ics s t a t e the the proce s s w i l l be blocked on the open ( ) u n t i l some
proce s s ( to be p r e c i s e , some thread ) opens i t f o r wr i t i ng . Therefore , the
s e r v e r w i l l be stuck in t h i s open ( ) u n t i l a c l i e n t s t a r t s up .

∗/
i f ( ( p u b l i c f i f o = open (PUBLIC, O_RDONLY) ) == −1 ) {

pe r ro r (PUBLIC) ;
e x i t ( 1 ) ;

}

/∗
We now open the FIFO f o r wr i t ing , even though we have no i n t en t i on o f
wr i t i ng to the FIFO . We w i l l not reach the c a l l to open ( )
u n t i l a c l i e n t runs , but once the c l i e n t runs , the s e r v e r opens the FIFO
f o r wr i t i ng . I f we do not do th i s , when the c l i e n t te rminates and c l o s e s
i t s write−end o f the FIFO , the se rver ' s read loop would e x i t and the
s e r v e r would a l s o e x i t . This "dummy" open keeps the s e r v e r a l i v e .

∗/
i f ( ( dummyfifo = open (PUBLIC, O_WRONLY | O_NONBLOCK )) == −1 ) {

pe r ro r (PUBLIC) ;
e x i t ( 1 ) ;

}

This work is copyrighted by Stewart Weiss and licensed under the Creative Commons Attribution-
ShareAlike 4.0 International License.

29

http://creativecommons.org/licenses/by-sa/4.0/ 
http://creativecommons.org/licenses/by-sa/4.0/ 


UNIX Lecture Notes
Chapter 8 Interprocess Communication, Part I

Prof. Stewart Weiss

/∗ Block wai t ing f o r a message from a c l i e n t ∗/
whi l e ( 1 ) {

memset ( bu f f e r , 0 , PIPE_BUF) ;
i f ( ( nbytes = read ( p ub l i c f i f o , bu f f e r , PIPE_BUF) ) > 0 ) {

bu f f e r [ nbytes ] = ' \ 0 ' ;
p r i n t f ("Message %d re c e i v ed by s e r v e r : %s " , ++count , bu f f e r ) ;
f f l u s h ( stdout ) ;

}
e l s e

break ;
}
re turn 0 ;

}

Comments.

• The server reads from the public FIFO and displays the message it receives on its standard
output, even though it may be put in the background; it is not detached from the terminal.
The best way to run it is to leave it in the foreground and open a few clients in other terminal
windows.

• The server increments a counter and displays each received message with the value of the
counter, so that you can see the order in which the messages were received. As noted above,
it �ushes standard output just in case there is no newline in the message.

• It does detect a few signals, so that any of them are delivered to it, it will close its ends of the
FIFO, remove the �le, and bail out.

The client opens the public FIFO for writing and then enters a loop where it repeatedly reads
from standard input and writes into the write-end of the public FIFO. It uses the library function
memset(), found in <string.h>, to zero the bu�er where the user's text will be stored, and it
declares the bu�er to be PIPE_BUF chars, so that the write will be atomic. (If the locale uses
two-byte chars, this will not work properly.) When it is �nished, it closes its write-end.

Listing 8.11: send�fo1.c

#inc lude " f i f o 1 . h"
#de f i n e QUIT " qu i t "

i n t main ( i n t argc , char ∗argv [ ] )
{

i n t nbytes ; /∗ num bytes read ∗/
i n t p u b l i c f i f o ; /∗ f i l e d e s c r i p t o r to write−end o f PUBLIC ∗/
char t ext [PIPE_BUF ] ;

/∗ Open the pub l i c FIFO f o r wr i t i ng ∗/
i f ( ( p u b l i c f i f o = open (PUBLIC, O_WRONLY) ) == −1) {

pe r ro r (PUBLIC) ;
e x i t ( 1 ) ;

}
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p r i n t f ("Type ' quit ' to qu i t . \ n " ) ;

/∗ Repeatedly prompt user f o r command , read i t , and send to s e r v e r ∗/
whi l e (1 ) {

memset ( text , 0 , PIPE_BUF) ; /∗ zero s t r i n g ∗/
nbytes = read ( f i l e n o ( s td in ) , text , PIPE_BUF) ;
i f ( ! strncmp (QUIT, text , nbytes −1)) /∗ i s i t qu i t ? ∗/

break ;

i f ( ( wr i t e ( p u b l i c f i f o , text , nbytes ) ) < 0 ) {
pe r ro r (" Server i s no l onge r running " ) ;
break ;

}
}
/∗ User quit , so c l o s e write−end o f pub l i c FIFO ∗/
c l o s e ( p u b l i c f i f o ) ;
r e turn 0 ;

}

Comments.

• The client code allows the user to type "quit" to end the program.

• It is not very robust; it does not handle any terminal interrupts or signals and does no clean-up
if it is killed by a signal. If the server stops running though, it will detect this and exit, closing
its end of the FIFO.

8.4.3 An Iterative Server

In this example, we create a server that has two way communication with each client, processing
incoming client requests one after the other. Such a server is called an iterative server. In order to
achieve this, the server creates a public FIFO that it uses for reading incoming messages from clients
wishing to use its services. Each incoming message is a structure with a member that contains the
name of the private FIFO that the client creates when it starts up, and which should be used by
the server for sending a reply. The message structure also contains another �eld that the client can
use to supply data for the server.

When the server receives a message, it looks at the FIFO name in it and tries to open it for writing.
If successful, the server will use this FIFO for sending data to the client. After the client sends its
message to the server, it opens its private FIFO for reading. It will block until the server opens
the write end of this FIFO. When the server opens the write end, the client will read from it until
it receives a return value of 0, indicating that the server has �nished writing and closed its end of
the pipe. Figure 8.6 depicts the relationship between the clients and the server with respect to the
shared pipes.

In this particular example, the server provides lowercase-to-uppercase translation for clients. The
clients send it a piece of text and the server sends back another piece of text identical to the �rst
except that every lowercase letter has been converted to uppercase. The server will be named
upcased1 (for uppercase daemon), and the client, upcaseclient1.
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Figure 8.6: The FIFOs used in the iterative server.

The message structure used by the server and client, as well as all necessary include �les and common
de�nitions, is contained in the header �le upcase1.h, displayed in the following listing.

Listing 8.12: upcase1.h

#inc lude <s td i o . h>
#inc lude <s t d l i b . h>
#inc lude <uni s td . h>
#inc lude <f c n t l . h>
#inc lude <s t r i n g . h>
#inc lude <l im i t s . h>
#inc lude <s i g n a l . h>
#inc lude <errno . h>
#inc lude <sys /wait . h>
#inc lude <sys / s t a t . h>
#inc lude <ctype . h>

#de f i n e PUBLIC "/tmp/UPCASE1_PIPE"
#de f i n e HALFPIPE_BUF (PIPE_BUF/2)

typede f s t r u c t _message {
char fifo_name [HALFPIPE_BUF ] ; /∗ pr i va t e FIFO pathname ∗/
char t ext [HALFPIPE_BUF ] ; /∗ message text ∗/

} message ;

Because the message must be no larger than PIPE_BUF bytes, and because it should be general
enough to allow FIFO pathnames of a large size, the structure is split equally between the length of
the FIFO name and the length of the text to be sent to the server. Thus, HALFPIPE_BUF is de�ned
as one half of PIPE_BUF and used as the maximum number of bytes in the string to be translated.

We begin with the client code this time. The basic steps that the client takes are as follows.
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1. It makes sure that neither standard input nor output is redirected.

2. It registers its signal handlers.

3. It creates its private FIFO in /tmp.

4. It tries to open the public FIFO for writing in non-blocking mode.

5. It enters a loop in which it repeatedly

(a) reads a line from standard input, and

(b) repeatedly

i. gets the next HALFPIPE_BUF-1 sized chunk in the input text,

ii. sends a message to the server through the public FIFO,

iii. opens its private FIFO for reading,

iv. reads the server's reply from the private FIFO,

v. copies the server's reply to its standard output, and

vi. closes the read-end of its private FIFO.

6. It closes the write-end of the public FIFO and removes its private FIFO.

The client listing follows.

Listing 8.13: upcaseclient1.c

#inc lude "upcase1 . h" /∗ Al l r equ i r ed header f i l e s are inc luded in ∗/
/∗ t h i s shared header f i l e . ∗/

#de f i n e PROMPT " s t r i n g : "
#de f i n e UPCASE "UPCASE: "
#de f i n e QUIT " qu i t "

const char startup_msg [ ] =
"upcased1 does not seem to be running . "
" Please s t a r t the s e r v i c e . \ n " ;

v o l a t i l e sig_atomic_t s i g_rece ived = 0 ;
s t r u c t message msg ;

/∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/
/∗ S igna l Handlers ∗/
/∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/

void on_sigpipe ( i n t s i gno )
{

f p r i n t f ( s tde r r , "upcased i s not read ing the pipe . \ n " ) ;
un l ink (msg . fifo_name ) ;
e x i t ( 1 ) ;

}

void on_signal ( i n t s i g )
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{
s i g_rece ived = 1 ;

}
/∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/
/∗ Main Program ∗/
/∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/

i n t main ( i n t argc , char ∗argv [ ] )
{

i n t strLength ; /∗ number o f bytes in t ext to convert ∗/
i n t nChunk ; /∗ index o f t ex t chunk to send to s e r v e r ∗/
i n t bytesRead ; /∗ bytes r e c e i v ed in read from se rv e r ∗/
i n t p r i v a t e f i f o ; /∗ f i l e d e s c r i p t o r to read−end o f PRIVATE ∗/
i n t p u b l i c f i f o ; /∗ f i l e d e s c r i p t o r to write−end o f PUBLIC ∗/
s t a t i c char bu f f e r [PIPE_BUF ] ;
s t a t i c char textbu f [BUFSIZ ] ;

s t r u c t s i g a c t i o n handler ;

/∗ Only run i f we are us ing the te rmina l . ∗/
i f ( ! i s a t t y ( f i l e n o ( s td in ) ) | | ! i s a t t y ( f i l e n o ( stdout ) ) )

e x i t ( 1 ) ;

/∗ Reg i s t e r the on_signal handler to handle a l l keyboard s i g n a l s ∗/
handler . sa_handler = on_signal ; /∗ handler func t i on ∗/
i f ( ( ( s i g a c t i o n (SIGINT , &handler , NULL) ) == −1 ) | |

( ( s i g a c t i o n (SIGHUP, &handler , NULL) ) == −1 ) | |
( ( s i g a c t i o n (SIGQUIT, &handler , NULL) ) == −1) | |
( ( s i g a c t i o n (SIGTERM, &handler , NULL) ) == −1)

) {
pe r ro r (" s i g a c t i o n " ) ;
e x i t ( 1 ) ;

}

handler . sa_handler = on_sigpipe ;
i f ( s i g a c t i o n (SIGPIPE , &handler , NULL) == −1 ) {

pe r ro r (" s i g a c t i o n " ) ;
e x i t ( 1 ) ;

}

/∗ Create hope fu l l y unique name f o r p r i va t e FIFO us ing process−id ∗/
s p r i n t f (msg . fifo_name , "/tmp/ f i f o%d" , getp id ( ) ) ;

/∗ Create the p r i va t e FIFO ∗/
i f ( mkf i fo (msg . fifo_name , 0666) < 0 ) {

pe r ro r (msg . fifo_name ) ;
e x i t ( 1 ) ;

}

/∗ Open the pub l i c FIFO f o r wr i t i ng ∗/
i f ( ( p u b l i c f i f o = open (PUBLIC, O_WRONLY | O_NONBLOCK) ) == −1) {

i f ( ENXIO == errno )
f p r i n t f ( s tde r r ,"%s " , startup_msg ) ;

e l s e
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per ro r (PUBLIC) ;
e x i t ( 1 ) ;

}
p r i n t f ("Type ' quit ' to qu i t . \ n " ) ;

/∗ Repeatedly prompt user f o r input , read i t , and send to s e r v e r ∗/
whi l e (1 ) {

/∗ Check i f SIGINT re c e i v ed f i r s t , and i f so , c l o s e write−end ∗/
/∗ o f pub l i c f i f o , remove p r i va t e f i f o and then qu i t ∗/
i f ( s i g_rece ived ) {

c l o s e ( p u b l i c f i f o ) ;
un l ink (msg . fifo_name ) ;
e x i t ( 1 ) ;

}

/∗ Display a prompt on the te rmina l and read the input text ∗/
wr i t e ( f i l e n o ( stdout ) , PROMPT, s i z e o f (PROMPT) ) ;
memset (msg . text , 0x0 , HALFPIPE_BUF) ; /∗ zero s t r i n g ∗/
f g e t s ( textbuf , BUFSIZ , s td in ) ;
s trLength = s t r l e n ( t ex tbu f ) ;
i f ( ! strncmp (QUIT, textbuf , strLength −1)) /∗ i s i t qu i t ? ∗/

break ;

/∗ Display l a b e l f o r returned upper case t ext ∗/
wr i t e ( f i l e n o ( stdout ) , UPCASE, s i z e o f (UPCASE) ) ;

f o r ( nChunk = 0 ; nChunk < strLength ; nChunk += HALFPIPE_BUF−1 ) {
memset (msg . text , 0x0 , HALFPIPE_BUF) ;
strncpy (msg . text , t ex tbu f+nChunk , HALFPIPE_BUF−1);
msg . t ex t [HALFPIPE_BUF−1] = ' \ 0 ' ;
wr i t e ( p u b l i c f i f o , ( char ∗) &msg , s i z e o f (msg ) ) ;

/∗ Open the p r i va t e FIFO f o r read ing to get output o f command ∗/
/∗ from the s e r v e r . ∗/
i f ( ( p r i v a t e f i f o = open (msg . fifo_name , O_RDONLY) ) == −1) {

pe r ro r (msg . fifo_name ) ;
e x i t ( 1 ) ;

}

/∗ Read maximum number o f bytes p o s s i b l e a tomica l l y ∗/
/∗ and copy them to standard output . ∗/
whi l e ( ( bytesRead= read ( p r i v a t e f i f o , bu f f e r , PIPE_BUF) ) > 0) {

wr i t e ( f i l e n o ( stdout ) , bu f f e r , bytesRead ) ;
}
c l o s e ( p r i v a t e f i f o ) ; /∗ c l o s e the read−end o f p r i va t e FIFO ∗/

}
}
/∗ User quit , so c l o s e write−end o f pub l i c FIFO and de l e t e p r i va t e FIFO ∗/
c l o s e ( p u b l i c f i f o ) ;
un l ink (msg . fifo_name ) ;
r e turn 0 ;

}
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Comments.

• The program registers on_signal() to handle all signals that could kill it and that can be
generated by a user. If any of these signals is sent to the process, the handler simply sets
an atomic �ag. In its main loop, it checks whether the �ag is set, and if it is, it closes the
write-end of the public FIFO and removes its private FIFO. The server will get a SIGPIPE

signal the next time it tries to write to this FIFO, which it will handle.

• The program will get a SIGPIPE signal if it tries to write to the public FIFO but it is not
open for reading. This can only happen if the server is not running. The SIGPIPE handler,
on_sigpipe(), displays a message on standard error and terminates the program.

• The reason that the client opens the public FIFO with O_NONBLOCK set is that, in this case,
if the server is not reading the FIFO, the client, instead of blocking, will return with a ENXIO

error, so that it can gracefully exit.

• Inside the client's main loop, it displays a prompt and uses fgets() to read a line from the
terminal.

• This client has been designed to handle the highly improbable case that the user enters a
string that is larger than the allowed number of bytes in an atomic write to a pipe4. It does
this by breaking the string into "chunks" that are small enough to send atomically. It send
each chunk in sequence. It has to open and close the private FIFO before and after each chunk
is sent because the server is designed primarily for handling the most likely case in which the
string is small enough to �t into a single chunk. (The server only opens the client's private
FIFO after receiving a message from the client with the name of the FIFO; if the client tries
to open the FIFO for reading before sending any chunks, it will block on the open() call.
To prevent this, the open() would have to be non-blocking, which would complicate its read
loop. It is not worth the complication to save the run-time cost in this unusual case.)

Now we turn to the server, which is simpler than the client in this example. The steps that the
server takes can be summarized as follows.

1. It registers its signal handlers.

2. It creates the public FIFO. If it �nds it already exists, it displays a message and exits.

3. It opens the public FIFO for both reading and writing, even though it will only read from it.

4. It enters its main-loop, where it repeatedly

(a) does a blocking read on the public FIFO,

(b) on receiving a message from the read(), tries to open the private FIFO of the client that
sent it the message. (It tries 5 times, sleeping a bit between each try, in case the client
was delayed in opening it for writing. After 5 attempts it gives up on this client.)

(c) converts the message to uppercase,

(d) writes it to the private FIFO of the client, and

4Since BUFSIZ, the maximum size string allowed in the Standard I/O Library, may be larger than PIPE_BUF, it is
possible to read a string much larger than can be sent in the pipe atomically.
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(e) closes the write-end of the private FIFO.

It will loop forever because it will never receive an end-of-�le on the pipe, since it is keeping the
write-end open itself. It is terminated by sending it a signal. The code follows.

Listing 8.14: upcased1.c

#inc lude "upcase1 . h"

#de f i n e WARNING "\nNOTE: SERVER ∗∗ NEVER ∗∗ acce s s ed p r i va t e FIFO\n"
#de f i n e MAXTRIES 5

in t dummyfifo ; /∗ f i l e d e s c r i p t o r to write−end o f PUBLIC ∗/
i n t p r i v a t e f i f o ; /∗ f i l e d e s c r i p t o r to write−end o f PRIVATE ∗/
i n t p u b l i c f i f o ; /∗ f i l e d e s c r i p t o r to read−end o f PUBLIC ∗/

void on_sigpipe ( i n t s i gno )
{

f p r i n t f ( s tde r r , " C l i en t i s not read ing the pipe . \ n " ) ;
}

void on_signal ( i n t s i g )
{

c l o s e ( p u b l i c f i f o ) ;
c l o s e ( dummyfifo ) ;
i f ( p r i v a t e f i f o != −1 )

c l o s e ( p r i v a t e f i f o ) ;
un l ink (PUBLIC) ;
e x i t ( 0 ) ;

}

/∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/
/∗ Main Program ∗/
/∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/

i n t main ( i n t argc , char ∗argv [ ] )
{

i n t t r i e s ; /∗ num t r i e s to open pr i va t e FIFO ∗/
i n t nbytes ; /∗ number o f bytes read from popen ( ) ∗/
i n t i ;
i n t done ; /∗ f l a g to stop loop ∗/
s t r u c t message msg ; /∗ s t o r e s p r i va t e f i f o name and command ∗/
s t r u c t s i g a c t i o n handler ; /∗ s i g a c t i o n f o r r e g i s t e r i n g hand le r s ∗/

/∗ Reg i s t e r the s i g n a l handler ∗/
handler . sa_handler = on_signal ;
handler . sa_f lags = SA_RESTART;
i f ( ( ( s i g a c t i o n (SIGINT , &handler , NULL) ) == −1 ) | |

( ( s i g a c t i o n (SIGHUP, &handler , NULL) ) == −1 ) | |
( ( s i g a c t i o n (SIGQUIT, &handler , NULL) ) == −1) | |
( ( s i g a c t i o n (SIGTERM, &handler , NULL) ) == −1)

) {
pe r ro r (" s i g a c t i o n " ) ;
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e x i t ( 1 ) ;
}

handler . sa_handler = on_sigpipe ;
i f ( s i g a c t i o n (SIGPIPE , &handler , NULL) == −1 ) {

pe r ro r (" s i g a c t i o n " ) ;
e x i t ( 1 ) ;

}

/∗ Create pub l i c FIFO ∗/
i f ( mkf i fo (PUBLIC, 0666) < 0 ) {

i f ( e r rno != EEXIST )
per ro r (PUBLIC) ;

e l s e
f p r i n t f ( s tde r r , "%s a l ready e x i s t s . De lete i t and r e s t a r t . \ n" ,

PUBLIC) ;
e x i t ( 1 ) ;

}

/∗ Open pub l i c FIFO f o r read ing and wr i t i ng so that i t does not get an
EOF on the read−end whi l e wa i t ing f o r a c l i e n t to send data .
To prevent i t from hanging on the open , the write−end i s opened in
non−b lock ing mode . I t never wr i t e s to i t .

∗/
i f ( ( p u b l i c f i f o = open (PUBLIC, O_RDONLY) ) == −1 | |

( dummyfifo = open (PUBLIC, O_WRONLY | O_NDELAY )) == −1 ) {
pe r ro r (PUBLIC) ;
e x i t ( 1 ) ;

}

/∗ Block wai t ing f o r a msg s t r u c t from a c l i e n t ∗/
whi l e ( read ( p ub l i c f i f o , ( char ∗) &msg , s i z e o f (msg ) ) > 0 ) {

/∗ A msg arr ived , so s t a r t t ry ing to open wr i t e end o f p r i va t e FIFO ∗/
t r i e s = done = 0 ;
p r i v a t e f i f o = −1;
do {

i f ( ( p r i v a t e f i f o = open (msg . fifo_name ,
O_WRONLY | O_NDELAY)) == −1 )

s l e e p ( 1 ) ; /∗ s l e e p i f f a i l e d to open ∗/
e l s e {

/∗ Convert the text to uppercase ∗/
nbytes = s t r l e n (msg . t ex t ) ;
f o r ( i = 0 ; i < nbytes ; i++ )

i f ( i s l owe r (msg . t ex t [ i ] ) )
msg . t ex t [ i ] = toupper (msg . t ex t [ i ] ) ;

/∗ Send converted text to c l i e n t ∗/
i f ( −1 == wr i t e ( p r i v a t e f i f o , msg . text , nbytes ) ) {

i f ( e r rno == EPIPE )
done = 1 ;

}
c l o s e ( p r i v a t e f i f o ) ; /∗ c l o s e write−end o f p r i va t e FIFO ∗/
done = 1 ; /∗ terminate loop ∗/
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}
} whi l e (++t r i e s < MAXTRIES && ! done ) ;

i f ( ! done )
/∗ Fai l ed to open c l i e n t p r i va t e FIFO f o r wr i t i ng ∗/
wr i t e ( f i l e n o ( s t d e r r ) , WARNING, s i z e o f (WARNING) ) ;

}
re turn 0 ;

}

Comments.

This server handles all user-initiated terminating signals by closing any descriptors that it has open
and removing the public FIFO and exiting. It sets privatefifo to -1 at the start of each loop,
and if it opens the private FIFO successfully, privatefifo is no longer -1. This way, in the signal
handler, it can determine whether it had a private FIFO open for writing and needs to close it.

If it gets a SIGPIPE because a client closed its read end of its private FIFO immediately after sending
a message but before the server wrote back the converted string, it handles SIGPIPE by continuing
to listen for new messages and giving up on the write to that pipe.

8.4.4 Concurrent Servers

The preceding server was an iterative server; it handled each client request one after the other. If
some client requests could be very time-consuming, then the server would be busy servicing one
client to the exclusion of all others, and the others would experience delays. This can be avoided
by allowing the server to handle multiple clients simultaneously. A server that can process requests
from more than one client simultaneously is called a concurrent server.

The easiest way to create a concurrent server is to fork a child process for each client5. The server's
role then amounts to little more than "listening" to the public pipe for incoming requests, forking
a child process to handle a new request, and waiting for its children to �nish. The waiting must
be accomplished through a SIGCHLD handler, because, unlike a shell-style application, this process
has to return immediately to the task of reading the public pipe. The basic outline of the server
program's main process is therefore roughly:

1. It registers its signal handlers.

2. It creates the public FIFO. If it �nds it already exists, it displays a message and exits.

3. It opens the public FIFO for both reading and writing, even though it will only read from it.

4. It enters its main-loop, where it repeatedly

(a) does a blocking read() on the public FIFO,

(b) on receiving a message from the read(), forks a child process to handle the client request.

5When we cover threads, you will see that threads are another means of accomplishing this.
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Aside from spawning child processes, there are a few major di�erences between the way this server
works and the way the sequential server worked:

Each client will have two private FIFOs: one into which it writes raw text to be translated, and a
second from which it reads text that the server translated and sent back to it. The names of these
two FIFOs must be sent to the server's public FIFO when a client wishes its services. Therefore,
the message structure is di�erent in this program than it was in the iterative server. We will call
this message a connection message, because its only purpose is to establish the means by which
the client and the server can communicate privately. A connection message contains only the
information needed to establish this two-way private communication between the server and the
client:

typedef struct _message {

char raw_text_fifo [HALFPIPE_BUF];

char converted_text_fifo[HALFPIPE_BUF];

} message;

Each child process forked by the server begins by opening the read-end of the client's "raw_text"
FIFO, and then it repeatedly reads from the this raw_text FIFO, translates the text into uppercase,
opens the write-end of the client's converted_text FIFO, writes the converted text into it, and closes
the write-end of the converted_text FIFO, until it received an end-of-�le from the client.

8.4.4.1 The Concurrent Server Client

The client is also structurally di�erent from the previous client. The major steps that it takes are
as follows.

1. It registers its signal handlers.

2. It creates two private FIFOs in the /tmp directory with unique names.

3. It opens the server's public FIFO for writing.

4. It sends the initial message structure containing the names of its two FIFOs to the server to
establish the two-way communication.

5. It attempts to open its raw_text FIFO in non-blocking, write-only mode. If it fails, it delays
a second and retries. It retries a few times and then gives up and exits. If it fails it means
that the server is probably terminated.

6. Until it receives an end-of-�le on its standard input, it repeatedly

(a) reads a line from standard input,

(b) breaks the line into PIPE_BUF-sized chunks,

(c) sends each chunk successively to the server through its raw_text FIFO,

(d) opens the converted_text FIFO for reading,

(e) reads the converted_text FIFO, and copies its contents to its standard output, and

(f) closes the read-end of the converted_text FIFO

This work is copyrighted by Stewart Weiss and licensed under the Creative Commons Attribution-
ShareAlike 4.0 International License.

40

http://creativecommons.org/licenses/by-sa/4.0/ 
http://creativecommons.org/licenses/by-sa/4.0/ 


UNIX Lecture Notes
Chapter 8 Interprocess Communication, Part I

Prof. Stewart Weiss

7. It closes all of its FIFOs and removes the �les.

Figure 8.7 shows how the client processes and the server parent and child processes use the various
FIFOs. Compare this to Figure 8.6.

Figure 8.7: Concurrent server and client communication.

The code for the client is displayed �rst, in the following Listing.

Listing 8.15: upcaseclient2.c

#inc lude "upcase2 . h" /∗ Al l r equ i r ed header f i l e s are inc luded in t h i s ∗/
/∗ shared header f i l e . ∗/

#de f i n e MAXTRIES 5

const char startup_msg [ ] =
"The upcased2 s e r v e r does not seem to be running . "
" Please s t a r t the s e r v i c e . \ n " ;

const char server_no_read_msg [ ] =
"The s e r v e r i s not read ing the pipe . \ n " ;

i n t convertedtext_fd ; /∗ f i l e d e s c r i p t o r f o r READ PRIVATE FIFO ∗/
i n t dummyreadfifo ; /∗ to hold f i f o open ∗/
i n t rawtext_fd ; /∗ f i l e d e s c r i p t o r to WRITE PRIVATE FIFO ∗/
i n t dummyrawfifo_fd ; /∗ to hold the raw text f i f o open ∗/
i n t p u b l i c f i f o ; /∗ f i l e d e s c r i p t o r to write−end o f PUBLIC ∗/
FILE∗ input_srcp ; /∗ F i l e po in t e r to input stream ∗/
message msg ; /∗ 2−way communication s t r u c tu r e ∗/
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/∗ S igna l Handlers and U t i l i t i e s ∗/

void on_sigpipe ( i n t s i gno )
{

f p r i n t f ( s tde r r , "upcased i s not read ing the pipe . \ n " ) ;
un l ink (msg . raw_text_fi fo ) ;
un l ink (msg . converted_text_f i fo ) ;
e x i t ( 1 ) ;

}

void on_signal ( i n t s i g )
{

c l o s e ( p u b l i c f i f o ) ;
i f ( convertedtext_fd != −1 )

c l o s e ( convertedtext_fd ) ;
i f ( rawtext_fd != −1 )

c l o s e ( rawtext_fd ) ;
un l ink (msg . converted_text_f i fo ) ;
un l ink (msg . raw_text_fi fo ) ;
e x i t ( 0 ) ;

}

void clean_up ( )
{

c l o s e ( p u b l i c f i f o ) ;
c l o s e ( rawtext_fd ) ;
un l ink (msg . converted_text_f i fo ) ;
un l ink (msg . raw_text_fi fo ) ;

}

/∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/
/∗ Main Program ∗/
/∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/

i n t main ( i n t argc , char ∗argv [ ] )
{

i n t strLength ; /∗ number o f bytes in t ext to convert ∗/
i n t nChunk ; /∗ index o f t ex t chunk to send to s e r v e r ∗/
i n t bytesRead ; /∗ bytes r e c e i v ed in read from se rv e r ∗/
s t a t i c char bu f f e r [PIPE_BUF ] ;
s t a t i c char t extbu f [BUFSIZ ] ;
s t r u c t s i g a c t i o n handler ;
i n t t r i e s ; /∗ f o r count ing t r i e s to open rawtext f i f o ∗/

/∗ Check whether the re i s a command l i n e argument , and i f so , use i t as
the input source . ∗/

i f ( argc > 1 ) {
i f ( NULL == ( input_srcp = fopen ( argv [ 1 ] , " r " ) ) ) {

pe r ro r ( argv [ 1 ] ) ;
e x i t ( 1 ) ;

}
}
e l s e

input_srcp = s td in ;
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/∗ I n i t i a l i z e the f i l e d e s c r i p t o r s f o r e r r o r handl ing ∗/
p u b l i c f i f o = −1;
convertedtext_fd = −1;
rawtext_fd = −1;

/∗ Reg i s t e r the on_signal handler to handle a l l s i g n a l s ∗/
handler . sa_handler = on_signal ;
i f ( ( ( s i g a c t i o n (SIGINT , &handler , NULL) ) == −1 ) | |

( ( s i g a c t i o n (SIGHUP, &handler , NULL) ) == −1 ) | |
( ( s i g a c t i o n (SIGQUIT, &handler , NULL) ) == −1) | |
( ( s i g a c t i o n (SIGTERM, &handler , NULL) ) == −1)

) {
pe r ro r (" s i g a c t i o n " ) ;
e x i t ( 1 ) ;

}

handler . sa_handler = on_sigpipe ;
i f ( s i g a c t i o n (SIGPIPE , &handler , NULL) == −1 ) {

pe r ro r (" s i g a c t i o n " ) ;
e x i t ( 1 ) ;

}

/∗ Create unique names f o r p r i va t e FIFOs us ing process−id ∗/
s p r i n t f (msg . converted_text_f i fo , "/tmp/ f i f o_rd%d" , getp id ( ) ) ;
s p r i n t f (msg . raw_text_fifo , "/tmp/ f i fo_wr%d" , getp id ( ) ) ;

/∗ Create the p r i va t e FIFOs ∗/
i f ( mkf i fo (msg . converted_text_f i fo , 0666) < 0 ) {

pe r ro r (msg . converted_text_f i fo ) ;
e x i t ( 1 ) ;

}

i f ( mkf i fo (msg . raw_text_fifo , 0666) < 0 ) {
pe r ro r (msg . raw_text_fi fo ) ;
e x i t ( 1 ) ;

}

/∗ Open the pub l i c FIFO f o r wr i t i ng ∗/
i f ( ( p u b l i c f i f o = open (PUBLIC, O_WRONLY | O_NDELAY) ) == −1) {

i f ( e r rno == ENXIO )
f p r i n t f ( s tde r r ,"%s " , startup_msg ) ;

e l s e
pe r ro r (PUBLIC) ;

e x i t ( 1 ) ;
}

/∗ Send a message to s e r v e r with names o f two FIFOs ∗/
wr i t e ( p u b l i c f i f o , ( char ∗) &msg , s i z e o f (msg ) ) ;

/∗ Try to open the raw text FIFO f o r wr i t i ng . After MAXTRIES
attempts we g ive up . ∗/

t r i e s = 0 ;
whi l e ( ( ( rawtext_fd = open (msg . raw_text_fifo ,
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O_WRONLY | O_NDELAY )) == −1 ) && ( t r i e s < MAXTRIES ) ) {
s l e e p ( 1 ) ;
t r i e s++;

}
i f ( t r i e s == MAXTRIES ) {

f p r i n t f ( s tde r r , "%s " , server_no_read_msg ) ;
clean_up ( ) ;
e x i t ( 1 ) ;

}

/∗ Get one l i n e o f input at a time from the input source ∗/
whi l e (1 ) {

memset ( textbuf , 0x0 , BUFSIZ ) ;
i f ( NULL == f g e t s ( textbuf , BUFSIZ , input_srcp ) )

break ;

strLength = s t r l e n ( t ex tbu f ) ;

/∗ Break input l i n e s in to chunks and send them one at a ∗/
/∗ time through the c l i e n t ' s wr i t e FIFO ∗/
f o r ( nChunk = 0 ; nChunk < strLength ; nChunk += PIPE_BUF−1 ) {

memset ( bu f f e r , 0x0 , PIPE_BUF) ;
strncpy ( bu f f e r , t ex tbu f+nChunk , PIPE_BUF−1);
bu f f e r [PIPE_BUF−1] = ' \ 0 ' ;
wr i t e ( rawtext_fd , bu f f e r , s t r l e n ( bu f f e r ) ) ;

/∗ Open the p r i va t e FIFO f o r read ing to get output o f command ∗/
/∗ from the s e r v e r . ∗/
i f ( ( convertedtext_fd = open (msg . converted_text_f i fo , O_RDONLY) )

== −1) {
pe r ro r (msg . converted_text_f i fo ) ;
e x i t ( 1 ) ;

}
memset ( bu f f e r , 0x0 , PIPE_BUF) ;
whi l e ( ( bytesRead= read ( convertedtext_fd , bu f f e r , PIPE_BUF) ) > 0)

wr i t e ( f i l e n o ( stdout ) , bu f f e r , bytesRead ) ;

c l o s e ( convertedtext_fd ) ;
convertedtext_fd = −1;

}
}
/∗ User quit , so c l o s e write−end o f pub l i c FIFO and de l e t e p r i va t e FIFO ∗/
c l o s e ( p u b l i c f i f o ) ;
c l o s e ( rawtext_fd ) ;
un l ink (msg . converted_text_f i fo ) ;
un l ink (msg . raw_text_fi fo ) ;
r e turn 0 ;

}

Comments.

• The order of events here is important, and in some cases critical. After the client creates its
private FIFOs without error, it opens the write-end of the server's public FIFO. It then sends
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a message containing the names of its private FIFOs. After sending the names of the private
FIFOs, it tries to open the write-end of its raw_text FIFO in non-blocking mode. This will
fail if the server has not opened the read-end yet. Assuming that the server is running, the
client will succeed in opening the raw_text FIFO. The server can open its read-end without
the write-end being open, so this works well. If we were to reverse the order and open the
raw_text FIFO before sending the server the message, we would need to open it in read-write
mode since the server is blocked on its read of the public FIFO and the two processes would
deadlock otherwise. But if we open the raw_text FIFO in read-write mode, then if the server
terminates unexpectedly and never reads the raw_text FIFO again, the client will not get
a SIGPIPE signal because the client itself has a read-end open, preventing the kernel from
generating the signal. The client would never be noti�ed that the server died.

• The client then keeps the write-end of its raw_text FIFO open for the duration of its main
loop.

• Within the loop, the client �rst writes to its raw_text FIFO, and then opens its converted_text
FIFO, after which, if all goes well, it reads and closes it again. Thus, it repeatedly opens and
closes this FIFO within the loop. We could just let it stay open for the duration of the loop,
but closing it and re-opening it we give ourselves the chance to detect in the open() call that
the server closed its write end of the FIFO unexpectedly.

• The error handling in the client is similar to what it was in the iterative server's client.
The code has redundant error checks such as guards to prevent closing a FIFO that is not
open (setting the �le descriptors to -1 unless they are in use), and closing descriptors before
unlinking the �les. On the other hand, it should really check the return values of the close()
calls. A clean_up() function simpli�es the error-handling, consolidating the cleaning up code.

8.4.4.2 The Concurrent Server

The server code is in the next listing.

Listing 8.16: upcased2.c

#inc lude "upcase2 . h"
#inc lude " sys /wait . h"

#de f i n e WARNING "Server could not a c c e s s c l i e n t FIFO\n"
#de f i n e MAXTRIES 5

in t dummyfifo ; /∗ f i l e d e s c r i p t o r to write−end o f PUBLIC ∗/
i n t c l i ent_convertedtext_fd ; /∗ f i l e d e s c r i p t o r to write−end o f PRIVATE ∗/
i n t c l ient_rawtext_fd ; /∗ f i l e d e s c r i p t o r to write−end o f PRIVATE ∗/
i n t p u b l i c f i f o ; /∗ f i l e d e s c r i p t o r to read−end o f PUBLIC ∗/
FILE∗ upcaselog_fp ; /∗ po in t s to l og f i l e f o r s e r v e r ∗/
pid_t server_pid ; /∗ to s t o r e se rver ' s p roce s s id ∗/

/∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/
/∗ S igna l Handler Prototypes ∗/
/∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/
/∗∗ on_sigpipe ( )
∗ This handles the SIGPIPE s i gna l s , j u s t wr i t e s to standard e r r o r .
∗/
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void on_sigpipe ( i n t s i gno ) ;

/∗∗ on_signal ( )
∗ This handles the i n t e r r up t s i g n a l s . I t c l o s e s open FIFOs and f i l e s ,
∗ removes the pub l i c FIFO and e x i t s .
∗/
void on_signal ( i n t s i g ) ;

/∗∗ on_s igch i ld ( )
∗ Because t h i s i s a concurrent se rver , the parent p roce s s has to c o l l e c t the
∗ e x i t s t a tu s o f each ch i l d . The SIGCHLD handler i s s u e s wait s and wr i t e s to
∗ the log f i l e .
∗/
void on_sigchld ( i n t s i gno ) ;

/∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/
/∗ Main Program ∗/
/∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/

i n t main ( i n t argc , char ∗argv [ ] )
{

i n t t r i e s ; /∗ num t r i e s to open p r i va t e FIFO ∗/
i n t nbytes ; /∗ number o f bytes read from pr i va t e FIFO ∗/
i n t i ;
s t r u c t message msg ; /∗ message s t r u c tu r e with FIFO names ∗/
s t r u c t s i g a c t i o n handler ; /∗ s i g a c t i o n f o r r e g i s t e r i n g hand le r s ∗/
char bu f f e r [PIPE_BUF ] ;
char l o g f i l e p a t h [PATH_MAX] ;
char ∗homepath ; /∗ path to home d i r e c t o r y ∗/
pid_t chi ld_pid ; /∗ pid o f each spawned ch i l d ∗/
/∗ Open the log f i l e in the user ' s home d i r e c t o r y f o r appending . ∗/
homepath = getenv ("HOME" ) ;
s p r i n t f ( l o g f i l e p a t h , "%s / . upcase_log " , homepath ) ;

i f ( NULL == ( upcaselog_fp = fopen ( l o g f i l e p a t h , "a ") ) ) {
pe r ro r ( l o g f i l e p a t h ) ;
e x i t ( 1 ) ;

}

/∗ Reg i s t e r the i n t e r r up t s i g n a l handler ∗/
handler . sa_handler = on_signal ;
handler . sa_f lags = SA_RESTART;
i f ( ( ( s i g a c t i o n (SIGINT , &handler , NULL) ) == −1 ) | |

( ( s i g a c t i o n (SIGHUP, &handler , NULL) ) == −1 ) | |
( ( s i g a c t i o n (SIGQUIT, &handler , NULL) ) == −1) | |
( ( s i g a c t i o n (SIGTERM, &handler , NULL) ) == −1)

) {
pe r ro r (" s i g a c t i o n " ) ;
e x i t ( 1 ) ;

}

handler . sa_handler = on_sigpipe ;
i f ( s i g a c t i o n (SIGPIPE , &handler , NULL) == −1 ) {

pe r ro r (" s i g a c t i o n " ) ;
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e x i t ( 1 ) ;
}

handler . sa_handler = on_sigchld ;
i f ( s i g a c t i o n (SIGCHLD, &handler , NULL) == −1 ) {

pe r ro r (" s i g a c t i o n " ) ;
e x i t ( 1 ) ;

}

/∗ Create pub l i c FIFO ∗/
i f ( mkf i fo (PUBLIC, 0666) < 0 ) {

i f ( e r rno != EEXIST )
per ro r (PUBLIC) ;

e l s e {
f p r i n t f ( s tde r r , "%s a l ready e x i s t s . De lete i t and r e s t a r t . \ n" ,

PUBLIC) ;
}
e x i t ( 1 ) ;

}

/∗ Open pub l i c FIFO f o r read ing and wr i t i ng so that i t does not get ∗/
/∗ EOF on the read−end whi l e wa i t ing f o r a c l i e n t to send data . ∗/
/∗ To prevent i t from hanging on the open , the write−end i s opened ∗/
/∗ in non−b lock ing mode . I t never wr i t e s to i t . ∗/
i f ( ( p u b l i c f i f o = open (PUBLIC, O_RDONLY) ) == −1 | |

( dummyfifo = open (PUBLIC, O_WRONLY | O_NDELAY )) == −1 ) {
pe r ro r (PUBLIC) ;
e x i t ( 1 ) ;

}

server_pid = getp id ( ) ;

/∗ Block wai t ing f o r a msg s t r u c tu r e from a c l i e n t ∗/
whi l e ( read ( p ub l i c f i f o , ( char ∗) &msg , s i z e o f (msg ) ) > 0 ) {

/∗ spawn ch i l d p roce s s to handle t h i s c l i e n t ∗/
i f ( 0 == fo rk ( ) ) {

/∗ We get the pid f o r message i d e n t i f i c a t i o n . ∗/
chi ld_pid = getp id ( ) ;

/∗ We use the value o f c l ient_rawtext_fd to de t e c t e r r o r s ∗/
c l ient_rawtext_fd = −1;

/∗ Cl i en t should have opened rawtext_fd f o r wr i t i ng be f o r e
sending the message s t ruc ture , so the f o l l ow i ng open should
succeed immediately . I f not i t b locks u n t i l the c l i e n t opens
i t . ∗/

i f ( ( c l ient_rawtext_fd = open (msg . raw_text_fifo , O_RDONLY))
== −1 ) {

f p r i n t f ( upcaselog_fp ,
" C l i en t did not have pipe open f o r wr i t i ng \n " ) ;

e x i t ( 1 ) ;
}
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/∗ Clear the bu f f e r used f o r read ing the c l i e n t ' s t ex t ∗/
memset ( bu f f e r , 0x0 , PIPE_BUF) ;

/∗
Attempt to read from c l i e n t ' s raw_text_fi fo . This read w i l l
b lock un t i l e i t h e r input i s a v a i l a b l e or i t r e c e i v e s an EOF.
An EOF i s d e l i v e r e d only when the c l i e n t c l o s e s the write−end
o f i t s raw_text_fi fo .

∗/
whi l e ( ( nbytes = read ( cl ient_rawtext_fd , bu f f e r ,

PIPE_BUF) ) > 0 ) {
/∗ Convert the text to uppercase ∗/
f o r ( i = 0 ; i < nbytes ; i++ )

i f ( i s l owe r ( bu f f e r [ i ] ) )
bu f f e r [ i ] = toupper ( bu f f e r [ i ] ) ;

/∗ Open c l i e n t ' s conver tedtext FIFO f o r wr i t i ng . To a l low f o r
de lays , we try 5 t imes . Here i t i s c r i t i c a l that the
O_NONBLOCK f l a g i s set , o therw i se i t w i l l hang in the loop
and we w i l l not be ab le to abandon the attempt i f the c l i e n t
has died . ∗/

t r i e s = 0 ;
whi l e ( ( ( c l i ent_convertedtext_fd = open (msg . converted_text_f i fo ,

O_WRONLY | O_NDELAY)) == −1 ) && ( t r i e s < MAXTRIES ) )
{

s l e e p ( 2 ) ;
t r i e s++;

}
i f ( t r i e s == MAXTRIES ) {

/∗ Fai l ed to open c l i e n t conver tedtext FIFO f o r wr i t i ng ∗/
f p r i n t f ( upcaselog_fp , "%d : " WARNING, chi ld_pid ) ;
e x i t ( 1 ) ;

}

/∗ Send converted text to c l i e n t in i t s r e a d f i f o ∗/
i f ( −1 == wr i t e ( c l i ent_convertedtext_fd , bu f f e r ,

nbytes ) ) {
i f ( e r rno == EPIPE )

e x i t ( 1 ) ;
}
/∗ See the notes below . ∗/
c l o s e ( c l i ent_conver tedtext_fd ) ;
c l i ent_conver tedtext_fd = −1;

/∗ Clear the bu f f e r used f o r read ing the c l i e n t ' s t ex t ∗/
memset ( bu f f e r , 0x0 , PIPE_BUF) ;

}
e x i t ( 0 ) ;

}
}
re turn 0 ;

}

The signal handlers for the server are below. The SIGCHLD handler uses waitpid() to wait for all
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children, and it remains in its loop as long as there is a zombie to be collected. The WNOHANG �ag is
used to prevent it from blocking in the waitpid() code. This way, if multiple SIGCHLD signals arrive
while it is in the handler, the children whose deaths caused them will be collected. (Remember that
signals may not be reliably handled on all systems, and even though in a POSIX compliant system,
each SIGCHLD will be delivered if we set SA_NODEFER, it is safer to collect them in this loop.)

void on_sigchld ( i n t s i gno )
{

pid_t pid ;
i n t s t a tu s ;

whi l e ( ( pid = waitp id (−1 , &status , WNOHANG) ) > 0 )
f p r i n t f ( upcaselog_fp , "Child p roce s s %d terminated . \ n" , pid ) ;

f f l u s h ( upcaselog_fp ) ;
r e turn ;

}

void on_sigpipe ( i n t s i gno )
{

f p r i n t f ( s tde r r , " C l i en t i s not read ing the pipe . \ n " ) ;
}

void on_signal ( i n t s i g )
{

c l o s e ( p u b l i c f i f o ) ;
c l o s e ( dummyfifo ) ;
i f ( c l i e n t r e a d f i f o != −1 )

c l o s e ( c l i e n t r e a d f i f o ) ;
i f ( c l i e n t w r i t e f i f o != −1)

c l o s e ( c l i e n t w r i t e f i f o ) ;
i f ( ge tp id ( ) == server_pid )

un l ink (PUBLIC) ;
f c l o s e ( upcase log ) ;
e x i t ( 0 ) ;

}

Comments.

• All of the work is performed by the child processes. Each child begins by trying to open the
client's raw_text FIFO for reading. If successful, it enters a loop in which it repeatedly reads,
converts the text to uppercase, opens the client's converted_text FIFO, writes the converted
text to it, and closes it.

• Since the client may not have the converted_text open for reading for any number of reasons
� it might have been terminated � the child process tries the open() a �xed number of times
before it gives up. It uses the same technique as the iterative server did, using a non-blocking
open().

• When the child process does successfully open the FIFO, it still checks whether the write()
failed, since anything can happen in between, and if so, the child exits. Otherwise, it writes
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the data, closes its end of the FIFO and waits to read more text from the client. When it
receives the end-of-�le, it exits.

• You may wonder why the server repeatedly opens and closes the write end of the client's
converted_text FIFO. This is the only way that the client will receive an EOF in its read().
If the client does not get the EOF, then it will remain blocked in its read of the converted_text
FIFO, and will not be able to send any more data to the server. This would put the client
and this server subprocess into deadlock, because this process would go back to the read()

of the client's raw_text FIFO and block waiting for data from the client, which would never
arrive. Therefore, although it seems ine�cient to open and close this FIFO each time, it is
the simplest means of preventing deadlock.

• The signal handler checks whether the parent process is executing it. If the parent has been
signaled, then it should remove the public FIFO, otherwise not. We do not want child processes
to remove this FIFO!

• If you are at all familiar with sockets, you might have noticed that the design of this server
is easily converted to one that uses sockets. We will refer back to this example when we take
up sockets.

8.5 Daemon Processes

As was mentioned earlier, a daemon is a process that runs in the background, has no controlling
terminal. In addition, daemons set their working directory to "/". Usually daemons are started by
system initialization scripts at boot-time. If you have written a server and want to turn it into a
full-�edged daemon, it is not enough to put it into the background. This will only tell the shell not
to wait for it; it will still have a control terminal and will still be killed by any signals from that
terminal.

Some daemons are started by other programs. For example, some network daemons are started by
the inetd or xinetd superserver. Some are started by programs such as the crond daemon, which
runs scheduled jobs. Some are invoked at the user terminal. For example, sometimes the printer
daemon is stopped and restarted at the terminal by the superuser.

Because daemons do not have a controlling terminal, they cannot write messages to standard output
or to standard error. Instead they can use a system logging function named syslog(), which is
a client that talks to the syslogd daemon, which write messages to speci�c log �les. The glibc

version of this function is klogctl(). Later we will look at an example of how it can be used. A
server should be designed to turn itself into a daemon. In other words, when the server is run, it
should take all of the steps necessary to become a daemon, which include:

1. Putting itself in the background. It does this by forking a new process and executing its
code as the child and having the parent execute exit(). When the parent exits, the shell
that started it collects its exit status and thinks the invoked program has terminated (which
it has.) The child, which is now the server, is no longer in the foreground, but it is still
controlled by the terminal.

2. Making itself a session leader. Recall that a process can detach itself from a terminal by
becoming a session leader, but only processes that are neither session leaders nor process
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group leaders can do this. Since the server is now a child of the original process, it is neither,
so it can call setsid(), which makes it a session leader of a new session and a group leader
of a new process group.

3. Registering its intent to ignore SIGHUP.

4. Forking another child process, terminating in the parent again, and letting the new child,
which is the grandchild of the original process, execute the server code. In some versions of
UNIX, when a session leader opens a terminal device (which it may want to do sometimes),
that terminal is automatically made the control terminal for the process. By running as the
child of a session leader, the server is now immune from this eventuality. In Linux, a process
can set the O_NOCTTY �ag on open() to prevent this. The reason for ignoring SIGHUP is that
when a session leader terminates, all of its children are sent a SIGHUP, which would otherwise
kill them. Since the parent is a session leader, the child must ignore SIGHUP.

5. Changing the working directory to "/".

6. Clearing the umask.

7. Closing any open �le descriptors.

A procedure for doing all of these steps, based on one from [Stevens], is below.

Listing 8.17: daemon_init.c

void daemon_init ( const char ∗pname , i n t f a c i l i t y )
{

i n t i ;
pid_t pid ;

i f ( ( pid = fo rk ( ) ) == −1) {
pe r ro r (" f o rk " ) ;
e x i t ( 1 ) ;

}
e l s e i f ( pid != 0)

e x i t ( 0 ) ; /∗ parent te rminates ∗/

/∗ Child cont inues from here ∗/
/∗ Detach i t s e l f and make i t s e l f a s e s s s i o n l e ade r ∗/
s e t s i d ( ) ;

/∗ Ignore SIGHUP ∗/
s i g n a l (SIGHUP, SIG_IGN) ;

i f ( ( pid = fo rk ( ) ) == −1) {
pe r ro r (" f o rk " ) ;
e x i t ( 1 ) ;

}
e l s e i f ( pid != 0 )

e x i t ( 0 ) ; /∗ F i r s t c h i l d te rminates ∗/

/∗ Grandchild cont inues from here ∗/
chd i r ( " / " ) ; /∗ change working d i r e c t o r y ∗/
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umask ( 0 ) ; /∗ c l e a r our f i l e mode c r e a t i on mask ∗/

/∗ Close a l l open f i l e d e s c r i p t o r s ∗/
f o r ( i = 0 ; i < MAXFD; i++)

c l o s e ( i ) ;

/∗ Star t l ogg ing with sy s l o g ( ) ∗/
openlog (pname , LOG_PID, f a c i l i t y ) ;

}

The �nal version of the upcase server incorporates this function and turns itself into a daemon.
The only changes required are to include this function into the code and insert the line

daemon_init(argv[0], 0);

before the �rst executable statement.

8.6 Multiplexed I/O With select

Imagine the situation in which a process has multiple sources of input open for reading, such as
a set of pipes as well as the terminal. Suppose the process has to respond to commands typed at
the terminal as well as display messages that are available in the pipes. This is what is meant by
multiplexed input : when a process has to obtain input available from multiple sources simultaneously.
One solution would be to make all of the reads non-blocking and to continually poll each descriptor
to see if there is data ready for reading on it. Polling, though, has many drawbacks, as we have
seen, the most important of which is that it is wasteful of the CPU resource.

Another alternative would be to use asynchronous reads on each descriptor. This is also possible,
but quite messy to code, and has the drawback that it relies on signals which may not be handled
properly or reliably.

It is for these reasons that the select() system call was developed6. Basically, the select() call
allows a process to listen to multiple descriptors at once and to be noti�ed when any of them
have pending input or output. Roughly put, select() is given a set of masks of �le descriptors,
representing I/O devices or �les in which the process is interested. When input or output is ready
on any of them, the appropriate bits in these masks are set. The process can check the masks to
see which I/O is ready and can then read or write the ready descriptors. The select() call works
with any �le descriptor, so that it can be used with �les, pipes, FIFOs, devices, and sockets.

select() is fairly complex:

/* According to POSIX.1-2001 */

#include <sys/select.h>

/* According to earlier standards */

6There is a similar call named poll().
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#include <sys/time.h>

#include <sys/types.h>

#include <unistd.h>

int select(int nfds, fd_set *readfds, fd_set *writefds,

fd_set *exceptfds, struct timeval *timeout);

The parameters have the following meanings:

ndfs The number of �le descriptors of potential interest.

readfds The address of a �le descriptor mask indicating which �le descriptors the process is
interested in reading.

writefds The address of a �le descriptor mask indicating which �le descriptors the process is
interested in writing.

exceptfds The address of a �le descriptor mask indicating which �le descriptors the process is
interested in checking for out-of-band data7. (Out-of-band messages or data should be
thought of as exceptions or error conditions concerning any of the descriptors in the
read or write descriptor masks.)

timeout The address of a timeval structure containing the amount of time to wait before com-
pleting the select() call. If timeout is NULL, it means wait forever, i.e., block until at
least one descriptor is ready. If it is zero, it means return immediately with the status of
all descriptors in the above sets. If it is non-zero, it will either wait the speci�ed amount
of time or return before if one of the speci�ed descriptors is ready.

The return value of the select() call is the number of descriptors that are ready, or -1 if there was
an error.

The fd_set data type is not necessarily a scalar. It is usually an array of long integers. If you
do a little digging you will discover a constant, FD_SETSIZE, that de�nes the maximum number of
descriptors in a fd_set, which is usually on the order of 1024 or more. Fortunately, you do not
need to know how it is de�ned to use it, since there are macros and/or functions in the library for
manipulating fd_set objects:

This turns o� the bit for descriptor fd in the mask pointed to by fdset:

void FD_CLR(int fd, fd_set *fdset);

This turns on the bit for descriptor fd in the mask pointed to by fdset:

void FD_SET(int fd, fd_set *fdset);

This sets all bits to zero in the mask pointed to by fdset:

7Out-of-band refers to data that is transferred in a separate communication channel. Out-of-band implies that
the data does not arrive in sequence with the rest of the data, but in a parallel channel. It is used for transmitting
error or control messages.
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void FD_ZERO(fd_set *fdset);

This checks whether the bit for descriptor fd is set in the mask pointed to by fdset:

int FD_ISSET(int fd, fd_set *set);

The value of the �rst parameter, ndfs, must be set to the value of the largest �le descriptor +
1, since the �le descriptor array is 0-based. The reason that the �rst argument is the maximum
number of descriptors of interest is for e�ciency. By supplying this number to the kernel, it saves
the kernel the work of having to copy parts of the descriptor mask that are not needed. To give
you an idea of how this call is used in a simple case, if we wanted to read from two di�erent open
�le descriptors, we would use something like

#include <sys/time.h>

#include <sys/types.h>

...

int fd1, fd2, maxfd;

fd_set readset, tempset;

fd1 = open("file1", O_RDONLY); /* open file1 */

fd2 = open("file2", O_RDONLY); /* open file2*/

maxfd = fd1 > fd2 ? fd1+1 : fd2+1;

FD_ZERO(&readset); /* clear the bits in the mask */

FD_SET(fd1, &readset); /* set the bit for fd1 (file1) */

FD_SET(fd2, &readset); /* set the bit for fd2 (file2) */

tempset = readset; /* copy into tempset */

while ( select(maxfd, &tempset, NULL, NULL, NULL) > 0) {

if ( FD_ISSET(fd1, &tempset) ) {

/* read from descriptor fd1 */

}

if ( FD_ISSET(fd2, &tempset) ) {

/* read from descriptor fd2 */

}

tempset = readset;

}

Notes.

• Although we are interested only in �le descriptors fd1 and fd2, the proper way to use select
is to specify the full range of descriptors from 0 to the maximum of fd1 and fd2. Since it is
a zero-based array, this value is max(fd1, fd2) + 1.

• Because the return value of select() is positive as long as there is data to be read on either
of fd1 or fd2, the loop will continue until we get end-of-�le on both �les.
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• The way that select() works, it resets the �le descriptor masks to re�ect the status of
the descriptors of interest. In other words, the masks change after each call to select().
Therefore, you need to keep a copy of the original mask, and before each call, reset the masks
to their original states.

• The masks are not modi�ed if the select() call returned with an error.

• Inside the loop, you use the FD_ISSET() function to test each descriptor in which you expressed
interest.

• It is a very common mistake to forget to add 1 to the largest descriptor in the �rst argument.
It is also a common mistake to forget to reset the mask between each successive call.

We will put these ideas to work in a slightly more interesting example, borrowed from [Haviland et
al].

Listing 8.18: selectdemo.c

#inc lude <s td i o . h>
#inc lude <s t d l i b . h>
#inc lude <uni s td . h>
#inc lude <s t r i n g . h>
#inc lude <l im i t s . h>
#inc lude <errno . h>
#inc lude <sys / time . h>
#inc lude <sys /wait . h>

#de f i n e MSGSIZE 6

char msg1 [ ] = "He l lo " ;
char msg2 [ ] = "Bye ! ! " ;

void parent ( i n t p i p e s e t [ 3 ] [ 2 ] ) ;
i n t c h i l d ( i n t fd [ 2 ] ) ;

/∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/
/∗ Main Program ∗/
/∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/

i n t main ( i n t argc , char ∗ argv [ ] )
{

i n t fd [ 3 ] [ 2 ] ; /∗ array o f three p ipe s ∗/
i n t i ;

f o r ( i = 0 ; i < 3 ; i++ ) {
/∗ c r e a t e three p ipe s ∗/
i f ( p ipe ( fd [ i ] ) == −1 ) {

pe r ro r (" pipe " ) ;
e x i t ( 1 ) ;

}

/∗ f o rk ch i l d r en ∗/
switch ( f o rk ( ) ) {
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case −1 :
f p r i n t f ( s tde r r , " f o rk f a i l e d . \ n " ) ;
e x i t ( 1 ) ;

case 0 :
c h i l d ( fd [ i ] ) ;

}
}
parent ( fd ) ;
r e turn 0 ;

}

/∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/
/∗ Parent and Child ∗/
/∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/

void parent ( i n t p i p e s e t [ 3 ] [ 2 ] )
{

char buf [MSGSIZE ] ;
char l i n e [ 8 0 ] ;
fd_set i n i t i a l , copy ;
i n t i , nbytes ;

f o r ( i = 0 ; i < 3 ; i++)
c l o s e ( p i p e s e t [ i ] [ 1 ] ) ;

/∗ c r e a t e d e s c r i p t o r mask ∗/
FD_ZERO(& i n i t i a l ) ;
FD_SET(0 , &i n i t i a l ) ; /∗ add standard input ∗/

f o r ( i = 0 ; i < 3 ; i++)
FD_SET( p ip e s e t [ i ] [ 0 ] , &i n i t i a l ) ; /∗ add read end o f each pipe ∗/

copy = i n i t i a l ; /∗ make a copy ∗/
whi l e ( s e l e c t ( p i p e s e t [ 2 ] [ 0 ]+1 , &copy , NULL, NULL, NULL ) > 0 ) {

/∗ check standard input f i r s t ∗/
i f ( FD_ISSET(0 , &copy ) ) {

p r i n t f ("From standard input : " ) ;
nbytes = read (0 , l i n e , 8 1 ) ;
l i n e [ nbytes ] = ' \ 0 ' ;
p r i n t f ("%s " , l i n e ) ;

}

/∗ check the pipe from each ch i l d ∗/
f o r ( i = 0 ; i < 3 ; i++ ) {

i f ( FD_ISSET( p ip e s e t [ i ] [ 0 ] , &copy ) ) {
/∗ i t i s ready to read ∗/
i f ( read ( p i p e s e t [ i ] [ 0 ] , buf , MSGSIZE) > 0 ) {

p r i n t f ("Message from ch i l d %d:%s \n" , i , buf ) ;
}

}
}
i f ( waitp id (−1 , NULL, WNOHANG) == −1 )

re turn ;
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copy = i n i t i a l ;
}

}

i n t ch i l d ( i n t fd [ 2 ] )
{

i n t count ;
c l o s e ( fd [ 0 ] ) ;

f o r ( count = 0 ; count < 10 ; count ++) {
wr i t e ( fd [ 1 ] , msg1 , MSGSIZE) ;
s l e e p (1 + getp id ( ) % 6 ) ;

}

wr i t e ( fd [ 1 ] , msg2 , MSGSIZE) ;
e x i t ( 0 ) ;

}

Comments.

• Each child writes a small string to the write-end of its pipe and then sleeps a bit so that the
output does not �ood the screen too quickly.

• The parent uses the select() call to query standard input and the read-ends of each child's
pipe. The user can type a string on the keyboard and the parent will detect that standard
input is ready. Within the while-loop each descriptor is tested, and if it is set, the read()

can be done because input is waiting. This way the parent never holds up any child that is
waiting for its message to be read.

There will be another, more interesting use of select() after the introduction to sockets.

8.7 Summary

Related processes can use unnamed pipes to exchange data. Unrelated processes running on the
same host can use named pipes to exchange data. Unlike unnamed pipes, named pipes are entities
in the �le system. Both named and unnamed pipes are guaranteed by the kernel to be read and
written atomically provide that the amount of data written is at most PIPE_BUF bytes.

Servers can be iterative or concurrent. A concurrent server creates a child process to handle every
distinct client. An iterative server handles each client within a single process, sharing its time among
them. Concurrent servers provide more reliable response time to the clients.

When a process has to handle I/O from multiple �le descriptors, it can multiplex the I/O by means
of the select() system call. This is one alternative of many, but it provides a relatively simple
solution. Other alternatives include asynchronous I/O and the poll() call.
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Chapter 9 Interprocess Communication, Part II

Concepts Covered

Sockets
API: dup, dup2, fpathconf, gethostbyname, mk-

�fo, mknod, pipe, pclose, popen, select, setsid,
shutdown, syslog, tee.

9.1 Sockets

Pipes are a good segue into sockets. Sockets are used like pipes in many ways but, unlike pipes,
they can be used across networks. Sockets allow unrelated processes on di�erent computers on a
network to exchange data through a channel, using ordinary read() and write() system calls. We
call this remote interprocess communication. Formally, a socket is an endpoint of communication
between processes. Although sockets are used primarily across networks, they can also be used on
a single host in place of pipes.

9.1.1 Background

The development of sockets derives from the Berkeley distributions of UNIX in the early 1980's,
having �rst appeared in 4.2BSD. In 1987, AT&T developed a di�erent API for remote interprocess
communication in their System V Release 3 (SVR3), called the Transport Level Interface (TLI ).
The Transport Layer Interface was the System V answer to the BSD sockets programming interface.
TLI was later standardized as XTI, the X/Open Transport Interface.

In many ways, TLI has advantages over sockets. TLI and XTI were widely used and preferred over
the POSIX Sockets API. They are still supported in SVR4-derived operating systems and systems
such as Solaris and Mac OS. Today, the UNIX 03 Single UNIX Speci�cation declares POSIX Sockets
as the preferred API for new transport protocols.

Because sockets can be accessed like �les and work the same whether on a local machine or across a
network, programming them is easier than TLI programming, which requires many more structures.
For this reason we focus on sockets here. In order to understand how to use sockets, you need to
know the basics of networks.

9.1.2 Connections

There are two ways in which sockets can be used, corresponding roughly to the di�erence be-
tween making a telephone call and having an email conversation with someone. When you make a
telephone call to someone, you have a conversation over a dedicated communication channel, the
telephone line, and you stay connected with the person on the other end for the duration of the call.
In socket parlance this is called a connection oriented model. When you have an email conversation
with someone, the messages are sent to the other person across di�erent paths, and there is no
dedicated connection. In fact there is no guarantee that the messages that you send will arrive in
the order you send them, and the only way for the person who receives them to know who sent

This work is copyrighted by Stewart Weiss and licensed under the Creative Commons Attribution-

ShareAlike 4.0 International License.
1

http://creativecommons.org/licenses/by-sa/4.0/ 
http://creativecommons.org/licenses/by-sa/4.0/ 


UNIX Lecture Notes
Chapter 9 Interprocess Communication, Part II

Prof. Stewart Weiss

them is for them to have a return address in their message header. In socket parlance this is the
connection-less model.

The connection oriented model uses the Transmission Control Protocol, known as TCP. The
connection-less model uses the User Datagram Protocol, or UDP. There are many important dif-
ferences between TCP and UDP, or equivalently, between connection oriented and connection-less
models, but we will not go into them at length here. The most important di�erences are that TCP
provides a reliable, full-duplex, sequenced channel with �ow control. (Flow control is the process of
managing the rate of data transmission so that senders and receivers can operate at di�erent speeds
without loss of data or retransmissions.) UDP can be full-duplex but it is not reliable (no guarantee
of packet delivery), not sequenced (packets can arrive in di�erent order than they were sent), and
has no �ow control (a sender can send faster than the receiver can receive).

9.1.3 Communication Basics

In order to understand how to program with sockets, you need to have a basic understanding of
the important concepts that underlie their use. This includes network addresses, communication
domains (not internet domains), protocol families, and socket types.

Network Addresses, Ports, and Socket Addresses

For two processes to communicate, they need to know each other's network addresses. At the level
of socket programming, a network address consists of two parts: an internet (IP) address and a port
number. The IP address, if 32 bits, consists of four 8-bit octets, and is expressed in the standard
dot-notation as in "146.95.2.131". These 32-bit address are known as IPv4 addresses. In 1995,
a 128-bit address was developed, known as IPv6. Some computers have multiple network interface
cards and therefore may have multiple internet addresses. It used to be the case that internet
addresses had a speci�c structure and were divided into address classes. That is no longer the case.
They are now just �at addresses.

The kernel does not represent IP addresses as strings of octets � that would be ine�cient. It uses
the in_addr_t data type, de�ned in <arpa/inet.h>, to represent an IP address. However, we will
see that there are functions to convert from one format to the other.

Each server on a machine has to have a speci�c port that to use. There are many analogies that we
could use, but if you think of an IP address as specifying a speci�c company's main telephone line,
then the port is like a telephone extension within the company. The server uses a speci�c port for
its services and the clients have to know the port number in order to contact the server. A port is
a 16-bit integer.

Certain port numbers are well-known and reserved by particular applications and services. For
example, port 7 is for echo servers, 13 for daytime servers, 22 for SSH, 25 for SMTP, and 80 for
HTTP. Port numbers from 1 to 1023 are the well-known ports. To see a list of the port numbers in
use, take a look at the �le /etc/services.

Ports 1024 through 49151 are registered ports. These numbers are not controlled and a service can
use one if it is not already in use.

Ports 49152 through 65536 cannot be used. They are called ephemeral ports, which are assigned
automatically by TCP or UDP for client use.
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The lsof command can be used to view the ports that are currently open. The command is actually
more general than this � it can be used to view all open �les. To see a list of open ports, use either

lsof -Pnl +M -i4

(the i4 restricts to IPv4), or

netstat -lptu

to see listening sockets for both TCP and UDP. Read the man pages for lsof and netstat to learn
more about these commands.

A socket address is a combination of a network address and a port.

Domains and Protocol Families

In order for two processes to communicate, they must use the same protocol. Part of the procedure
for establishing communication involves specifying the communication domain and the protocol
family. For example, the domain AF_INET speci�es that the protocol family is the IPV4 set of
protocols. Within that family there may be a choice of a speci�c protocol, such as TCP or UDP.
The domain might instead be AF_UNIX, which speci�es that the protocol family is restricted to the
local machine. In this case there will not be a choice of protocol. When a socket is created, the
domain and protocol are speci�ed as two of the arguments to the function. The socket (2) man
page lists various domains together with the man pages that contain possible protocols that can be
used with them.

Socket Types

When a socket is created, its type must be speci�ed. The type corresponds to the type of connec-
tion. A connection oriented communication uses stream sockets, of type SOCK_STREAM, whereas a
connection-less communication uses datagram sockets, of type SOCK_DGRAM. There are also raw sock-
ets, with type SOCK_RAW. Linux provides several other socket types, and POSIX requires support
for the type, SOCK_SEQPACKET.

9.1.4 The Socket Interface1

A socket is identi�ed within the operating system by an identi�er. The socket() system call creates
a socket and returns a �le descriptor that represents it. We do not have to know how a socket is
implemented to use it, however, you should think of a socket as something like the �le structure that
represents a �le in UNIX. It is an internal structure in the kernel, accessed through a �le descriptor,
representing one end of a communication channel that has a speci�c network address, family (also
called domain), port number, and socket type.

The socket() function creates what is called an unnamed socket:

1This section must be updated. Some of the methods described are now obsolete.
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#include <sys/socket.h>

int socket( int domain, int type, int protocol);

The domain is an integer specifying the address family and protocol. These families are de�ned in
<sys/socket.h>. Some of the common domain values are

Name Purpose

AF_UNIX Local communication

AF_INET IPv4 Internet protocols

AF_INET6 IPv6 Internet protocols

The type can be one of SOCK_STREAM, SOCK_DGRAM, or SOCK_RAW or several others. The SOCK_STREAM
type is the connection model, with full-duplex, reliable, sequenced transmissions.

The protocol can be used to specify a particular protocol in the case that there is more than one
choice for the particular type of socket and address family. Setting it to 0 ensures that the kernel
will pick the appropriate protocol.

The return value of socket() is a �le descriptor that can be used to read or write the socket. As
an example,

sockfd = socket(AF_INET, SOCK_STREAM, 0);

creates a connection-oriented socket that can be used for communication over the internet.

9.1.5 Setting Up a Connection Oriented Service

We will go through the steps that a server must take in a connection-oriented model. The basic
steps that a server must take are below. Details on how to use the speci�c functions will follow.

1. Create a socket using socket(). This creates an endpoint of communication, but does not
associate any particular internet address or port number to it.

2. Bind the socket to a local protocol address using bind(). This gives a "name" to the socket.

3. The socket created so far is an active socket, one that can connect to other sockets actively,
like dialing another telephone number. Since this is the server, the purpose of this socket is not
to "dial-out" but to listen for incoming calls. Therefore, the server must now call listen()
to tell the kernel that all it really wants to do is listen for incoming messages and set a limit
on its queue size. This call will basically put the socket into the LISTEN state in the TCP
protocol.

After listen() has returned, two queues have been created for the server. One queue stores
incoming connection requests that have not yet completed the TCP handshake protocol. The
other queue stores incoming requests that have completed the handshake. These requests are
ready to be serviced.
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4. Enter a loop in which it repeatedly accepts new connections and processes them. It can accept
a new connection by calling accept(). The accept() function removes the request at the
front of the completed connection queue and creates a second socket that the server can use
for talking with this client. The return value of accept() is a �le descriptor that represents
this socket. The original socket continues to exist. The idea is that the original socket is
just for listening, not talking to clients. In fact it is called the listening socket, and the new
socket is called the connected socket. When the connection is closed, this connected socket is
removed.

That is the essence of the server's tasks. Now what remains is to see how to program this.

9.1.6 Programming a Connection Oriented Server

We have already seen how the socket() call works. The step of binding a local protocol address
to the socket is carried out with bind(), but before we look at bind() we need to see how these
addresses are represented. A generic socket address is de�ned by the sockaddr structure de�ned in
<sys/socket.h>:

struct sockaddr {

sa_family_t sa_family; /* address family */

char sa_data[]; /* socket address */

};

This is a generic socket address structure because it is not speci�c to any one address family. When
you call bind(), you will be specifying a particular family, such as PF_INET or PF_UNIX. For each
of these there is a di�erent form of socket address structure. The address structure for PF_INET,
de�ned in <netinet/in.h>, would be

struct sockaddr_in {

sa_family_t sin_family; /* internet address family */

in_port_t sin_port; /* port number */

struct in_addr sin_addr; /* IP address */

unsigned char sin_zero[8]; /* padding */

};

The bind() system call takes the socket �le descriptor returned by socket() and an address struc-
ture like the one above, and "binds" them together to form the end of a socket that can now be
used by processes living somewhere in the internet to �nd this server:

#include <sys/types.h>

#include <sys/socket.h>

int bind(int sockfd, const struct sockaddr *address,

socklen_t addrlen);

Putting these few steps together, we might start out with the following code:
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int listenfd;

int size = sizeof(struct sockaddr_in);

struct sockaddr_in server = {PF_INET, 25555, INADDR_ANY};

if ( (listenfd = socket(PF_INET, SOCK_STREAM, 0)) == -1 ) {

perror("socket call failed");

exit(1);

}

if ( bind( listenfd, ( struct sockaddr *) &server, size ) == -1 ) {

perror(" bind call failed");

exit(1);

}

The sockaddr_in struct is initialized to use the IPv4 protocol family with a port of 25555, large
enough to be safe for our purposes, and INADDR_ANY as the local IP address. Specifying this constant
means that if there is more than one IP address for this host, any will do. The bind call is given
the listenfd descriptor, the address of this struct, and its size.

The next step is to call listen(), which is de�ned by

#include <sys/socket.h>

int listen(int sockfd, int queue_size);

The �rst argument is the descriptor for the already bound socket, and the second is the maximum
size of the queue of pending (incomplete) connections.

The accept() call is de�ned as follows:

#include <sys/types.h>

#include <sys/socket.h>

int accept(int sockfd, struct sockaddr *addr,

socklen_t *addrlen);

The accept() call expects the socket descriptor of a socket that has been created with socket(),
bound to a local address with bind(), and set to listen with listen(). The second argument, if not
NULL, is a pointer to a generic socket address structure, and the third is the address of a variable that
stores its length in bytes. After the call, the address will be �lled with the client's socket address,
and the size will re�ect the true size of the client's speci�c socket address struct. The return value
will be the descriptor of a connected socket. The accept() will block waiting for a connection.

We can put all of this together in a simple concurrent server that, yes, once again, does lower to
upper case conversion. This time it will handle just one character at a time. We will move on to a
more interesting task afterwards. This code is based on an example from [Haviland et al]. It forks
a child process to handle each incoming connection. The client and the server will share a common
header �le, sockdemo1.h, which is displayed �rst, followed by the server code.
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L i s t i n g sockdemo1 . h

#inc lude <s td i o . h>
#inc lude <uni s td . h>
#inc lude <s t r i n g . h>
#inc lude <s t d l i b . h>
#inc lude <sys / types . h>
#inc lude <sys / socket . h>
#inc lude <ne t i n e t / in . h>
#inc lude <netdb . h>
#inc lude <ctype . h>
#inc lude <s i g n a l . h>
#inc lude <f c n t l . h>
#inc lude <errno . h>

#de f i n e SOCKADDR ( s t r u c t sockaddr ∗)
#de f i n e SIZE s i z e o f ( s t r u c t sockaddr_in )
#de f i n e DEFAULT_HOST " l o c a l h o s t "
#de f i n e PORT 25555
#de f i n e ERROR_EXIT( _mssg , _num) pe r ro r (_mssg ) ; e x i t (_num) ;
#de f i n e MAXLINE 4096

Comments.

• (Perhaps out of laziness, I �nally wrote a little macro (ERROR_EXIT) so that I do not have
to keep typing the perror(); exit() combination on failures of system calls. It is included
in this header �le. Rather than making it a function, I made it a macro so that the code is
faster.)

• The SOCKADDR macro reduces typing.

• The server and client are compiled with the same header so that the port number is hard-
coded into each. The number 25555 appears to be unused on all of the machines I have run
this example on.

The server code follows.

L i s t i n g sockdemo1_server . c

#inc lude "sockdemo1 . h"
#inc lude <sys /wait . h>

#de f i n e LISTEN_QUEUE_SIZE 5

/∗ The f o l l ow i n g typede f s i m p l i f i e s the func t i on d e f i n i t i o n a f t e r i t ∗/
typede f void S ig func ( i n t ) ; /∗ f o r s i g n a l hand le r s ∗/

/∗ ove r r i d e e x i s t i n g s i g n a l func t i on to handle non−BSD systems ∗/
S ig func ∗ S igna l ( i n t s igno , S ig func ∗ func ) ;
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/∗ S igna l hand le r s ∗/
void on_sigpipe ( i n t s i gno ) ;

void on_sigchld ( i n t s i gno ) ;

/∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/

/∗ This needs to be g l oba l because the s i g n a l handler has to a c c e s s i t ∗/
i n t connect i on fd ;

/∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/
i n t main ( i n t argc , char ∗ argv [ ] )
{

i n t l i s t e n f d ; /∗ holds the f i l e d e s c r i p t o r f o r the socket ∗/
char c ; /∗ t h i s example i s a ToUpcase s e r v e r ∗/

/∗ A sockaddr_in s t r u c t i s a s t r u c t that s t o r e s address and ∗/
/∗ port in fo rmat ion f o r a socke t f o r network communications . ∗/
/∗ The sockaddr_in IS the socke t . In t h i s case i t i s an In t e rn e t ∗/
/∗ socke t (AF_INET) us ing port 7000 , and accept ing connect i ons ∗/
/∗ on any network i n t e r f a c e (INADDR_ANY) j u s t in case the host ∗/
/∗ has mu l t ip l e i n t e r f a c e s . ∗/

s t r u c t sockaddr_in s e r v e r = { AF_INET, PORT, { INADDR_ANY } } ;

/∗ The f o l l ow i n g 2 l i n e s are here to dea l with s i g n a l s
that the s e r v e r can r e c e i v e . the f i r s t i s SIGPIPE . I f
the s e r v e r t r i e s to send data "down the socket " but the
proce s s on the other end has died , or the connect ion was
broken f o r some other reason , the s e r v e r w i l l r e c e i v e a SIGPIPE

s i g n a l . To keep i t a l i v e , i t handles the s i g n a l .

The s e r v e r w i l l a l s o r e c e i v e SIGCHLD s i g n a l s when i t s ch i l d r en
terminate .

∗/

S igna l (SIGCHLD, on_sigchld ) ;
S i gna l (SIGPIPE , on_sigpipe ) ;

/∗ The socket ( ) c a l l c r e a t e s an endpoint o f communication .
In the c a l l below , the endpoint i s f o r an In t e rn e t socket
(PF_INET) o f the connect ion−o r i en t ed type ( i . e . , TCP rathe r
than UDP) . The th i rd parameter i s the p ro to co l . A 0 t e l l s
the compi ler to use the d e f au l t p ro to co l f o r the SOCK_STREAM,
which i s TCP/IP . The socke t ( ) c a l l r e tu rn s a f i l e d e s c r i p t o r
that the proce s s can use f o r l i s t e n i n g to the socket .

∗/

i f ( ( l i s t e n f d = socket (PF_INET, SOCK_STREAM, 0) ) == −1 ) {
ERROR_EXIT(" socket c a l l f a i l e d " ,1)

}

/∗ The s e r v e r now has to bind the socke t f i l e d e s c r i p t o r , l i s t e n f d ,
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to the socket data s t r u c tu r e . This , in e f f e c t , connects the f i l e
d e s c r i p t o r to the ac tua l network/ port address .

∗/
i f ( bind ( l i s t e n f d , ( s t r u c t sockaddr ∗) &server , SIZE ) == −1 ) {

ERROR_EXIT(" bind c a l l f a i l e d " ,1)
}

/∗ The next s tep f o r the s e r v e r i s to l i s t e n f o r incoming connect ion
r eque s t s . The l i s t e n ( ) c a l l e s t a b l i s h e s the numberof s imultaneous
connect i ons that the s e r v e r w i l l handle . I . e . , i t i s the s i z e o f
the queue o f r ece ived , but not accepted r eque s t s . Here we accept
LISTEN_QUEUE_SIZE reque s t s .

∗/
i f ( l i s t e n ( l i s t e n f d , LISTEN_QUEUE_SIZE ) == −1) {

ERROR_EXIT(" l i s t e n c a l l f a i l e d " ,1)
}

/∗ s t a r t the i n f i n i t e loop to l i s t e n f o r and accept incoming ∗/
/∗ connect ion r eque s t s ∗/
f o r ( ; ; )
{

/∗ The accept c a l l r e tu rn s the next completed connect ion from the
f r on t o f the completed connect ion queue . I f the re are no
completed connect i ons in the queue , the p roce s s b locks
The accept c a l l r e tu rn s a f i l e d e s c r i p t o r that can be used
to read ( recv ) and/or wr i t e ( send ) data in the socket .
The returned d e s c r i p t o r i s the connected socke t d e s c r i p t o r ;
the l i s t e n i n g d e s c r i p t o r remains a v a i l a b l e to l i s t e n to the
socke t .

∗/
i f ( ( connec t i on fd = accept ( l i s t e n f d , NULL, NULL ) ) == −1 ){

i f ( EINTR == errno )
cont inue ;

e l s e
pe r ro r (" accept c a l l f a i l e d " ) ;

}

switch ( f o rk ( ) ) {
case −1:

ERROR_EXIT(" fo rk c a l l f a i l e d " ,1)
case 0 :

/∗
The ch i l d execute s t h i s code .

You can use the ord inary read and wr i t e c a l l s , but
recv and send are more f l e x i b l e . recv a l l ows peeking
without reading , wa i t ing f o r f u l l bu f f e r s , and d i s c a rd ing
a l l but out−of−band data .

∗/
whi l e ( recv ( connect ionfd , &c , 1 , 0) > 0 )
{

c = toupper ( c ) ; /∗ convert c to upeprcase ∗/
send ( connect ionfd , &c , 1 , 0 ) ; /∗ send i t back ∗/

}
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c l o s e ( connect i on fd ) ;
e x i t ( 0 ) ;

d e f au l t :
/∗ s e r v e r code ∗/
c l o s e ( connect i on fd ) ;
/∗ note that the s e r v e r cannot wait f o r the ch i l d proce s s e s , ∗/
/∗ otherwi se i t w i l l not re turn to the top o f the loop to ∗/
/∗ accept new connect i ons . Ins tead i t has a SIGCHLD handler . ∗/

}
}

}

/∗ i f a SIGPIPE i s r e c e i v ed : ∗/
void on_sigpipe ( i n t s i g )
{

c l o s e ( connect i on fd ) ;
e x i t ( 0 ) ;

}

void on_sigchld ( i n t s i gno )
{

pid_t pid ;
i n t s t a tu s ;

whi l e ( ( pid = waitp id (−1 , &status , WNOHANG) ) > 0 )
;

r e turn ;
}

S ig func ∗ S igna l ( i n t s igno , S ig func ∗ func )
{

s t r u c t s i g a c t i o n act , oact ;

act . sa_handler = func ;
s igemptyset (&act . sa_mask ) ;
act . sa_f lags = 0 ;
i f (SIGALRM != s igno ) {

act . sa_f lags |= SA_RESTART;
}
i f ( s i g a c t i o n ( s igno , &act , &oact ) < 0 )

re turn ( SIG_ERR ) ;
re turn ( oact . sa_handler ) ;

}

Comments.

• This program uses a user-de�ned Signal() function to encapsulate the logic of registering the
signal handlers. Since we have been registering multiple handlers in most of our programs, it
would have been a good idea to create this function earlier and put it in a library to reuse.
The idea for this is from [Stevens].

• The program could have used ordinary read() and write() system calls. Instead, as a way to
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introduce two socket-speci�c communications primitives, it uses recv() and send(). recv()
is one of a set of three socket-reading functions:

#include <sys/types.h>

#include <sys/socket.h>

ssize_t recv(int s, void *buf, size_t len, int flags);

ssize_t recvfrom(int s, void *buf, size_t len, int flags,

struct sockaddr *from, socklen_t *fromlen);

ssize_t recvmsg(int s, struct msghdr *msg, int flags);

• The recvfrom() and recvmsg() functions are the most general. The prototype for recv()
is the same as that of read() except that it has a fourth argument that can be used to set
various �ags to control how the recv() behaves. The �ags can be used to turn on non-blocking
operation (MSG_DONTWAIT), to notify the kernel that the process wants to receive out-of-band
data (MSG_OOB), or to peek at the data without reading it (MSG_PEEK), to name a few. In
our program, no �ags are used, so the fourth argument is zero, and recv(s, buf, n, 0) is
identical to read(s, buf, n).

• The send() function is also one of a set of three:

#include <sys/types.h>

#include <sys/socket.h>

ssize_t send(int s, const void *buf, size_t len, int flags);

ssize_t sendto(int s, const void *buf, size_t len, int flags,

const struct sockaddr *to, socklen_t tolen);

ssize_t sendmsg(int s, const struct msghdr *msg, int flags);

• The sendto() and sendmsg() functions are the most general. The prototype of send() is
identical to that of write() except for the additional argument. Like recv(), the fourth
argument of send() is a set of �ags that can be or-ed together. Some of the �ags are the
same, such as MSG_OOB, which allows the process to send out-of-band data. See the man page
for more details. We will return to the use of sendto() and recvfrom() when we look at a
connection-less server.

The code for the client is next.

L i s t i n g sockdemo1_client . c

#inc lude "sockdemo1 . h"

i n t main ( i n t argc , char ∗∗ argv )
{

i n t sock fd ;
char c , rc ;
char ip_name [ 2 5 6 ] = "" ;
s t r u c t sockaddr_in s e r v e r ;
s t r u c t hostent ∗host ;

i f ( argc < 2 )
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s t r cpy ( ip_name , DEFAULT_HOST) ;
e l s e

s t r cpy ( ip_name , argv [ 1 ] ) ;

i f ( ( host = gethostbyname ( ip_name ) ) == NULL) {
ERROR_EXIT(" gethostbyname " , 1 ) ;

}

memset(&server , 0 , s i z e o f ( s e r v e r ) ) ;
memcpy(& s e rv e r . sin_addr , SOCKADDR ∗host−>h_addr_list , SIZE ) ;
s e r v e r . s in_fami ly = AF_INET;
s e r v e r . s in_port = PORT;

i f ( ( sock fd = socket (AF_INET, SOCK_STREAM, 0) ) == −1 ) {
ERROR_EXIT(" s o c k e t c a l l f a i l e d " ,1)

}

i f ( connect ( sockfd , SOCKADDR &server , s i z e o f ( s e r v e r ) ) == −1) {
ERROR_EXIT(" connect c a l l f a i l e d " , 1 ) ;

}

f o r ( rc = '\n ' ; ; ) {
i f ( ' \n ' == rc )

p r i n t f (" Input a lowercase charac t e r \n " ) ;
c = getchar ( ) ;
wr i t e ( sockfd , &c , 1 ) ;
i f ( read ( sockfd , &rc , 1) > 0 )

p r i n t f ("%c " , rc ) ;
e l s e {

p r i n t f (" s e r v e r has died \n " ) ;
c l o s e ( sock fd ) ;
e x i t ( 1 ) ;

}
}

}

Comments.

• The client does hostname-to-address translation to make it more generic. The user can supply
the name of the server on the command line rather than having to remember the IP address. If
the IP address changes, the program still works. The gethostbyname() call returns a pointer
to a hostent structure, given a string that contains a valid hostname.

#include <netdb.h>

extern int h_errno;

struct hostent *gethostbyname(const char *name);

• The hostent struct is de�ned in the <netdb.h> header �le:

struct hostent {
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char *h_name; /* official name of host */

char **h_aliases; /* alias list */

int h_addrtype; /* host address type */

int h_length; /* length of address */

char **h_addr_list; /* list of addresses */

}

#define h_addr h_addr_list[0] /* for backward compatibility */

• The h_name �eld is the o�cial name of the host. For example, if it is given the name "eniac"
when running on a host on our network, it is able to resolve the name, and the h_name �eld
will be �lled in with "eniac.geo.hunter.cuny.edu". The aliases member is a pointer to a
list of strings, each of which is an alias, i.e., another name listed in the hosts database for
the same machine. The h_addr_list is a pointer to a list of internet addresses for this host.
If the host has just one network interface card, then only h_addr_list[0] is de�ned. Each
entry is of type in_addr, which is why, in the client code, if can be assigned directly (with
a cast) to the sin_addr �eld of the sock_addr structure. We do not use the h_addrtype or
h_length �elds here.

The client uses ordinary read() and write() calls for its I/O operations.

9.1.7 A Connection-Oriented Client Using Multiplexed I/O

Consider the client from the upcase example in Chapter 8. It reads a line from standard input,
writes it into a pipe, and then reads the converted text from a second pipe. In that example,
two pipes were needed because a pipe cannot be used as a bi-directional channel. However, we
can replace the pair of pipes by a single socket, which can then be used for both sending the raw
text to the server and receiving the converted text from it. In addition, by making the socket an
Internet-domain socket, the client and server can be on di�erent machines.

If we keep the original design for the client but just replace the pipes by a socket, the client would
read the raw text from standard input, write it to the socket, and then read the converted text from
the same socket, in a loop of the form

while ( true ) {

get text from standard input;

write text to socket;

read converted text from socket;

write response on standard output;

}

Since input can be redirected, it can arrive much faster than the responses that it receives from
the server, because the server might be a long distance away. The client would spend most of its
time blocked on the call to read the socket, even though both the server and the socket itself could
handle much larger throughput. The same thing could happen in the interactive case as well if the
user enters text very quickly but the round-trip time for the socket is large. In this case the client
would be delayed in displaying a prompt to the user on the terminal. Therefore, it makes sense in
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this client to multiplex the standard input and the socket input using the select() call. By using
the select() call, the client will only block if neither the user nor the server has data to read. As
long as text arrives on the standard input stream, it will be forwarded to the server. If text arrives
on standard input much faster than the round-trip time, the text will keep being sent to the server,
which will process the lines one after the other and send them back in a steady stream.

An analogy will help. Imagine a thirty-person �re brigade trying to put out a �re with a single
bucket. The bucket is �lled with water and passed from one person to the next to the �re, poured
on the �re, and then passed back to the water supply, where this is repeated. Suppose it takes one
minute for the round trip and the bucket holds 5 gallons of water. This supplies 5 gallons per minute
to the �re. Now suppose there are 60 buckets available. The �rst bucket is �lled and handed to
the next person, and the second bucket is �lled, and so on, until all 60 buckets are �lled. Assuming
the people know how to pass the full buckets past the empty buckets and the exchange rate is
uniform, although the round-trip time has not changed, there will be 60 buckets in the brigade at
each instant, and each second, a full bucket will arrive at the �re. The �re will be supplied 5 gallons
per second, or 300 gallons per minute.

This is how using select() can increase the throughput in the case that the bottleneck is the length
of time it takes for the data to make a round trip from client to server and back. The code follows.
It uses the same header �le as was used in sockdemo1. This client will not accept a �le name on
the command line; it uses a single command line argument, which is the name of the host on which
the server is running.

L i s t i n g sockdemo2_client . c
#inc lude <sys / types . h>
#inc lude <sys / socke t . h>
#inc lude <netdb . h>

#inc lude "sockdemo1 . h"

#de f i n e MAXFD( _x, _y) ( (_x)>(_y)? (_x ) : (_y) )

i n t main ( i n t argc , char ∗ argv [ ] )
{

i n t sock fd ;
char ip_name [ 2 5 6 ] = "" ;
fd_set r eads e t ;
i n t maxfd , n ;
char r e c v l i n e [MAXLINE] ;
char s end l i n e [MAXLINE] ;
i n t s , s td in_eof = 0 ;

s t r u c t addr in fo h in t s ;
s t r u c t addr in fo ∗ r e s u l t ;
s t r u c t addr in fo ∗ r e su l t i ng_addre s s ;
char po r t s t r [ 2 0 ] ;

/∗ Check i f the re i s a host name on command l i n e ;
i f not use d e f au l t ∗/

i f ( argc < 2 )
s t r cpy ( ip_name , DEFAULT_HOST) ;
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e l s e
s t r cpy ( ip_name , argv [ 1 ] ) ;

p r i n t f (" Search ing f o r s e r v e r %s \n" , ip_name ) ;

/∗ I n i t i a l i z e the h in t s addr in fo s t r u c tu r e be f o r e c a l l i n g
ge taddr in f o ( ) . This i s used to d e f i n e c r i t e r i a to use
when i t s ea r che s f o r a s u i t a b l e host / port / s e r v i c e f o r
the c l i e n t .

∗/
memset(&hints , 0 , s i z e o f ( s t r u c t addr in fo ) ) ; /∗ zero i t out ∗/
h in t s . a i_fami ly = AF_UNSPEC; /∗ a l low IPv4 or IPv6 ∗/
h in t s . ai_socktype = SOCK_STREAM; /∗ stream connect ion ∗/
h in t s . a i_ f l a g s = 0 ; /∗ no f l a g s ∗/
h in t s . a i_protoco l = 0 ; /∗ any pro to co l ∗/

/∗ convert numeric port to a s t r i n g ∗/
s p r i n t f ( po r t s t r , "%d" , PORT) ;

/∗ Get the network i n f o ; i f non−zero return , the re was an e r r o r ∗/
i f ( 0 != ( s = ge taddr in f o ( ip_name , por t s t r , &hints , &r e s u l t ) ) ) {

/∗ c a l l g a i_s t r e r r o r ( ) to get s t r i n g f o r e r r o r number ∗/
f p r i n t f ( s tde r r , " g e taddr in f o : %s \n" , g a i_s t r e r r o r ( s ) ) ;
e x i t (EXIT_FAILURE) ;

}

/∗ Search through every addr in fo s t r u c tu r e in the l i s t po inted to by the
r e s u l t po in t e r in the c a l l to ge taddr in f o ( ) . These are the s t r u c t u r e s
conta in ing p o s s i b l e fami ly / socket−type / p ro to co l combinat ions . The
s t r u c t u r e s are ordered with in the l i s t by the r u l e s s p e c i f i e d in the
RFC 3484 standard , so the f i r s t one f o r which a socke t can be c reated
i s the one to use .

∗/
re su l t ing_addre s s = r e s u l t ;
whi l e ( NULL != re su l t ing_addre s s ) {

sock fd = socket ( re su l t ing_addres s−>ai_family ,
r e su l t ing_addres s−>ai_socktype ,
r e su l t ing_addres s−>ai_protoco l ) ;

i f ( sock fd == −1) {
r e su l t ing_addre s s = resu l t ing_addres s−>ai_next ;
cont inue ;

}
i f ( connect ( sockfd , r e su l t ing_addres s−>ai_addr ,

r e su l t ing_addres s−>ai_addrlen ) != −1)
break ; /∗ Success ∗/

c l o s e ( sock fd ) ;
r e su l t i ng_addre s s = resu l t ing_addres s−>ai_next ;

}

i f ( r e su l t i ng_addre s s == NULL) { /∗ No address succeeded ∗/
f p r i n t f ( s tde r r , "Could not connect \n " ) ;
e x i t (EXIT_FAILURE) ;

}
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f r e e add r i n f o ( r e s u l t ) ; /∗ No longe r needed ∗/

p r i n t f (" Connection made to s e r v e r \n " ) ;

maxfd = MAXFD( f i l e n o ( s td in ) , sock fd ) +1;

f o r ( ; ; ) {
FD_ZERO(&readse t ) ;
i f ( s td in_eof == 0 )

FD_SET( f i l e n o ( s td in ) , &readse t ) ;
FD_SET( sockfd , &readse t ) ;
i f ( s e l e c t ( maxfd , &readset , NULL, NULL, NULL ) > 0 ) {

i f ( FD_ISSET( sockfd , &readse t ) ) {
i f ( ( n = read ( sockfd , r e c v l i n e , MAXLINE−1)) == 0 ) {

i f ( s td in_eof == 1)
return 0 ;

e l s e
ERROR_EXIT(" Server terminated prematurely . " , 1 ) ;

}
r e c v l i n e [ n ] = ' \ 0 ' ;
f pu t s ( r e cv l i n e , s tdout ) ;

}

i f ( FD_ISSET( f i l e n o ( s td in ) , &reads e t ) ) {
i f ( f g e t s ( s end l ine , MAXLINE−1, s td in ) == NULL ) {

std in_eof = 1 ;
shutdown ( sockfd , SHUT_WR) ;
FD_CLR( f i l e n o ( s td in ) , &readse t ) ;
cont inue ;

}
wr i t e ( sockfd , s end l ine , s t r l e n ( s end l i n e ) ) ;

}
}

}
return 0 ;

}

Comments.

• This client sends entire lines, one after the other, to the server. It appends a null character
to each line it receives before printing it to standard output, even though in principle all lines
received should be null-terminated, since they are identical to the null-terminated lines that
it sent to the server, except for conversion of lowercase to uppercase letters in the line.

• The shutdown(sockfd, SHUT_WR) system call turns o� writing to the socket. When the client
detects the end-of-�le on the standard input stream, it cannot close the socket completely,
because if it did, it would not receive any lines sent to the server but not yet converted to
uppercase. On the other hand, it has to send a noti�cation to the server that there is no more
input on the socket, so that the server's read() on the socket can return. The shutdown()

accomplishes this; the server's read() returns and the socket stays open until the server closes
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its end of the socket. Without shutdown() there would be no way to achieve this. Its synopsis
is:

#include <sys/socket.h>

int shutdown(int s, int how);

Here, the integer how can be replaced by one of SHUT_WR, SHUT_RD, or SHUT_RDWR.

• Once the client detects the end-of-�le, it also sets a �ag for itself, stdin_eof, which it uses to
decide whether to set a bit in the descriptor mask for the standard input. If end-of-�le has
been detected, it stops setting that bit; otherwise it sets it. In addition, when the read()

on the socket returns 0 bytes, it uses this �ag to distinguish between two cases: whether the
server has stopped sending text because there is none left to send, or there was an error on
the socket before the end-of-�le condition occurred.

The server's main function is displayed below. Because the signal handling code is no di�erent in
this example than in sockdemo1_server.c, it is not included.

L i s t i n g sockdemo2_server . c

#inc lude "sockdemo1 . h"
#inc lude " sys /wait . h"

#de f i n e LISTEN_QUEUE_SIZE 5

/∗ The f o l l ow i n g typede f s i m p l i f i e s the func t i on d e f i n i t i o n a f t e r i t ∗/
typede f void S ig func ( i n t ) ; /∗ f o r s i g n a l hand le r s ∗/

/∗ ove r r i d e e x i s t i n g s i g n a l func t i on to handle non−BSD systems ∗/
S ig func ∗ S igna l ( i n t s igno , S ig func ∗ func ) ;

/∗ S igna l hand le r s ∗/
void on_sigchld ( i n t s i gno ) ;
void str_echo ( i n t sock fd ) ;

i n t main ( i n t argc , char ∗∗ argv )
{

i n t l i s t e n f d , connfd ;
pid_t ch i l dp i d ;
socklen_t c l i l e n ;
s t r u c t sockaddr_in cl ient_addr , server_addr ;
void s ig_chld ( i n t ) ;

i f ( ( l i s t e n f d = socket (AF_INET, SOCK_STREAM, 0) ) == −1 ) {
ERROR_EXIT(" socket c a l l f a i l e d " ,1)

}

bzero(&server_addr , s i z e o f ( server_addr ) ) ;
server_addr . s in_fami ly = AF_INET;
server_addr . sin_addr . s_addr = htonl (INADDR_ANY) ;
server_addr . s in_port = PORT;
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i f ( bind ( l i s t e n f d , SOCKADDR &server_addr , s i z e o f ( server_addr ) )
== −1 ) {
ERROR_EXIT(" bind c a l l f a i l e d " ,1)

}

i f ( −1 == l i s t e n ( l i s t e n f d , LISTEN_QUEUE_SIZE ) ) {
ERROR_EXIT(" l i s t e n c a l l f a i l e d " ,1)

}

S i gna l (SIGCHLD, on_sigchld ) ;

f o r ( ; ; ) {
c l i l e n = s i z e o f ( c l i ent_addr ) ;
i f ( ( connfd = accept ( l i s t e n f d , SOCKADDR &cl ient_addr , &c l i l e n ) )

< 0) {
i f ( EINTR == errno )

cont inue ; /∗ back to f o r ( ) ∗/
e l s e

ERROR_EXIT(" accept e r r o r " , 1 ) ;
}

i f ( ( c h i l dp i d = fo rk ( ) ) == 0) { /∗ ch i l d p roce s s ∗/
c l o s e ( l i s t e n f d ) ; /∗ c l o s e l i s t e n i n g socket ∗/
str_echo ( connfd ) ; /∗ proce s s the r eque s t ∗/
e x i t ( 0 ) ;

}
c l o s e ( connfd ) ; /∗ parent c l o s e s connected socke t ∗/

}
}

void str_echo ( i n t sock fd )
{

s s i z e_t n ;
i n t i ;
char l i n e [MAXLINE] ;

f o r ( ; ; ) {
i f ( (n = read ( sockfd , l i n e , MAXLINE−1)) == 0)
return ; /∗ connect ion c l o s ed by other end ∗/

f o r ( i = 0 ; i < n ; i++ )
i f ( i s l owe r ( l i n e [ i ] ) )

l i n e [ i ] = toupper ( l i n e [ i ] ) ;
wr i t e ( sockfd , l i n e , n ) ;

}
}

Comments.

All of the logic is encapsulated in the convert() function, which the child executes. convert()

reads the connected socket until it receives the end-of-�le and then it terminates, which causes the
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child to exit in main.
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Chapter 10 Threads

Concepts Covered

Processes, threads,
multi-threading paradigms,
Pthreads, NPTL,
thread properties,
thread cancellation, detached threads,
mutexes, condition variables,

barrier synchronization, reduction algorithm
producer-consumer problem,
reader/writer locks,
thread scheduling, deadlock, starvation

10.1 Introduction

We saw in Chapter 8 that a process is associated with a set of resources including its memory
segments (text, stack, initialized data, uninitialized data), environment variables and command
line arguments, and various properties and data that are contained in kernel resources such as the
process and user structures. A partial list of the kinds of information contained in these structures
includes things such as the process's

• IDs such as process ID, process group ID, user ID, and group ID

• Hardware state

• Memory mappings, such as where process segments are located

• Flags such as set-uid, set-gid

• File descriptors

• Signal masks and dispositions

• Resource limits

• Inter-process communication tools such as message queues, pipes, semaphores, or shared mem-
ory.

A process is a fairly �heavy� object in the sense that when a process is created, all of these resources
must be created for it. The fork() system call duplicates some, but not all, of the calling process's
resources. Some of them are shared between the parent and child process.

Processes by default are limited in what they can share with each other because they do not share
their memory spaces. Thus, for example, they do not in general share variables and other objects
that they create in memory. Most operating systems provide an API for sharing memory though.
For example, in Linux 2.4 and later, and glibc 2.2 and later, POSIX shared memory is available so
that unrelated processes can communicate through shared memory objects. Solaris also supported
shared memory, both natively and with support for the later POSIX standard. In addition, processes
can share �les and messages, and they can send each other signals to synchronize.

The biggest drawback to using processes as a means of multi-tasking is their consumption of system
resources. This was the motivation for the invention of threads.
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10.2 Thread Concepts

A thread is a �ow of control (think sequence of instructions) that can be independently scheduled
by the kernel. A typical UNIX process can be thought of as having a single thread of control: each
process is doing only one thing at a time. When a program has multiple threads of control, more
than one thing at a time can be done within a single process, with each thread handling a separate
task. Some of the advantages of this are that

• Code to handle asynchronous events can be executed by a separate thread. Each thread can
then handle its event using a synchronous programming model.

• Whereas multiple processes have to use mechanisms provided by the kernel to share memory
and �le descriptors, threads automatically have access to the same memory address space,
which is faster and simpler.

• Even on a single processor machine, performance can be improved by putting calls to system
functions with expected long waits in separate threads. This way, just the calling thread
blocks, and not the whole process.

• Response time of interactive programs can be improved by splitting o� threads to handle user
input and output.

Threads share certain resources with the parent process and each other, and maintain private copies
of other resources. The most important resources shared by the threads are the program's text, i.e.,
its executable code, and its global and heap memory. This implies that threads can communicate
through the program's global variables, but it also implies that they have to synchronize their access
to these shared resources. To make threads independently schedulable, at the very least they they
must have their own stack and register values.

In UNIX, POSIX requires that each thread will have its own distinct

• thread ID

• stack and an alternate stack

• stack pointer and registers

• signal mask

• errno value

• scheduling properties

• thread speci�c data.

On the other hand, in addition to the text and data segments of the process, UNIX threads share

• �le descriptors

• environment variables

• process ID
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• parent process ID

• process group ID and session ID

• controlling terminal

• user and group IDs

• open �le descriptors

• record locks

• signal dispositions

• �le mode creation mask (the umask)

• current directory and root directory

• interval timers and POSIX timers

• nice value

• resource limits

• measurements of the consumption of CPU time and resources

To summarize, a thread

• is a single �ow of control within a process and uses the process resources;

• duplicates only the resources it needs to be independently schedulable;

• can share the process resources with other threads within the process; and

• terminates if the parent process is terminated;

10.3 Programming Using Threads

Threads are suitable for certain types of parallel programming. In general, in order for a program to
take advantage of multi-threading, it must be able to be organized into discrete, independent tasks
which can execute concurrently. The �rst consideration when considering using multiple threads is
how to decompose the program into such discrete, concurrent tasks. There are other considerations
though. Among these are

• How can the load be balanced among the threads so that they no one thread becomes a
bottleneck?

• How will threads communicate and synchronize to avoid race conditions?

• What type of data dependencies exist in the problem and how will these a�ect thread design?

• What data will be shared and what data will be private to the threads?
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• How will I/O be handled? Will each thread perform its own I/O for example?

Each of these considerations is important, and to some extent each arises in most programming
problems. Determining data dependencies, deciding which data should be shared and which should
be private, and determining how to synchronize access to shared data are very critical aspects to
the correctness of a solution. Load balancing and the handling of I/O usually a�ect performance
but not correctness.

Knowing how to use a thread library is just the technical part of using threads. The much harder
part is knowing how to write a parallel program. These notes are not intended to assist you in
that task. Their purpose is just to provide the technical background, with pointers here and there.
However, before continuing, we present a few common paradigms for organizing multi-threaded
programs.

Thread Pool, or Boss/Worker Paradigm

In this approach, there is a single boss thread that dispatches threads to perform work. These
threads are part of a worker thread pool which is usually pre-allocated before the boss begins
dispatching threads.

Peer or WorkCrew Paradigm

In the WorkCrew model, tasks are assigned to a �nite set of worker threads. Each worker can
enqueue subtasks for concurrent evaluation by other workers as they become idle. The Peer model
is similar to the boss/worker model except that once the worker pool has been created, the boss
becomes the another thread in the thread pool, and is thus, a peer to the other threads.

Pipeline

Similar to how pipelining works in a processor, each thread is part of a long chain in a processing
factory. Each thread works on data processed by the previous thread and hands it o� to the next
thread. You must be careful to equally distribute work and take extra steps to ensure non-blocking
behavior in this thread model or you could experience pipeline "stalls."

10.4 Overview of the Pthread Library

In 1995 the Open Group de�ned a standard interface for UNIX threads (IEEE POSIX 1003.1c)
which they named Pthreads (P for POSIX). This standard was supported on multiple platforms,
including Solaris, Mac OS, FreeBSD, OpenBSD, and Linux. In 2005, a new implementation of the
interface was developed by Ulrich Drepper and Ingo Molnar of Red Hat, Inc. called the Native
POSIX Thread Library (NPTL), which was much faster than the original library, and has since
replaced that library. The Open Group further revised the standard in 2008. We will limit our
study of threads to the NPTL implementation of Pthreads.

The Pthreads library provides a very large number of primitives for the management and use of
threads; there are 93 di�erent functions de�ned in the 2008 POSIX standard. Some thread functions
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are analogous to those of processes. The following table compares the basic process primitives to
analogous Pthread primitives.

Process Primitive Thread Primitive Description

fork() pthread_create() Create a new �ow of control with a function
to execute

exit() pthread_exit() Exit from the calling �ow of control

waitpid() pthread_join() Wait for a speci�c �ow of control to exit and
collect its status

getpid() pthread_self() Get the id of the calling �ow of control

abort() pthread_cancel() Request abnormal termination of the calling
�ow of control

The Pthreads API can be categorized roughly by the following four groups

Thread management: This group contains functions that work directly on threads, such as creating,
detaching, joining, and so on. This group also contains functions to set and query thread
attributes.

Mutexes: This group contains functions for handling critical sections using mutual exclusion. Mu-
tex functions provide for creating, destroying, locking and unlocking mutexes. These
are supplemented by mutex attribute functions that set or modify attributes associated
with mutexes.

Condition variables: This group contains functions that address communications between threads
that share a mutex based upon programmer-speci�ed conditions. These include func-
tions to create, destroy, wait and signal based upon speci�ed variable values, as well as
functions to set and query condition variable attributes.

Synchronization: This group contains functions that manage read/write locks and barriers.

We will visit these groups in the order they are listed here, not covering any in great depth, but
enough depth to write fairly robust programs.

10.5 Thread Management

10.5.1 Creating Threads

We will start with the pthread_create() function. The prototype is

int pthread_create ( pthread_t *thread,

const pthread_attr_t *attr,

void *(*start_routine)(void *),

void *arg);
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This function starts a new thread with thread ID *thread as part of the calling process. On
successful creation of the new thread, thread contains its thread ID. Unlike fork(), this call passes
the address of a function, start_routine(), to be executed by the new thread. This �start� function
has exactly one argument, of type void*, and returns a void*. The fourth argument, arg, is the
argument that will be passed to start_routine() in the thread.

The second argument is a pointer to a pthread_attr_t structure. This structure can be used
to de�ne attributes of the new thread. These attributes include properties such as its stack size,
scheduling policy, and joinability (to be discussed below). If the program does not speci�cally set
values for its members, default values are used instead. We will examine thread properties in more
detail later.

Because start_routine() has just a single argument, if the function needs access to more than
a simple variable, the program should declare a structure with all state that needs to be accessed
within the thread, and pass a pointer to that structure. For example, if a set of threads is accessing
a shared array and each thread will process a contiguous portion of that array, you might want to
de�ne a structure such as

typedef struct _task_data

{

int first; /* index of first element for task */

int last; /* index of last element for task */

int *array; /* pointer to start of array */

int task_id; /* id of thread */

} task_data;

and start each thread with the values of first, last, and task_id initialized. The array pointer
may or may not be needed; if the array is a global variable, the threads will have access to it. If it
is declared in the main program, then its address can be part of the structure. Suppose that the
array is declared as a static local variable named data_array in the main program. Then a code
fragment to initialize the thread data and create the threads could be

task_data thread_data[NUM_THREADS];

for ( t = 0 ; t < NUM_THREADS; t++) {

thread_data[t].first = t*size;

thread_data[t].last = (t+1)*size -1;

if ( thread_data[t].last > ARRAY_SIZE -1 )

thread_data[t].last = ARRAY_SIZE - 1;

thread_data[t].array = &data_array[0];

thread_data[t].task_id = t;

if ( 0 != (rc = pthread_create(&threads[t], NULL, process_array,

(void *) &thread_data[t]) ) ) {

printf("ERROR; %d return code from pthread_create()\n", rc);

exit(-1);

}

}

This would create NUM_THREADS many threads, each executing process_array(), each with its own
structure containing parameters of its execution.
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10.5.1.1 Design Decision Regarding Shared Data

The advantage of declaring the data array as a local variable in the main program is that it makes
it easier to analyze and maintain the code when there are fewer global variables and side e�ects.
Programs with functions that modify global variables are harder to analyze. On the other hand,
making it a local in main and then having to add a pointer to that array in the thread data structure
passed to each thread increases thread storage requirements and slows down the program. Each
thread has an extra pointer in its stack when it executes, and each reference to the array requires two
dereferences instead of one. Which is preferable? It depends what the overall project requirements
are. If speed and memory are a concern, use a global and use good practices in documenting and
accessing it. If not, use the static local.

10.5.2 Thread Identi�cation

A thread can get its thread ID by calling pthread_self(), whose prototype is

pthread_t pthread_self(void);

This is the analog to getpid() for processes. This function is the only way that the thread can get
its ID, because it is not provided to it by the creation call. It is entirely analogous to fork() in this
respect.

A thread can check whether two thread IDs are equal by calling

int pthread_equal(pthread_t t1, pthread_t t2);

This returns a non-zero if the two thread IDs are equal and zero if they are not.

10.5.3 Thread Termination

A thread can terminate itself by calling pthread_exit():

void pthread_exit(void *retval);

This function kills the thread. The pthread_exit() function never returns. Analogous to the way
that exit() returns a value to wait(), the return value may be examined from another thread
in the same process if it calls pthread_join()1. The value pointed to by retval should not be
located on the calling thread's stack, since the contents of that stack are unde�ned after the thread
terminates. It can be a global variable or allocated on the heap. Therefore, if you want to use a
locally-scoped variable for the return value, declare it as static within the thread.

It is a good idea for the main program to terminate itself by calling pthread_exit(), because if it
has not waited for spawned threads and they are still running, if it calls exit(), they will be killed.
If these threads should not be terminated, then calling pthread_exit() from main() will ensure
that they continue to execute.

1Provided that the terminating thread is joinable.
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10.5.4 Thread Joining and Joinability

When a thread is created, one of the attributes de�ned for it is whether it is joinable or detached.
By default, created threads are joinable. If a thread is joinable, another thread can wait for its
termination using the function pthread_join(). Only threads that are created as joinable can be
joined.

Joining is a way for one thread to wait for another thread to terminate, in much the same way that
the wait() system calls lets a process wait for a child process. When a parent process creates a
thread, it may need to know when that thread has terminated before it can perform some task.
Joining a thread, like waiting for a process, is a way to synchronize the performance of tasks.

However, joining is di�erent from waiting in one respect: the thread that calls pthread_join()

must specify the thread ID of the thread for which it waits, making it more like waitpid(). The
prototype is

int pthread_join(pthread_t thread, void **value_ptr);

The pthread_join() function suspends execution of the calling thread until the target thread
terminates, unless the target thread has already terminated. If the target thread already terminated,
pthread_join() returns successfully.

If value_ptr is not NULL, then the value passed to pthread_exit() by the terminating thread will
be available in the location referenced by value_ptr, provided pthread_join() succeeds.

Some things that cause problems include:

• Multiple simultaneous calls to pthread_join() specifying the same target thread have unde-
�ned results.

• The behavior is unde�ned if the value speci�ed by the thread argument to pthread_join()

does not refer to a joinable thread.

• The behavior is unde�ned if the value speci�ed by the thread argument to pthread_join()

refers to the calling thread.

• Failing to join with a thread that is joinable produces a "zombie thread". Each zombie thread
consumes some system resources, and when enough zombie threads have accumulated, it will
no longer be possible to create new threads (or processes).

The following listing shows a simple example that creates a single thread and waits for it using
pthread_join(), collecting and printing its exit status.

Listing 10.1: Simple example of thread creation with join

i n t e x i t v a l ;

void ∗ hel lo_world ( void ∗ world )
{

p r i n t f (" He l lo World from %s . \ n" , ( char ∗) world ) ;
e x i t v a l = 2 ;
pthread_exit ( ( void ∗) e x i t v a l ) ;

}
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i n t main ( i n t argc , char ∗argv [ ] )
{

pthread_t chi ld_thread ;
void ∗ s t a tu s ;
char ∗ p lanet = "Pluto " ;

i f ( 0 != pthread_create(&chi ld_thread , NULL,
hel lo_world , ( void ∗) p lanet ) ) {

pe r ro r (" pthread_create " ) ;
e x i t (−1);

}
pthread_join ( chi ld_thread , ( void ∗∗) (& s ta tu s ) ) ;
p r i n t f (" Child ex i t ed with s t a tu s %ld \n" , ( long ) s t a tu s ) ;
r e turn 0 ;

}

Any thread in a process can join with any other thread. They are peers in this sense. The only
obstacle is that to join a thread, it needs its thread ID.

10.5.5 Detached Threads

Because pthread_join() must be able to retrieve the status and thread ID of a terminated thread,
this information must be stored someplace. In many Pthread implementations, it is stored in a
structure that we will call a Thread Control Block (TCB). In these implementations, the entire
TCB is kept around after the thread terminates, just because it is easier to do this. Therefore, until
a thread has been joined, this TCB exists and uses memory. Failing to join a joinable thread turns
these TCBs into waste memory.

Sometimes threads are created that do not need to be joined. Consider a process that spawns
a thread for the sole purpose of writing output to a �le. The process does not need to wait for
this thread. When a thread is created that does not need to be joined, it can be created as a
detached thread. When a detached thread terminates, no resources are saved; the system cleans up
all resources related to the thread.

A thread can be created in a detached state, or it can be detached after it already exists. To create
a thread in a detached state, you can use the pthread_attr_setdetachstate() function to modify
the pthread_attr_t structure prior to creating the thread, as in:

pthread_t tid; /* thread ID */

pthread_attr_t attr; /* thread attribute */

pthread_attr_init(&attr);

pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED);

/* now create the thread */

pthread_create(&tid, &attr, start_routine, arg);

An existing thread can be detached using pthread_detach():
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int pthread_detach(pthread_t thread);

The function pthread_detach() can be called from any thread, in particular from within the thread
itself! It would need to get its thread ID using pthread_self(), as in

pthread_detach(pthread_self());

Once a thread is detached, it cannot become joinable. It is an irreversible decision. The following
listing shows how a main program can exit, using pthread_exit() to allow its detached child to
run and produce output, even after main() has ended. The call to usleep() gives a bit of a delay
to simulate computationally demanding output being produced by the child.

Listing 10.2: Example of detached child

#inc lude <pthread . h>
#inc lude <s td i o . h>
#inc lude <s t d l i b . h>
#inc lude <s t r i n g . h>
#inc lude <uni s td . h>

void ∗ thread_rout ine ( void ∗ arg )
{

i n t i ;
i n t bu f s i z e = s t r l e n ( arg ) ;
i n t fd = 1 ;

p r i n t f (" Child i s running . . . \ n " ) ;
f o r ( i = 0 ; i < bu f s i z e ; i++) {

us l e ep (500000 ) ;
wr i t e ( fd , arg+i , 1 ) ;

}
p r i n t f ("\ nChild i s now ex i t i n g . \ n " ) ;
r e turn (NULL) ;

}

i n t main ( i n t argc , char ∗ argv [ ] )
{

char ∗ buf = "abcdefghi jklmnopqrstuvwxyz " ;
pthread_t thread ;
pthread_attr_t a t t r ;

pthread_attr_init (&a t t r ) ;
pthread_attr_setdetachstate (&attr , PTHREAD_CREATE_DETACHED) ;

i f ( pthread_create(&thread , NULL, thread_routine , ( void ∗ ) ( buf ) ) ) {
f p r i n t f ( s tde r r , " e r r o r c r e a t i n g a new thread \n " ) ;
e x i t ( 1 ) ;

}

p r i n t f ("Main i s now ex i t i n g . \ n " ) ;
pthread_exit (NULL) ;

}
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10.5.6 Thread Cancellation

Threads can be canceled as well. Cancellation is roughly like killing a thread. When a thread
is canceled, its resources are cleaned up and it is terminated. A thread can request that another
thread be canceled by calling pthread_cancel(), the prototype for which is

int pthread_cancel(pthread_t thread);

This is just a request; it is not necessarily honored. When this is called, a cancellation request is
sent to the thread given as the argument. Whether or not that thread is canceled depends upon
the thread's cancelability state and type. A thread can enable or disable cancelability, and it can
also specify whether its cancelability type is asynchronous or deferred. If a thread's cancelability
type is asynchronous, then it will be canceled immediately upon receiving a cancellation request,
assuming it has enabled its cancelability. On the other hand, if its cancelability is deferred, then
cancellation requests are deferred until the thread enters a cancellation point. Certain functions
are cancellation points. To be precise, if a thread is cancelable, and its type is deferred, and a
cancellation request is pending for it, then if it calls a function that is a cancellation point, it will be
terminated immediately. The list of cancellation point functions required by POSIX can be found
on the man page for pthreads in section 7.

A thread's cancelability state is enabled by default and can be set by calling pthread_setcancelstate():

int pthread_setcancelstate(int state, int *oldstate);

The two values are PTHREAD_CANCEL_ENABLE and PTHREAD_CANCEL_DISABLE. The new state is passed
as the �rst argument and a pointer to an integer to store the old state, or NULL, is the second
argument. If a thread disables cancellation, then a cancellation request remains queued until it
enables cancellation. If a thread has enabled cancellation, then its cancelability type determines
when cancellation occurs.

A thread's cancellation type, which is deferred by default, can be set with pthread_setcanceltype()
:

int pthread_setcanceltype(int type, int *oldtype);

To set the type to asynchronous, pass PTHREAD_CANCEL_ASYNCHRONOUS in the �rst argument. To
make it deferred, pass PTHREAD_CANCEL_DEFERRED.

10.5.7 Thread Properties

10.5.7.1 Stack Size

The POSIX standard does not dictate the size of a thread's stack, which can vary from one imple-
mentation to another. Furthermore, with today's demanding problems, exceeding the default stack
limit is not so unusual, and if it happens, the program will terminate, possibly with corrupted data.

Safe and portable programs do not depend upon the default stack limit, but instead, explicitly
allocate enough stack for each thread by using the pthread_attr_setstacksize() function, whose
prototype is
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int pthread_attr_setstacksize(pthread_attr_t *attr, size_t stacksize);

The �rst argument is the address of the threads attribute structure and the second is the size that
you want to set for the stack. This function will fail if the attribute structure does not exist, or if the
stack size is smaller than the allowed minimum (PTHREAD_STACK_MIN) or larger than the maximum
allowed. See the man page for further caveats about its use.

To get the stack's current size, use

int pthread_attr_getstacksize(pthread_attr_t *attr, size_t *stacksize);

This retrieves the current size of the stack. It will fail of course if attr does not reference an existing
structure.

The problem trying to use this function is that it must be passed the attributes structure of the
thread. There is no POSIX function to retrieve the attribute structure of the calling thread, but
there is a GNU extension, pthread_getattr_np(). If this extension is not used, the best that
the calling thread can do is to get a copy of the attribute structure with which it was created,
which may have di�erent values than the one it it currently using. The following listing is of a
program that prints the default stack size then sets the new stack size based on a command line
argument, and from within the thread, displays the actual stack size it is using, using the GNU
pthread_getattr_np() function. To save space, some error checking has been removed.

Listing 10.3: Setting a new stack size (with missing error checking)

#de f i n e _GNU_SOURCE /∗ To get pthread_getattr_np ( ) d e c l a r a t i on ∗/
#inc lude <pthread . h>
#inc lude <s td i o . h>
#inc lude <s t d l i b . h>
#inc lude <uni s td . h>
#inc lude <errno . h>

void ∗ thread_start ( void ∗ arg )
{

s i ze_t s tack_s i ze ;
pthread_attr_t ga t t r ;

pthread_getattr_np ( pthread_se l f ( ) , &ga t t r ) ;
pthread_att r_gets tacks i ze ( &gattr , &stack_s i ze ) ;
p r i n t f (" Actual s tack s i z e i s %ld \n" , s tack_s i ze ) ;
pthread_exit ( 0 ) ;

}

i n t main ( i n t argc , char ∗argv [ ] )
{

pthread_t thr ;
pthread_attr_t a t t r ;
i n t r e t v a l ;
s i z e_t new_stack_size , s tack_s i ze ;
void ∗ sp ;

i f ( argc < 2 ) {
p r i n t f (" usage : %s s t a c k s i z e \n" , argv [ 0 ] ) ;
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e x i t ( 1 ) ;
}

new_stack_size = s t r t o u l ( argv [ 1 ] , NULL, 0 ) ;

r e t v a l = pthread_attr_init (&a t t r ) ;
i f ( r e t v a l ) {

e x i t ( 1 ) ;
}
pthread_att r_gets tacks i ze (&attr , &stack_s i ze ) ;
p r i n t f (" Defau l t s tack s i z e = %ld \n" , s tack_s i ze ) ;
p r i n t f ("New stack s i z e w i l l be %ld \n" , new_stack_size ) ;

r e t v a l = pthread_att r_set s tacks i z e (&attr , new_stack_size ) ;
i f ( r e t v a l ) {

e x i t ( 1 ) ;
}

r e t v a l = pthread_create(&thr , &attr , &thread_start , NULL) ;
i f ( r e t v a l ) {

e x i t ( 1 ) ;
}

pthread_join ( thr , NULL) ;
re turn ( 0 ) ;

}

10.6 Mutexes

10.6.1 Introduction

When multiple threads share the same memory, the programmer must ensure that each thread sees
a consistent view of its data. If each thread uses variables that no other threads read or modify,
then there are no consistency problems with those variables. Similarly, if a variable is read-only,
there is no consistency problem if multiple threads read its value at the same time. The problem
occurs when one thread can modify a variable that other threads can read or modify. In this case
the threads must be synchronized with respect to the shared variable. The segment of code in which
this shared variable is accessed within a thread, whether for a read or a write, is called a critical
section.

A simple example of a critical section occurs when each thread in a group of threads needs to
increment some shared counter, after which it does some work that depends on the value of that
counter. The main program would initialize the counter to zero, after which each thread would
increment the counter and use it to access the array element indexed by that value. The following
code typi�es this scenario.

void ∗ work_on_ticker ( void ∗ counter )
{

i n t i ;
i n t ∗ t i c k e r = ( i n t ∗) counter ;
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f o r ( i = 0 ; i < NUM_UPDATES; i++ ) {
∗ t i c k e r = ∗ t i c k e r + 1 ;
/∗ use the t i c k e r to do s t u f f here with A[∗ t i c k e r ] ∗/

}
pthread_exit ( NULL ) ;

}

Without any synchronization to force the increment of *ticker to be executed in mutual exclu-
sion, some threads may overwrite other threads' array data, and some array elements may remain
unprocessed because the ticker skipped over them. You will probably not see this e�ect if this code
is executed on a single-processor machine, as the threads will be time-sliced on the processor, and
the likelihood of their being sliced in the middle of the update to the ticker is very small, but if you
run this on a multi-processor machine, you will almost certainly see the e�ect.

Amutex is one of the provisions of Pthreads for providing mutual exclusive access to critical sections.
A mutex is like a software version of lock. Its name derives from �mutual exclusion� because a mutex
can only be held, or owned, by one thread at a time. Like a binary semaphore, the typical use of a
mutex is to surround a critical section of code with a call to lock and then to unlock the mutex, as
in

pthread_mutex_lock ( &mutex );

/* critical section here */

pthread_mutex_unlock( &mutex );

Mutexes are a low-level form of critical section protection, providing the most rudimentary features.
They were intended as the building blocks of higher-level synchronization methods. Nonetheless,
they can be used in many cases to solve critical section problems. In the remainder of this section,
we describe the fundamentals of using mutexes.

10.6.2 Creating and Initializing Mutexes

A mutex is a variable of type pthread_mutex_t. It must be initialized before it can be used. There
are two ways to initialize a mutex:

1. Statically, when it is declared, using the PTHREAD_MUTEX_INITIALIZER macro, as in

pthread_mutex_t mutex = PTHREAD_MUTEX_INITIALIZER;

2. Dynamically, with the pthread_mutex_init() routine:

int pthread_mutex_init(pthread_mutex_t *mutex, pthread_mutexattr_t *attr);

This function is given a pointer to a mutex and to a mutex attribute structure, and initializes
the mutex to have the properties of that structure. If one is willing to accept the default
mutex attributes, the attr argument may be NULL.

This work is copyrighted by Stewart Weiss and licensed under the Creative Commons Attribution-

ShareAlike 4.0 International License.
14

http://creativecommons.org/licenses/by-sa/4.0/ 
http://creativecommons.org/licenses/by-sa/4.0/ 


UNIX Lecture Notes
Chapter 10 Threads

Prof. Stewart Weiss

In both cases, the mutex is initially unlocked. The call

pthread_mutex_init(&mutex, NULL);

is equivalent to the static method except that no error-checking is done.

10.6.3 Locking a Mutex

To lock a mutex, one uses one of the functions

int pthread_mutex_lock(pthread_mutex_t *mutex);

int pthread_mutex_trylock(pthread_mutex_t *mutex);

We will begin with pthread_mutex_lock(). The semantics of this function are a bit complex,
in part because there are di�erent types of mutexes. Here we describe the semantics of normal
mutexes, which are the default type, PTHREAD_MUTEX_NORMAL.

If the mutex is not locked, the call returns with the mutex object referenced by mutex in the locked
state with the calling thread as its owner. The return value will be 0. If the mutex is already locked
by another thread, this call will block the calling thread until the mutex is unlocked. If a thread
tries to lock a mutex that it has already locked, it causes deadlock. If a thread attempts to unlock
a mutex that it has not locked or a mutex which is unlocked, unde�ned behavior results. We will
discuss the other types of mutexes later.

In short, if several threads try to lock a mutex only one thread will be successful. The other threads
will be in a blocked state until the mutex is unlocked by its owner.

If a signal is delivered to a thread that is blocked on a mutex, when the thread returns from the
signal handler, it resumes waiting for the mutex as if it had not been interrupted.

The pthread_mutex_trylock() function behaves the same as the pthread_mutex_lock() function
except that it never blocks the calling thread. Speci�cally, if the mutex is unlocked, the calling
thread acquires it and the function returns a 0, and if the mutex is already locked by any thread,
the function returns the error value EBUSY.

10.6.4 Unlocking a Mutex

The call to unlock a mutex is

int pthread_mutex_unlock(pthread_mutex_t *mutex);

The pthread_mutex_unlock() function will unlock a mutex if it is called by the owning thread.
If a thread that does not own the mutex calls this function, it is an error. It is also an error to
call this function if the mutex is not locked. If there are threads blocked on the mutex object
referenced by mutex when pthread_mutex_unlock() is called, resulting in the mutex becoming
available, the scheduling policy determines which thread next acquires the mutex. If the mutex is a
normal mutex that used the default initialization, there is no speci�c thread scheduling policy, and
the underlying kernel scheduler makes the decision. The behavior of this function for non-normal
mutexes is di�erent.
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10.6.5 Destroying a Mutex

When a mutex is no longer needed, it should be destroyed using

int pthread_mutex_destroy(pthread_mutex_t *mutex);

The pthread_mutex_destroy() function destroys the mutex object referenced by mutex; the mutex
object becomes uninitialized. The results of referencing the mutex object after it has been destroyed
are unde�ned. A destroyed mutex object can be reinitialized using pthread_mutex_init().

10.6.6 Examples Using a Normal Mutex

Two examples will show how threads can use mutexes to protect their updates to a shared, global
variable. The �rst example will demonstrate how multiple threads can increment a shared counter
that serves as an index into a global array, so that no two threads access the same array element.
Each thread will then modify that array element. In the second example, the update to the shared
variable is on the back-end of the problem. Each thread is given an equal-size segment of two arrays,
computes a function of this pair of segments, and adds the value of that function to a shared, global
accumulator.

Example 1

Suppose that we want a function which, when given an integer N and an array roots of size N,
stores the square roots of the �rst N non-negative integers into roots. A sequential version of this
function would execute a loop of the form

for ( i = 0; i < N; i++ )

roots[i] = sqrt(i);

To make this program run faster when there are multiple processors available, we distribute the work
among multiple threads. Let P be the number of threads that will jointly solve this problem. Each
thread will compute the square roots of a set of N/P integers. These integers are not necessarily
consecutive. The idea is that each thread concurrently iterates a loop N times, incrementing a
shared, global counter mutually exclusively in each iteration. In each iteration, the thread computes
the square root of the current counter value and stores it in an array of roots at the position indexed
by the counter value.

The program is in Listing 10.4. All of the multi-threading is opaque to the main program because
it is encapsulated in a function. This way it can be ported easily to a di�erent application.

To simplify the program, the array size and number of threads are hard-coded as macros in the
program. This is easily changed.

Listing 10.4: A multi-threaded program to compute the �rst N square roots.

#inc lude <uni s td . h>
#inc lude <s td i o . h>
#inc lude <s t d l i b . h>
#inc lude <s t r i n g . h>
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#inc lude <sys / types . h>
#inc lude <pthread . h>
#inc lude <errno . h>
#inc lude <math . h>

#de f i n e NUM_THREADS 20 /∗ Number o f threads ∗/
#de f i n e NUMS_PER_THREAD 50 /∗ Number o f r oo t s per thread ∗/
#de f i n e SIZE (NUM_THREADS∗NUMS_PER_THREAD) /∗ Total r oo t s to compute ∗/

/∗ Declare a s t r u c tu r e to pass mu l t ip l e v a r i a b l e s to the threads in the
pthread_create ( ) func t i on and f o r the thread rou t in e to a c c e s s in i t s s i n g l e
argument .

∗/
typede f s t r u c t _thread_data
{

i n t count ; /∗ shared counter , incremented by eacxh thread ∗/
i n t s i z e ; /∗ l ength o f the roo t s array ∗/
i n t nums_per_thread ; /∗ number o f r oo t s computed by each thread ∗/
double ∗ r oo t s ; /∗ po in t e r to the roo t s array ∗/

} thread_data ;

pthread_mutex_t update_mutex ; /∗ Declare a g l oba l mutex ∗/

/∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
Thread and Helper Functions

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/

/∗∗ handle_error (num, mssge )
∗ A convenient e r r o r handl ing func t i on
∗ Pr in t s to standard e r r o r the system message a s s o c i a t ed with errno num
∗ as we l l as a custom message , and then e x i t s the program with EXIT_FAILURE
∗/
void handle_error ( i n t num, char ∗mssge )
{

errno = num;
pe r ro r (mssge ) ;
e x i t (EXIT_FAILURE) ;

}

/∗∗ calc_square_roots ( )
∗ A thread rout in e that c a l c u l a t e s the square r oo t s o f N i n t e g e r s
∗ and s t o r e s them in an array . The i n t e g e r s are not n e c e s s a r i l y cons e cu t i v e ;
∗ as i t depends how the threads are scheduled .
∗ @param [ out ] double data−>roo t s [ ] i s the array in which to s t o r e the roo t s
∗ @param [ inout ] i n t data−>count i s the f i r s t i n t e g e r whose root should be
∗ c a l c u l a t ed
∗ This increments data−>count N times .
∗
∗ Loops to waste time a b i t so that the threads may be scheduled out o f order .
∗/
void ∗ calc_square_roots ( void ∗ data )
{
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i n t i , j ;
i n t temp ;
i n t s i z e ;
i n t nums_to_compute ;
thread_data ∗ t_data = ( thread_data ∗) data ;

s i z e = t_data−>s i z e ;
nums_to_compute = t_data−>nums_per_thread ;

f o r ( i = 0 ; i < nums_to_compute ; i++ ) {
pthread_mutex_lock (&update_mutex ) ; /∗ l o ck mutex ∗/
temp = t_data−>count ;
t_data−>count = temp + 1 ;
pthread_mutex_unlock (&update_mutex ) ; /∗ unlock mutex ∗/

/∗ updating the array can be done out s id e o f the CS s i n c e temp i s
a l o c a l v a r i ab l e to the thread . ∗/

t_data−>roo t s [ temp ] = sq r t ( temp ) ;

/∗ i d l e loop ∗/
f o r ( j = 0 ; j < 1000 ; j++ )

;
}
pthread_exit ( NULL ) ;

}

/∗∗ compute_roots ( )
∗ computes the square r oo t s o f the f i r s t num_threads∗ roots_per_thread many
∗ i n t e g e r s . I t h ide s the f a c t that i t uses mu l t ip l e threads to do t h i s .
∗/
void compute_roots ( double s q r t s [ ] , i n t s i z e , i n t num_threads )
{

pthread_t threads [ num_threads ] ;
i n t t ;
i n t r e t v a l ;
s t a t i c thread_data t_data ;

t_data . count = 0 ;
t_data . s i z e = s i z e ;
t_data . nums_per_thread = s i z e / num_threads ;
t_data . r oo t s = &sq r t s [ 0 ] ;

/∗ I n i t i a l i z e the mutex ∗/
pthread_mutex_init(&update_mutex , NULL) ;

/∗ I n i t i a l i z e task_data f o r each thread and then c r ea t e the thread ∗/
f o r ( t = 0 ; t < num_threads ; t++) {

r e t v a l = pthread_create(&threads [ t ] , NULL, calc_square_roots ,
( void ∗) &t_data ) ;

i f ( r e t v a l )
handle_error ( r e tva l , " pthread_create " ) ;

}

/∗ Join a l l threads and then pr i n t sum ∗/
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f o r ( t = 0 ; t < num_threads ; t++)
pthread_join ( threads [ t ] , ( void ∗∗) NULL) ;

}

/∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
Main Program

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/

i n t main ( i n t argc , char ∗argv [ ] )
{

i n t t ;
double r oo t s [ SIZE ] ;

memset ( ( void ∗) &roo t s [ 0 ] , 0 , SIZE ∗ s i z e o f ( double ) ) ;
compute_roots ( roots , SIZE , NUM_THREADS ) ;

f o r ( t = 0 ; t < SIZE ; t++)
p r i n t f (" Square root o f %5d i s %6.3 f \n" , t , r oo t s [ t ] ) ;

r e turn 0 ;

}

A slightly di�erent approach to this program is to allow each thread to compute as many roots as it
can, as if the threads were in a race with each other. If the threads were scheduled on asymmetric
processors, some being much faster than others, or if some threads had faster access to memory
than others, so that they could do more work per unit time, then it would be advantageous to let
these threads do more, rather than limiting them to a �xed number of roots to compute. This is
the basis for the variation of calc_square_roots() from Listing 10.4 found in Listing 10.5.

The function in Listing 10.5 lets each thread iterate from 0 to size but it checks in each iteration
whether the value of the counter has exceeded the array size, and if it has, that thread terminates.
It has an extra feature that is used by the main program and requires a bit of extra code outside fo
the function � it stores the id of the thread that computed the root in a global array that can be
printed to see how uniformly the work was distributed.

Listing 10.5: A �greedy� thread function.

/∗
This func t i on a l s o s t o r e s the id o f the thread that computed each root in a
g l oba l array so that the main program can pr in t these r e s u l t s . I f i t did not
do th i s , the re would be no need f o r the l i n e s marked with /∗∗∗∗∗ .

∗/
void ∗ calc_square_roots ( void ∗ data )
{

i n t i , j ;
i n t temp ; /∗ l o c a l copy o f counter ∗/
i n t s i z e ; /∗ l o c a l copy o f s i z e o f r oo t s array ∗/
i n t nums_to_compute ; /∗ l o c a l copy o f number o f r oo t s to compute ∗/
thread_data ∗ t_data = ( thread_data ∗) data ;
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i n t my_id ; /∗∗∗∗∗∗ unique id f o r t h i s thread ∗/

/∗ Copy to l o c a l c op i e s f o r f a s t e r a c c e s s ∗/
s i z e = t_data−>s i z e ;
nums_to_compute = t_data−>nums_per_thread ;

/∗ Each thread ge t s a unique thread_id by l o ck ing t h i s mutex , captur ing the
cur r ent va lue o f t id , a s s i gn i ng i t to i t s own l o c a l v a r i ab l e and then
increment ing i t .

∗/
pthread_mutex_lock (&id_mutex ) ; /∗∗∗∗∗∗ l o ck mutex ∗/
my_id = t i d ; /∗∗∗∗∗∗ copy cur rent t i d to l o c a l my_id ∗/
t i d++; /∗∗∗∗∗∗ increment t i d f o r next thread ∗/
pthread_mutex_unlock (&id_mutex ) ; /∗∗∗∗∗∗ unlock mutex ∗/

i = 0 ;
whi l e ( i < s i z e ) {

pthread_mutex_lock (&update_mutex ) ; /∗ l o ck mutex ∗/
temp = t_data−>count ;
t_data−>count = temp + 1 ;
pthread_mutex_unlock (&update_mutex ) ; /∗ unlock mutex ∗/

/∗ Check i f the counter exceeds the roo t s array s i z e ∗/
i f ( temp >= s i z e )

break ;

/∗ updating the ar rays can be done out s id e o f the CS s i n c e temp and
my_id are l o c a l v a r i a b l e s to the thread . ∗/

t_data−>roo t s [ temp ] = sq r t ( temp ) ;

/∗ Store the id o f the thread that j u s t computed t h i s root . ∗/
computed_by [ temp ] = my_id ; /∗∗∗∗∗∗ s t o r e the id ∗/

/∗ i d l e loop ∗/
f o r ( j = 0 ; j < 1000 ; j++ )

;
i++;

}
pthread_exit ( NULL ) ;

}

Example 2

The second example, in Listing 10.6, computes the inner product of two vectors V and W by
partitioning V and W into subvectors of equal sizes and giving the subproblems to separate threads.
Assume for simplicity that V andW are each of length N and that the number of threads, P , divides
N without remainder and let s = N/P. The actual code does not assume anything about N and

This work is copyrighted by Stewart Weiss and licensed under the Creative Commons Attribution-

ShareAlike 4.0 International License.
20

http://creativecommons.org/licenses/by-sa/4.0/ 
http://creativecommons.org/licenses/by-sa/4.0/ 


UNIX Lecture Notes
Chapter 10 Threads

Prof. Stewart Weiss

P . The main program creates P threads, with ids 0, 1, 2, ... P − 1. The thread with id k computes
the inner product of V [k · s · · · (k + 1) · s − 1] and W [k · s · · · (k + 1) · s − 1] and stores the result
in a temporary variable, temp_sum. It then locks a mutex and adds this partial sum to the global
variable sum and unlocks the mutex afterward.

This example uses the technique of declaring the vectors and the sum as static locals in the main
program.

Listing 10.6: Mutex example: Computing the inner product of two vectors.

#inc lude <pthread . h>
#inc lude <s td i o . h>
#inc lude <s t d l i b . h>
#inc lude <s t r i n g . h>
#inc lude < l i b i n t l . h>
#inc lude <l o c a l e . h>
#inc lude <math . h>
#inc lude <errno . h>

#de f i n e NUM_THREADS 20

typede f s t r u c t _task_data
{

i n t f i r s t ;
i n t l a s t ;
double ∗a ;
double ∗b ;
double ∗sum ;

} task_data ;

pthread_mutex_t mutexsum ; /∗ Declare the mutex g l o b a l l y ∗/

/∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
Thread and Helper Functions

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/
void usage ( char ∗ s )
{

char ∗p = s t r r c h r ( s , ' / ' ) ;
f p r i n t f ( s tde r r ,

" usage : %s l ength d a t a f i l e 1 d a t a f i l e 2 \n" , p ? p + 1 : s ) ;
}

void handle_error ( i n t num, char ∗mssge )
{

errno = num;
pe r ro r (mssge ) ;
e x i t (EXIT_FAILURE) ;

}

/∗∗
This func t i on computes the inner product o f the sub−vec to r s
thread_data−>a [ f i r s t . . l a s t ] and thread_data−>b [ f i r s t . . l a s t ] ,
adding that sum to thread_data−>sum with in the c r i t i c a l s e c t i o n
protec t ed by the shared mutex .
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∗/
void ∗ inner_product ( void ∗ thread_data )
{

task_data ∗ t_data ;
i n t k ;
double temp_sum = 0 ;

t_data = ( task_data ∗) thread_data ;

f o r ( k = t_data−>f i r s t ; k <= t_data−>l a s t ; k++ )
temp_sum += t_data−>a [ k ] ∗ t_data−>b [ k ] ;

pthread_mutex_lock (&mutexsum ) ;
∗( t_data−>sum) += temp_sum ;
pthread_mutex_unlock (&mutexsum ) ;

pthread_exit ( ( void ∗) 0 ) ;
}

/∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
Main Program

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/

i n t main ( i n t argc , char ∗argv [ ] )
{

s t a t i c double ∗a_vector ;
s t a t i c double ∗b_vector ;
FILE ∗ fp ;
f l o a t x ;
i n t num_threads = NUM_THREADS;
i n t l ength ;
i n t segment_size ;
s t a t i c double t o t a l ;
i n t k ;
i n t r e t v a l ;
i n t t ;
pthread_t ∗ threads ;
task_data ∗ thread_data ;
pthread_attr_t a t t r ;

i f ( argc < 4 ) { /∗ Check usage ∗/
usage ( argv [ 0 ] ) ;
e x i t ( 1 ) ;

}

/∗ Get command l i n e args , no input va l i d a t i o n here ∗/
l ength = a to i ( argv [ 1 ] ) ;
a_vector = c a l l o c ( length , s i z e o f ( double ) ) ;
b_vector = c a l l o c ( length , s i z e o f ( double ) ) ;

/∗ Zero the two vec to r s ∗/
memset ( a_vector , 0 , l ength ∗ s i z e o f ( double ) ) ;
memset ( b_vector , 0 , l ength ∗ s i z e o f ( double ) ) ;
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/∗ Open the f i r s t f i l e , do check f o r f a i l u r e and read the numbers
from the f i l e . Assume that i t i s in proper format

∗/
i f ( NULL == ( fp = fopen ( argv [ 2 ] , " r " ) ) )

handle_error ( errno , " fopen " ) ;
k = 0 ;
whi l e ( ( f s c a n f ( fp , " %f " , &x) > 0 ) && (k < length ) )

a_vector [ k++] = x ;
f c l o s e ( fp ) ;

/∗ Open the second f i l e , do check f o r f a i l u r e and read the numbers
from the f i l e . Assume that i t i s in proper format

∗/
i f ( NULL == ( fp = fopen ( argv [ 3 ] , " r " ) ) )

handle_error ( errno , " fopen " ) ;
k = 0 ;
whi l e ( ( f s c a n f ( fp , " %f " , &x) > 0 ) && (k < length ) )

b_vector [ k++] = x ;
f c l o s e ( fp ) ;

/∗ Al l o ca t e the array o f threads and task_data s t r u c t u r e s ∗/
threads = c a l l o c ( num_threads , s i z e o f ( pthread_t ) ) ;
thread_data = c a l l o c ( num_threads , s i z e o f ( task_data ) ) ;
i f ( threads == NULL | | thread_data == NULL )

e x i t ( 1 ) ;

/∗ Compute the s i z e each thread w i l l get ∗/
segment_size = ( i n t ) c e i l ( l ength ∗1 .0 / num_threads ) ;

/∗ I n i t i a l i z e the mutex ∗/
pthread_mutex_init(&mutexsum , NULL) ;

/∗ Get ready −− i n i t i a l i z e the thread a t t r i b u t e s ∗/
pthread_attr_init (&a t t r ) ;
pthread_attr_setdetachstate (&attr , PTHREAD_CREATE_JOINABLE) ;

/∗ I n i t i a l i z e task_data f o r each thread and then c r ea t e the thread ∗/
f o r ( t = 0 ; t < num_threads ; t++) {

thread_data [ t ] . f i r s t = t ∗ segment_size ;
thread_data [ t ] . l a s t = ( t+1)∗ segment_size −1;
i f ( thread_data [ t ] . l a s t > length −1 )

thread_data [ t ] . l a s t = length − 1 ;
thread_data [ t ] . a = &a_vector [ 0 ] ;
thread_data [ t ] . b = &b_vector [ 0 ] ;
thread_data [ t ] . sum = &to t a l ;

r e t v a l = pthread_create(&threads [ t ] , &att r , inner_product ,
( void ∗) &thread_data [ t ] ) ;

i f ( r e t v a l )
handle_error ( r e tva l , " pthread_create " ) ;

}
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/∗ Join a l l threads and pr in t sum ∗/
f o r ( t = 0 ; t < num_threads ; t++) {

pthread_join ( threads [ t ] , ( void ∗∗) NULL) ;
}

p r i n t f ("The array t o t a l i s %8.2 f \n" , t o t a l ) ;

/∗ Free a l l memory a l l o c a t e d to program ∗/
f r e e ( threads ) ;
f r e e ( thread_data ) ;
f r e e ( a_vector ) ;
f r e e ( b_vector ) ;

r e turn 0 ;
}

10.6.7 Other Types of Mutexes

The type of a mutex is determined by the mutex attribute structure used to initialize it. There are
four possible mutex types:

PTHREAD_MUTEX_NORMAL

PTHREAD_MUTEX_ERRORCHECK

PTHREAD_MUTEX_RECURSIVE

PTHREAD_MUTEX_DEFAULT

The default type is always PTHREAD_MUTEX_DEFAULT, which is usually equal to PTHREAD_MUTEX_NORMAL.
To set the type of a mutex, use

int pthread_mutexattr_settype(pthread_mutexattr_t *attr, int type);

passing a pointer to the mutexattr structure and the type to which it should be set. Then you can
use this mutexattr structure to initialize the mutex.

There is no function that, given a mutex, can determine the type of that mutex. The best one can
do is to call

int pthread_mutexattr_gettype(const pthread_mutexattr_t *restrict attr,

int *restrict type);

which retrieves the mutex type from a mutexattr structure. But, since there is no function that
retrieves the mutexattr structure of a mutex, if you need to retrieve the type of the mutex, you
must access the mutexattr structure that was used to initialize the mutex to know the mutex type.

When a normal mutex is accessed incorrectly, unde�ned behavior or deadlock result, depending
on how the erroneous access took place. A thread will deadlock if it attempts to re-lock a mutex
that it already holds. But if the mutex type is PTHREAD_MUTEX_ERRORCHECK, then error checking
takes place instead of deadlock or unde�ned behavior. Speci�cally, if a thread attempts to re lock a
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mutex that it has already locked, the EDEADLK error is returned, and if a thread attempts to unlock
a mutex that it has not locked or a mutex which is unlocked, an error is also returned.

Recursive mutexes, i.e., those of type PTHREAD_MUTEX_RECURSIVE, can be used when threads invoke
recursive functions. Basically, the mutex maintains a counter. When a thread �rst acquires the lock,
the counter is set to one. Unlike a normal mutex, when a recursive mutex is relocked, rather than
deadlocking, the call succeeds and the counter is incremented. A thread can continue to re-lock the
mutex, up to some system-de�ned number of times. Each call to unlock the mutex by that same
thread decrements the counter. When the counter reaches zero, the mutex is unlocked and can be
acquired by another thread. Until the counter is zero, all other threads attempting to acquire the
lock will be blocked on calls to pthread_mutex_lock(). A thread attempting to unlock a recursive
mutex that another thread has locked is returned an error. A thread attempting to unlock an
unlocked recursive mutex also receives an error.

Listing 10.7 contains an example of a program with a recursive mutex. It does not do anything
other than print some diagnostic messages.

Listing 10.7: A program that uses a recursive mutex.

#inc lude <pthread . h>
#inc lude <s td i o . h>
#inc lude <s t d l i b . h>

#de f i n e NUM_THREADS 5 /∗ Fixed number o f threads ∗/

pthread_mutex_t mutex ;
i n t counter = 0 ;

void bar ( i n t t i d ) ;

void foo ( i n t t i d )
{

pthread_mutex_lock(&mutex ) ;
p r i n t f ("Thread %d : In foo ( ) ; mutex locked \n" , t i d ) ;
counter++;
p r i n t f ("Thread %d : In foo ( ) ; counter = %d\n" , t id , counter ) ;
bar ( t i d ) ;
pthread_mutex_unlock(&mutex ) ;
p r i n t f ("Thread %d : In foo ( ) ; mutex unlocked \n" , t i d ) ;

}

void bar ( i n t t i d )
{

pthread_mutex_lock(&mutex ) ;
p r i n t f ("Thread %d : In bar ( ) ; mutex locked \n" , t i d ) ;
counter = 2∗ counter ;
p r i n t f ("Thread %d : In bar ( ) ; counter = %d\n" , t id , counter ) ;
pthread_mutex_unlock(&mutex ) ;
p r i n t f ("Thread %d : In bar ( ) ; mutex unlocked \n" , t i d ) ;

}

void ∗ thread_rout ine ( void ∗ data )
{

i n t t = ( i n t ) data ;
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f oo ( t ) ;
pthread_exit (NULL) ;

}

/∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
Main Program

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/

i n t main ( i n t argc , char ∗argv [ ] )
{

i n t r e t v a l ;
i n t t ;
pthread_t threads [NUM_THREADS] ;
pthread_mutexattr_t a t t r ;

pthread_mutexattr_settype(&attr , PTHREAD_MUTEX_RECURSIVE) ;
pthread_mutex_init(&mutex , &a t t r ) ;

/∗ I n i t i a l i z e task_data f o r each thread and then c r ea t e the thread ∗/
f o r ( t = 0 ; t < NUM_THREADS; t++) {

i f ( 0 != pthread_create(&threads [ t ] , NULL, thread_routine ,
( void ∗) t ) ) {

pe r ro r (" Creat ing thread " ) ;
e x i t (EXIT_FAILURE) ;

}
}

f o r ( t = 0 ; t < NUM_THREADS; t++)
pthread_join ( threads [ t ] , ( void ∗∗) NULL) ;

re turn 0 ;
}

10.7 Condition Variables

Mutexes are not su�cient to solve all synchronization problems e�ciently. One problem is that they
do not provide a means for one thread to signal another2. Consider the classical producer/consumer
problem. In this problem, there are one or more �producer� threads that produce data that they
place into a shared, �nite bu�er, and one or more �consumer� threads that consume the data in that
bu�er. We think of the data as being consumed because once it is read, no other thread should be
able to read it; it is discarded, like the data in a pipe or a socket.

Suppose that the data chunks are �xed size and that the bu�er can store N chunks. A consumer
thread needs to be able to retrieve a data chunk from the bu�er as long as one available, but if the
bu�er is empty, it should wait until one becomes available. Although it is possible for a consumer
to busy-wait in a loop, continuously checking whether the bu�er is non-empty, this is an ine�cient

2In case you are thinking that a call to pthread_mutex_unlock() can be used to signal another thread that is

waiting on a mutex, recall that this is not the way that a mutex can be used. The speci�cation states that if a thread

tries to unlock a mutex that it has not locked, unde�ned behavior results.
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solution that wastes CPU cycles. Therefore, a consumer should block itself if the bu�er is empty.
Similarly, a producer thread should be able to write a chunk into the bu�er if it is not full but
otherwise block until a consumer removes a chunk.

These two bu�er-full and bu�er-empty conditions require that consumers be able to signal producers
and vice versa when the bu�er changes state from empty to non-empty and full to non-empty. In
short, this type of problem requires that threads have the ability to signal other threads when
certain conditions hold.

Condition variables solve this problem. They allow threads to wait for certain conditions to occur
and to signal other threads that are waiting for the same or other conditions. Consider the version
of the producer/consumer problem with a single producer and a single consumer. The producer
thread would need to execute something like the following pseudo-code:

1. generate data to store into the bu�er

2. try to lock a mutex

3. if the bu�er is full

4. atomically release the mutex and wait for the condition �bu�er is not full�

5. when the bu�er is not full:

6. re-acquire the mutex lock

7. add the data to the bu�er

8. unlock the mutex

9. signal the consumer that there is data in the bu�er

Steps 4, 5, and 9 involve condition variables. The above pseudo-code would become

generate data_chunk to store into the buffer ;

pthread_mutex_lock(&buffer_mutex);

if ( buffer_is_full() ) {

pthread_cond_wait(&buffer_has_space, &buffer_mutex);

}

add data chunk to buffer;

pthread_mutex_unlock(&region_mutex);

pthread_cond_signal(&data_is_available);

The logic of the above code is that

1. A producer �rst locks a mutex to access the shared bu�er. It may get blocked at this point
if the mutex is locked already, but eventually it acquires the lock and advances to the if-
statement.

2. In the if-statement, it then tests whether the boolean predicate �bu�er_is_full� is true.

3. If so, it blocks itself on a condition variable named buffer_has_space. Notice that the call
to block on a condition variable has a second argument which is a mutex. This is important.
Condition variables are only used in conjunction with mutexes. When the thread calls this
function, the mutex lock is taken away from it, freeing the lock, and the thread instead gets
blocked on the condition variable.
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4. Now assume that when a consumer empties a slot in the bu�er, it issues a signal on the
condition variable buffer_has_space. When this happens, the producer is woken up and
re-acquires the mutex in a single atomic step. In other words, the magic of the condition
variable is that when a process is blocked on it and is later signaled, it is given back the lock
that was taken away from it.

5. The producer thread next adds its data to the bu�er, unlocks the mutex, and signals the
condition variable data_is_available, which is a condition variable on which the consumer
might be waiting in case it tried to get data from an empty bu�er.

An important observation is that the thread waits on the condition variable buffer_has_space only
within the true-branch of the if-statement. A thread should make the call to pthread_cond_wait()
only when it has ascertained that the logical condition associated with the condition variable is
false (so that it is guaranteed to wait.) It should never call this unconditionally. Put another
way, associated with each condition variable is a programmer-de�ned boolean predicate that should
be evaluated to determine whether a thread should wait on that condition.

We now turn to the programming details.

10.7.1 Creating and Destroying Condition Variables

A condition variable is a variable of type pthread_cond_t. Condition variable initialization is
similar to mutex initialization. There are two ways to initialize a condition variable:

1. Statically, when it is declared, using the PTHREAD_COND_INITIALIZER macro, as in

pthread_cond_t condition = PTHREAD_COND_INITIALIZER;

2. Dynamically, with the pthread_cond_init() routine:

int pthread_cond_init(pthread_cond_t *restrict cond,

const pthread_condattr_t *restrict attr);

This function is given a pointer to a condition variable and to a condition attribute structure,
and initializes the condition variable to have the properties of that structure. If the attr

argument is NULL, the condition is given the default properties. Attempting to initialize an
already initialized condition variable results in unde�ned behavior.

The call

pthread_cond_init(&cond, NULL);

is equivalent to the static method except that no error-checking is done.

On success, pthread_cond_init() returns zero.

Because the condition variable must be accessed by multiple threads, it should either be global or
it should be passed by address into each thread's thread function. In either case, the main thread
should create it.

To destroy the condition variable, use
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int pthread_cond_destroy(pthread_cond_t *cond);

The pthread_cond_destroy() function destroys the given condition variable cond after which it
becomes, in e�ect, uninitialized. A thread can only destroy an initialized condition variable if no
threads are currently blocked on it. Attempting to destroy a condition variable upon which other
threads are currently blocked results in unde�ned behavior.

10.7.2 Waiting on Conditions

There are two functions that a thread can call to wait on a condition, an untimed wait and a timed
wait:

int pthread_cond_wait (pthread_cond_t *restrict cond,

pthread_mutex_t *restrict mutex);

int pthread_cond_timedwait(pthread_cond_t *restrict cond,

pthread_mutex_t *restrict mutex,

const struct timespec *restrict abstime);

Before a thread calls either of these functions, it must �rst lock the mutex argument, otherwise the
e�ect of the call is unde�ned. Calling either function causes the following two actions to take place
atomically:

1. mutex is released, and

2. the thread is blocked on the condition variable cond.

In the case of the untimed pthread_cond_wait(), the calling thread remains blocked in this call
until some other thread signals cond using either of the two signaling functions described in Section
10.7.3 below. The signal wakes up the blocked thread and the call returns with the value zero, with
mutex locked and owned by the now-unblocked thread.

In the case of pthread_cond_timedwait(), the calling thread remains blocked in this call until
either some other thread signals cond or the absolute time speci�ed by abstime is passed. In either
case the e�ect is the same as that of pthread_cond_wait(), but if the time speci�ed by abstime

is passed �rst, the call returns with the error ETIMEDOUT, otherwise it returns zero.

Condition variables hold no state; they have no record of how many signals have been received at
any given time. Therefore, if a thread T1 signals a condition cond before another thread T2 issues
a wait on cond, thread T2 will still wait on cond because the signal will have been lost; it is not
saved. Only a signal that arrives after a thread has called one of the wait functions can wake up
that calling thread. This is why we need to clarify the sense in which pthread_cond_wait() is
atomic.

When a thread T calls pthread_cond_wait(), the mutex is unlocked and then the thread is blocked
on the condition variable. It is possible for another thread to acquire the mutex after thread T has
released it, but before it is blocked. If a thread signals this condition variable after this mutex has
been acquired by another thread, then thread T will respond to the signal as if it had taken place
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after it had been blocked. This means that it will re-acquire the mutex as soon as it can and the
call will return.

The fact that a thread returns from a wait on a condition variable does not imply anything about
the boolean predicate associated with this condition variable. It might be true or false. This is
because a thread can return from a call to either of these functions due to a spurious wakeup. A
spurious wakeup might occur, for example, if a signal is delivered to the blocked thread. It can
also occur under certain conditions when a multi-threaded program is running on a multiprocessor.
Therefore, calls to wait on condition variables should be inside a loop, not in a simple if statement.
For example, the above producer code should properly be written as

generate data_chunk to store into the buffer ;

pthread_mutex_lock(&buffer_mutex);

while ( buffer_is_full() ) {

pthread_cond_wait(&buffer_has_space, &buffer_mutex);

}

add data chunk to buffer;

pthread_mutex_unlock(&region_mutex);

pthread_cond_signal(&data_is_available);

It is in general safer to code with a loop rather than an if-statement, because if you made a logic error
elsewhere in your code and it is possible that a thread can be signaled even though the associated
predicate is not true, then the loop prevents the thread from being woken up erroneously.

10.7.3 Waking Threads Blocked on Conditions

A thread can send a signal on a condition variable in one of two ways:

int pthread_cond_broadcast(pthread_cond_t *cond);

int pthread_cond_signal(pthread_cond_t *cond);

Both of these functions unblock threads that are blocked on a condition variable. The di�erence is
that pthread_cond_signal() unblocks (at least) one of the threads that are blocked on the con-
dition variable whereas pthread_cond_broadcast() unblocks all threads blocked by the condition
variable. Under normal circumstances, pthread_cond_signal() will unblock a single thread, but
implementations of this function may inadvertently wake up more than one, if more than one are
waiting. Both return zero on success or an error code on failure.

Other points to remember about these two functions include:

• When multiple threads blocked on a condition variable are all unblocked by a broadcast, the
order in which they are unblocked depends upon the scheduling policy. As noted in Section
10.7.2 above, when they become unblocked, they re-acquire the mutex associated with the
condition variable. Therefore, the order in which they re-acquire the mutex is dependent on
the scheduling policy.

• Although any thread can call pthread_cond_signal(&cond) or pthread_cond_broadcast(&cond)
, only a thread that has locked the mutex associated with the condition variable cond should
make this call, otherwise the scheduling of threads will be unpredictable, even knowing the
scheduling policy.
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10.7.4 Condition Attributes

The only attributes that conditions have are the process-shared attribute and the clock attribute.
These are advanced topics that are not covered here. There are several functions related to condition
attributes, speci�cally the getting and setting of these properties, and they are described by the
respective man pages:

int pthread_condattr_destroy ( pthread_condattr_t *attr);

int pthread_condattr_init ( pthread_condattr_t *attr);

int pthread_condattr_getclock ( const pthread_condattr_t *restrict attr,

clockid_t *restrict clock_id);

int pthread_condattr_setclock ( pthread_condattr_t *attr,

clockid_t clock_id);

int pthread_condattr_getpshared( const pthread_condattr_t *restrict attr,

int *restrict pshared);

int pthread_condattr_setpshared( pthread_condattr_t *attr,

int pshared);

10.7.5 Example

Listing 10.8 contains a multi-threaded solution to the single-producer/single-consumer problem that
uses a mutex and two condition variables. For simplicity, it is designed to terminate after a �xed
number of iterations of each thread. It sends output messages to a �le named prodcons_mssges

in the working directory. The bu�er routines add a single integer and remove a single integer from
a shared global bu�er. The calls to these functions in the producer and consumer are within the
region protected by the mutex buffer_mutex.

The consumer logic is a bit more complex because the producer may exit when the bu�er is empty.
Therefore, the consumer thread has to check whether the producer is still alive before it blocks
itself on the condition data_available, otherwise it will hang forever without terminating, and so
will main().

It is not enough for the producer to set the �ag producer_exists to zero when it exits, because
the consumer might check its value just prior to the producer's setting it to zero, and seeing pro-
ducer_exists == 1, block itself on the data_available condition. That is why the producer executes
the lines

pthread_mutex_lock(&buffer_mutex);

producer_exists = 0;

pthread_cond_signal(&data_available);

pthread_mutex_unlock(&buffer_mutex);

when it exits. It �rst locks the bu�er_mutex. If the consumer holds the lock, it will block until the
consumer releases the lock. This implies that either the consumer has just acquired the mutex and
is about to block itself on the data_available condition or that it is getting data from the bu�er and
will unlock the mutex soon. In either case, the consumer will release the lock and the producer will
set producer_exists to zero and then signal data_available. If the consumer was about to block
itself on data_available, then the signal will wake it up, it will see that producer_exists is zero, and
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it will exit. If it was getting data from the bu�er and then released the mutex lock, after which the
producer acquired it, then when it gets it again, producer_exists will be zero, and it will exit if the
bu�er is empty.

Listing 10.8: Single-producer/single-consumer multithreaded program.

#inc lude <sys / time . h>
#inc lude <sys / types . h>
#inc lude <s td i o . h>
#inc lude <pthread . h>
#inc lude <s t d l i b . h>
#inc lude <errno . h>

/∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
Global , Shared Data

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/

#de f i n e NUM_ITERATIONS 500 /∗ number o f l oops each thread i t e r a t e s ∗/
#de f i n e BUFFER_SIZE 20 /∗ s i z e o f bu f f e r ∗/

/∗ buffer_mutex c on t r o l s bu f f e r a c c e s s ∗/
pthread_mutex_t buffer_mutex = PTHREAD_MUTEX_INITIALIZER;

/∗ space_ava i l ab l e i s a cond i t i on that i s t rue when the bu f f e r i s not f u l l ∗/
pthread_cond_t space_ava i l ab l e = PTHREAD_COND_INITIALIZER;

/∗ data_ava i lab le i s a cond i t i on that i s t rue when the bu f f e r i s not empty ∗/
pthread_cond_t data_ava i lab le = PTHREAD_COND_INITIALIZER;

i n t producer_ex i s t s ; /∗ t rue when producer i s s t i l l running ∗/
FILE ∗ fp ; /∗ l og f i l e po in t e r f o r messages ∗/

/∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
Buf f e r Object

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/

i n t bu f f e r [BUFFER_SIZE ] ; /∗ the bu f f e r o f data −− j u s t i n t s here ∗/
i n t bu f s i z e ; /∗ number o f f i l l e d s l o t s in bu f f e r ∗/

void add_buffer ( i n t data )
{

s t a t i c i n t r ea r = 0 ;
bu f f e r [ r ea r ] = data ;
r ea r = ( r ea r + 1) % BUFFER_SIZE;
bu f s i z e++;

}

i n t get_buf fe r ( )
{

s t a t i c i n t f r on t = 0 ;
i n t i ;
i = bu f f e r [ f r on t ] ;
f r on t= ( f r on t + 1) % BUFFER_SIZE;
bu f s i z e −−;
r e turn i ;
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}

/∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
Error Handling Function

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/

void handle_error ( i n t num, char ∗mssge )
{

errno = num;
pe r ro r (mssge ) ;
e x i t (EXIT_FAILURE) ;

}

/∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
Thread Functions

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/

void ∗producer ( void ∗ data )
{

i n t i ;
f o r ( i = 1 ; i <= NUM_ITERATIONS; i++ ) {

pthread_mutex_lock(&buffer_mutex ) ;
whi l e ( BUFFER_SIZE == bu f s i z e ) {

pthread_cond_wait(&space_avai lab le ,&buffer_mutex ) ;
}
add_buffer ( i ) ;
f p r i n t f ( fp , " Producer added %d to bu f f e r ; bu f f e r s i z e = %d .\ n" ,

i , b u f s i z e ) ;
pthread_cond_signal(&data_ava i lab le ) ;
pthread_mutex_unlock(&buffer_mutex ) ;

}

pthread_mutex_lock(&buffer_mutex ) ;
producer_ex i s t s = 0 ;
pthread_cond_signal(&data_ava i lab le ) ;
pthread_mutex_unlock(&buffer_mutex ) ;

pthread_exit (NULL) ;
}

void ∗consumer ( void ∗ data )
{

i n t i ;
f o r ( i = 1 ; i <= NUM_ITERATIONS; i++ ) {

pthread_mutex_lock(&buffer_mutex ) ;
whi l e ( 0 == bu f s i z e ) {

i f ( producer_ex i s t s ) {
pthread_cond_wait(&data_avai lable ,&buffer_mutex ) ;

}
e l s e {

pthread_mutex_unlock(&buffer_mutex ) ;
pthread_exit (NULL) ;

}
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}
i = get_buf fe r ( ) ;
f p r i n t f ( fp , " Consumer got data element %d ; bu f f e r s i z e = %d .\ n" ,

i , b u f s i z e ) ;
pthread_cond_signal(&space_ava i l ab l e ) ;
pthread_mutex_unlock(&buffer_mutex ) ;

}
pthread_exit (NULL) ;

}

/∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
Main Program

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/

i n t main ( i n t argc , char ∗ argv [ ] )
{

pthread_t producer_thread ;
pthread_t consumer_thread ;

producer_ex i s t s = 1 ;
bu f s i z e = 0 ;

i f ( NULL == ( fp = fopen ( " . / prodcons_mssges " , "w") ) )
handle_error ( errno , "prodcons_mssges " ) ;

pthread_create(&consumer_thread , NULL, consumer , NULL) ;
pthread_create(&producer_thread , NULL, producer , NULL) ;

pthread_join ( producer_thread , NULL) ;
pthread_join ( consumer_thread , NULL) ;

f c l o s e ( fp ) ;
r e turn 0 ;

}

10.8 Barrier Synchronization

10.8.1 Motivation

Some types of parallel programs require that the individual threads or processes proceed in a lockstep
manner, each performing a task in a given phase and then waiting for all other threads to complete
their tasks before continuing to the next phase. This is typically due to mutual dependencies on
the data written during the previous phase by the threads. Many simulations have this property.
One simple example is a multithreaded version of Conway's Game of Life.

The Game of Life simulates the growth of a colony of organisms over time. Imagine a �nite, two-
dimensional grid in which each cell represents an organism. Time advances in discrete time steps,
t0, t1, t2, ad in�nitum. Whether or not an organism survives in cell (i, j) at time tk+1 depends on
how many organisms are living in the adjacent surrounding cells at time tk. Whether or not an
organism is born into an empty cell (i, j) is also determined by the state of the adjacent cells at the
given time. The exact rules are not relevant.
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A simple method of simulating the progression of states of the grid is to create a unique thread to
simulate each individual cell, and to create two grids, A and B, of the same dimensions. The initial
state of the population is assigned to grid A. At each time step tk, the thread responsible for cell
(i, j) would perform the following task:

1. For cell A[i,j], examine the states of each of its eight neighboring cells A[m,n] and set the value
of B[i,j] accordingly.

2. When all other cells have �nished their step 1, copy B[i,j] to A[i,j], and repeat steps 1 and 2.

Notice that this solution requires that each cell wait for all other cells to reach the same point in
the code. This could be achieved with a combination of mutexes and condition variables. The
main program would initialize the value of a counter variable, count, to zero. Assuming there are
N threads, each would execute a loop of the form

loop forever {

update cell (i,j);

pthread_mutex_lock (&update_mutex);

count++;

if ( count < N )

pthread_cond_wait(&all_threads_ready,&update_mutex);

/* count reached N so all threads proceed */

pthread_cond_broadcast( &all_threads_ready);

count --;

pthread_mutex_unlock (&update_mutex);

pthread_mutex_lock (&count_mutex);

if ( count > 0 )

pthread_cond_wait(&all_threads_at_start,&count_mutex);

pthread_cond_broadcast( &all_threads_at_start);

pthread_mutex_unlock (&count_mutex);

}

After each thread updates its cell, it tries to acquire a mutex named update_mutex. The cell that ac-
quires the mutex increments count and then waits on a condition variable named all_threads_ready
associated with the predicate count < N. As it releases update_mutex, the next thread does the
same, and so on until all but one thread has been blocked on the condition variable. Eventually
the Nth thread acquires the mutex, increments count and, �nding count == N, issues a broadcast
on all_threads_ready, unblocking all of the waiting threads, one by one.

One by one, each thread then decrements count. If each were allowed to cycle back to the top of the
loop, this code would not work, because one thread could quickly speed around, increment count
so that it equaled N again even though the others had not even started their updates. Instead, no
thread is allowed to go back to the top of the loop until count reaches zero. This is achieved by
using a second condition variable, all_threads_at_start. All threads will block on this condition
except the one that sets the value of count to zero when it decrements it. When that happens,
every thread is unblocked and they all start this cycle all over again.

Now as you can see, this adds so much serial code to the parallel algorithm that it defeats the purpose
of using multiple threads in the �rst place. In addition, it ignores the possibility of spurious wake-ups
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and would be even more complex if these were taken into account. Fortunately, there is a simpler
solution; the Pthread library has a barrier synchronization primitive that solves this synchronization
problem e�ciently and elegantly.

A barrier synchronization point is an instruction in a program at which the executing thread must
wait until all participating threads have reached that same point. If you have ever been in a guided
group of people being taken on a tour of a facility or an institution of some kind, then you might
have experienced this type of synchronization. The guide will wait for all members of the group
to reach a certain point, and only then will he or she allow the group to move to the next set of
locations.

10.8.2 PThreads Barriers

The Pthreads implementation of a barrier lets the programmer initialize the barrier to the number
of threads that must reach the barrier in order for it to be opened. A barrier is declared as a variable
of type pthread_barrier_t. The function to initialize a barrier is

int pthread_barrier_init(pthread_barrier_t *restrict barrier,

const pthread_barrierattr_t *restrict attr, unsigned count);

It is given the address of a barrier, the address of a barrier attribute structure, which may be NULL
to use the default attributes, and a positive value count. The count argument speci�es the number
of threads that must reach the barrier before any of them successfully return from the call. If the
function succeeds it returns zero.

A thread calls

int pthread_barrier_wait(pthread_barrier_t *barrier);

to wait at the barrier given by the argument. When the required number of threads have called
pthread_barrier_wait() specifying the barrier, the constant PTHREAD_BARRIER_SERIAL_THREAD is
returned to exactly one unspeci�ed thread and zero is returned to each of the remaining threads. At
this point, the barrier is reset to the state it had as a result of the most recent pthread_barrier_init()
function that referenced it. Some programs may not need to take advantage of the fact that a single
thread received the value PTHREAD_BARRIER_SERIAL_THREAD, but others may �nd it useful, particu-
larly if exactly one thread has to perform a task when the barrier has been reached. One can check
for errors at the barrier with the code

retval = pthread_barrier_wait(&barrier);

if ( PTHREAD_BARRIER_SERIAL_THREAD != retval && 0 != retval )

pthread_exit((void*) 0);

which will force a thread to exit if it did not get one of the non-error values.

Finally, a barrier is destroyed using

int pthread_barrier_destroy(pthread_barrier_t *barrier);

which destroys the barrier and releases any resources used by it. The e�ect of subsequent use of the
barrier is unde�ned until the barrier is reinitialized by another call to pthread_barrier_init().
The results are unde�ned if pthread_barrier_destroy() is called when any thread is blocked on
the barrier, or if this function is called with an uninitialized barrier.
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10.8.3 Example

Consider the problem of adding the elements of an array of N numbers, where N is extremely large.
The serial algorithm would take O(N) steps. Suppose that a processor has P subprocessors and that
we want to use P threads to reduce the total running time of the problem. Assume for simplicity
that N is a multiple of P. We can decompose the array into P segments of N/P elements each and let
each thread sum its set of N/P numbers. But then how can we collect the partial sums calculated
by the threads?

Let us create an array, sums, of length P. The partial sum computed by thread k is stored in sums[k].
To compute the sum of all numbers, we let the main program add the numbers in the sums array
and store the result in sums[0]. In other words, we could execute a loop of the form

for ( i = 1; i < P; i++)

sums[0] += sums[i];

This would run in time proportional to the number of threads. Alternatively, we could have each
thread add its partial sum directly to a single accumulator, but we would need to serialize this by
enclosing it in a critical section. The performance is the same, since there would still be P sequential
additions.

Another solution is to use a reduction algorithm to add the partial sums. A reduction algorithm
is like a divide-and-conquer solution. Each thread computes its partial sum and then waits at a
barrier until all other threads have also computed their partial sums. At this point the algorithm
proceeds in stages.

The set of thread ids is divided in half. Every thread in the lower half has a mate in the upper half,
except possibly one odd thread. For example, if there are 100 threads, then thread 0 is mated to
thread 50, thread 1 to thread 51, and so on, and thread 49 to thread 99. In each stage, each thread
in the lower half of the set adds its mate's sum to its own. At the end of each stage, the upper half
of threads is no longer needed, so the set is cut in half. The lower half becomes the new set and
the process is repeated. For example, there would be 50 threads numbered 0 to 49, with threads
0 through 24 forming the lower half and threads 25 to 49 in the upper half. As this happens, the
partial sums are being accumulated closer and closer to sums[0].

Eventually the set becomes size 2, and thread 0 adds sums[0] and sums[1] into sums[0], which
is the sum of all array elements. This approach takes O(log(P )) steps. The entire running time is
thus O((N/P ) + log(P )).

Listing 10.9 contains the code.

Listing 10.9: Reduction algorithm with barrier synchronization.

#inc lude <pthread . h>
#inc lude <s td i o . h>
#inc lude <s t d l i b . h>
#inc lude <s t r i n g . h>
#inc lude < l i b i n t l . h>
#inc lude <l o c a l e . h>
#inc lude <math . h>

/∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
Data Types and Constants
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∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/

double ∗sum ; /∗ array o f p a r t i a l sums o f data ∗/
double ∗ array ; /∗ dynamical ly a l l o c a t e d array o f data ∗/
i n t num_threads ; /∗ number o f threads t h i s program w i l l use ∗/
pthread_barrier_t b a r r i e r ;

/∗
a task_data s t r u c tu r e conta in s the data r equ i r ed f o r a thread to compute
the sum of the segment o f the array i t has been de l egated to to ta l , s t o r i n g
the sum in i t s c e l l in an array o f sums . The data array and the sum array
are a l l o c a t e d on the heap . The threads get the s t a r t i n g addre s s e s o f each ,
and t h e i r task number and the f i r s t and l a s t e n t r i e s o f t h e i r segments .

∗/
typede f s t r u c t _task_data
{

i n t f i r s t ; /∗ index o f f i r s t element f o r task ∗/
i n t l a s t ; /∗ index o f l a s t element f o r task ∗/
i n t task_id ; /∗ id o f thread ∗/

} task_data ;

/∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
Thread and Helper Functions

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/

/∗ Print usage statement ∗/
void usage ( char ∗ s )
{

char ∗p = s t r r c h r ( s , ' / ' ) ;
f p r i n t f ( s tde r r ,

" usage : %s a r r a y s i z e numthreads \n" , p ? p + 1 : s ) ;
}

/∗∗
The thread rou t in e .

∗/
void ∗add_array ( void ∗ thread_data )
{

task_data ∗ t_data ;
i n t k ;
i n t t i d ;
i n t h a l f ;
i n t r e t v a l ;

t_data = ( task_data ∗) thread_data ;
t i d = t_data−>task_id ;

sum [ t i d ] = 0 ;
f o r ( k = t_data−>f i r s t ; k <= t_data−>l a s t ; k++ )

sum [ t i d ] += array [ k ] ;

h a l f = num_threads ;
whi l e ( h a l f > 1 ) {
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r e t v a l = pthread_barrier_wait(&ba r r i e r ) ;
i f ( PTHREAD_BARRIER_SERIAL_THREAD != r e t v a l &&

0 != r e t v a l )
pthread_exit ( ( void ∗) 0 ) ;

i f ( h a l f % 2 == 1 && t id == 0 )
sum [ 0 ] = sum [ 0 ] + sum [ ha l f −1] ;

h a l f = ha l f /2 ; // i n t e g e r d i v i s i o n
i f ( t i d < ha l f )

sum [ t i d ] = sum [ t i d ] + sum [ t i d+ha l f ] ;
}

pthread_exit ( ( void ∗) 0 ) ;

}

/∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
Main Program

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/
i n t main ( i n t argc , char ∗argv [ ] )
{

i n t array_s ize ;
i n t s i z e ;
i n t k ;
i n t r e t v a l ;
i n t t ;
pthread_t ∗ threads ;
task_data ∗ thread_data ;
pthread_attr_t a t t r ;

/∗ Ins tead o f assuming that the system c r e a t e s threads as j o i n ab l e by
de fau l t , t h i s s e t s them to be j o i n ab l e e x p l i c i t l y .

∗/
pthread_attr_init (&a t t r ) ;
pthread_attr_setdetachstate (&attr , PTHREAD_CREATE_JOINABLE) ;

i f ( argc < 3 ) {
usage ( argv [ 0 ] ) ;
e x i t ( 1 ) ;

}

/∗ Get command l i n e arguments , convert to in t s , and compute s i z e o f each
thread ' s segment o f the array

∗/
array_s ize = a t o i ( argv [ 1 ] ) ;
num_threads = a to i ( argv [ 2 ] ) ;
s i z e = ( i n t ) c e i l ( a r ray_s ize ∗1 .0/ num_threads ) ;

/∗ Al l o ca t e the array o f threads , task_data s t ruc tu r e s , data and sums ∗/
threads = c a l l o c ( num_threads , s i z e o f ( pthread_t ) ) ;
thread_data = c a l l o c ( num_threads , s i z e o f ( task_data ) ) ;
array = c a l l o c ( array_size , s i z e o f ( double ) ) ;
sum = c a l l o c ( num_threads , s i z e o f ( double ) ) ;
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i f ( threads == NULL | | thread_data == NULL | |
array == NULL | | sum == NULL )

e x i t ( 1 ) ;

/∗ Synthes i z e array data here ∗/
f o r ( k = 0 ; k < array_s ize ; k++ )

array [ k ] = ( double ) k ;

/∗ I n i t i a l i z e a b a r r i e r with a count equal to the numebr o f threads ∗/
pthread_barr i e r_in i t (&ba r r i e r , NULL, num_threads ) ;

/∗ I n i t i a l i z e task_data f o r each thread and then c r ea t e the thread ∗/
f o r ( t = 0 ; t < num_threads ; t++) {

thread_data [ t ] . f i r s t = t ∗ s i z e ;
thread_data [ t ] . l a s t = ( t+1)∗ s i z e −1;
i f ( thread_data [ t ] . l a s t > array_s ize −1 )

thread_data [ t ] . l a s t = array_s ize − 1 ;
thread_data [ t ] . task_id = t ;

r e t v a l = pthread_create(&threads [ t ] , &att r , add_array ,
( void ∗) &thread_data [ t ] ) ;

i f ( r e t v a l ) {
p r i n t f ("ERROR; return code from pthread_create ( ) i s %d\n" , r e t v a l ) ;
e x i t (−1);

}
}

/∗ Join a l l threads so that we can add up t h e i r p a r t i a l sums ∗/
f o r ( t = 0 ; t < num_threads ; t++) {

pthread_join ( threads [ t ] , ( void ∗∗) NULL) ;
}

pthread_barr ier_destroy(&ba r r i e r ) ;

p r i n t f ("The array t o t a l i s %7.2 f \n" , sum [ 0 ] ) ;

/∗ Free a l l memory a l l o c a t e d to program ∗/
f r e e ( threads ) ;
f r e e ( thread_data ) ;
f r e e ( array ) ;
f r e e ( sum ) ;

re turn 0 ;
}

Although the solution in Listing 10.9 is asymptotically faster than the solution in which the threads
add their partial sums to a running total in a critical section, it may not be faster in practice,
because the �nal accumulation of partial sums must wait until all threads have calculated their
partial sums. If the number of threads is very large, and there is one very slow thread, then the
log(P ) steps will be delayed until the slow thread completes. On the other hand, if the other solution
is used, then all threads will have added their partial sums to the total while the slow thread was
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still working, and when it �nishes, a single addition will complete the task. The performance gain
of this reduction algorithm depends upon the threads running on symmetric processors.

10.9 Reader/Writer Locks

10.9.1 Introduction

A mutex has the property that it has just two states, locked and unlocked, and only one thread can
lock it at a time. For many problems this is �ne, but for many others, it is not. Consider a problem
in which one thread updates a database of some kind and multiple threads look up information in
that database. For example, a web search engine might consist of thousands of �reading� threads
that need to read the database of search data to deliver pages of search results to client browsers,
and other �writing� threads that crawl the web and update the database with new data. When
the database is not being updated, the reading threads should be allowed simultaneous access to
the database, but when a writing thread is modifying the database, it needs to do so in mutual
exclusion, at least on the parts of it that are changing.

To support this paradigm, POSIX provides reader/writer locks. Multiple readers can lock a read-
er/writer lock without blocking each other, but blocking writers from accessing it, and when a single
writer acquires the lock, it obtains exclusive access to the resource; any thread, whether a reader or
a writer, will be blocked if it attempts to acquire the lock while a writer holds the lock.

Clearly, reader/writer locks allow for a higher degree of parallelism than does a mutex. Unlike
mutexes, they have three possible states: locked in read mode, locked in write mode, and unlocked.
Multiple threads can hold a reader/writer lock in read mode, but only a single thread can hold a
reader/writer lock in write mode.

Think of a reader/writer lock as the key to a large room. If the read/writer lock is not currently
held by any thread and a reader acquires it, then it enters the room and leaves a guard at the door.
If an arriving thread wants to write, the guard makes it wait on a line outside of the door until the
reader leaves the room, or possibly later. All arriving writers will wait on this line while the reader
is in the room. If an arriving thread wants to read, whether or not it is let into the room depends
on how Pthreads has been con�gured.

Some systems support a Pthreads option known as the Thread Execution Scheduling, or TES, option.
This option allows the programmer to control how threads are scheduled. If the system does not
support this option, and a reader arrives at the door, and there are writers standing in line, it is
up to the implementation as to whether the reader must stand at the end of the line, behind the
waiting writer(s), or can be allowed to enter the room immediately. If TES is supported, then the
decision is based on which scheduling policy is in force. If either FIFO, round-robin, or sporadic3

scheduling is in force, then an arriving reader will stand in line behind all writers (and any readers
who have set their priorities higher than the arriving reader's.)

These decisions about who must wait for whom when threads are blocked on a lock can lead to
unfair scheduling and even starvation. A discussion of this topic is really outside of the scope of
these notes, but you should at least have the intuition that, if the implementation gives arriving
readers precedence over writers that are blocked when a reader has the lock, then a steady stream of
readers could prevent a writer from ever writing. This is not good. Usually, a writer has something

3This is also an option to PThreads that may not be available in a given implementation.

This work is copyrighted by Stewart Weiss and licensed under the Creative Commons Attribution-

ShareAlike 4.0 International License.
41

http://creativecommons.org/licenses/by-sa/4.0/ 
http://creativecommons.org/licenses/by-sa/4.0/ 


UNIX Lecture Notes
Chapter 10 Threads

Prof. Stewart Weiss

important to do, updating information, and it should be given priority over readers. This is why
the TES option allows this type of behavior, and why some implementations always give waiting
writers priority over waiting readers. For this reason, it is also possible that a stream of writers will
starve all of the readers, so if for some reason, there must be multiple writers, the code itself must
ensure that they do not starve the readers, using mutexes and conditions to prevent this possibility.

10.9.2 Using Reader/Writer Locks

It is natural that, as a result of their increased complexity, there are more functions for locking and
unlocking reader/writer locks than for simple mutexes. The prototypes for the functions in the API
related to these locks, listed by category, are:

Initialization and destruction:

int pthread_rwlock_init(pthread_rwlock_t *restrict rwlock,

const pthread_rwlockattr_t *restrict attr);

pthread_rwlock_t rwlock = PTHREAD_RWLOCK_INITIALIZER;

int pthread_rwlock_destroy(pthread_rwlock_t *rwlock);

Locking for reading:

int pthread_rwlock_rdlock(pthread_rwlock_t *rwlock);

int pthread_rwlock_tryrdlock(pthread_rwlock_t *rwlock);

int pthread_rwlock_timedrdlock(pthread_rwlock_t *restrict rwlock,

const struct timespec *restrict abstime);

Locking for writing:

int pthread_rwlock_wrlock(pthread_rwlock_t *rwlock);

int pthread_rwlock_trywrlock(pthread_rwlock_t *rwlock);

int pthread_rwlock_timedwrlock(pthread_rwlock_t *restrict rwlock,

const struct timespec *restrict abstime);

Unlocking:

int pthread_rwlock_unlock(pthread_rwlock_t *rwlock);

Working with attributes:

int pthread_rwlockattr_init(pthread_rwlockattr_t *attr);

int pthread_rwlockattr_destroy(pthread_rwlockattr_t *attr);

int pthread_rwlockattr_getpshared(const pthread_rwlockattr_t

*restrict attr, int *restrict pshared);

int pthread_rwlockattr_setpshared(pthread_rwlockattr_t *attr,

int pshared);
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As with all of the other locks and synchronization objects described here so far, the �rst step is to ini-
tialize the reader/writer lock. This is done using either the function pthread_rwlock_init() or the
initializer macro PTHREAD_RWLOCK_INITIALIZER, which is equivalent to using pthread_rwlock_init()
with a NULL second argument. There are not many attributes that can be con�gured; the process-
shared attribute is not required to be implemented by a POSIX-compliant system, and there are
no others that can be modi�ed. Therefore, it is �ne to accept the defaults.

Notice that a thread wishing to use the lock for reading uses a di�erent set of primitives than
one that wants to write. For reading, a thread can use pthread_rwlock_rdlock(), which has the
semantics described in the introduction above. If you do not want the thread to block in those
cases where it might, use pthread_rwlock_tryrdlock(), which will return the error value EBUSY

whenever it would block.

The pthread_rwlock_timedrdlock() function is like the pthread_rwlock_rdlock() function, ex-
cept that, if the lock cannot be acquired without blocking, the wait is terminated when the speci�ed
timeout expires. The timeout expires when the absolute time speci�ed by abstime passes, as mea-
sured by the real time clock (CLOCK_REALTIME) or if the absolute time speci�ed by abstime has
already been passed at the time of the call. Note that the time speci�cation is not an interval, but
what you might call �clock time�, as the system perceives it. The timespec data type is de�ned in
the <time.h> header �le. The function does not fail if the lock can be acquired immediately, and
the validity of the abstime parameter is not checked if the lock can be acquired immediately.

The same statements apply to the three functions for acquiring a writer lock, and so they are not
repeated. As for unlocking, there is only one function to unlock. It does not matter whether the
thread holds the lock for reading or writing � it calls pthread_rwlock_unlock() in either case.

10.9.3 Further Details

This section answers some more subtle, advanced questions about reader/writer locks.

• If the calling thread already holds a shared read lock on the reader/writer lock, another read
lock can be successfully acquired by the calling thread. If more than one shared read lock is
successfully acquired by a thread on a reader/writer lock, that thread is required to successfully
call pthread_rwlock_unlock() a matching number of times.

• Some implementations of Pthreads will allow a thread that already holds an exclusive write
lock on a reader/writer lock to acquire another write lock on that same lock. In these im-
plementations, if more than one exclusive write lock is successfully acquired by a thread on
a reader/writer lock, that thread is required to successfully call pthread_rwlock_unlock() a
matching number of times. In other implementations, the attempt to acquire a second write
lock will cause deadlock.

• If while either of pthread_rwlock_wrlock() or pthread_rwlock_rdlock() is waiting for the
shared read lock, the reader/writer lock is destroyed, then the EDESTROYED error is returned.

• If a signal is delivered to the thread while it is waiting for the lock for either reading or writing,
if a signal handler is registered for this signal, it runs, and the thread resumes waiting.

• If a thread terminates while holding a write lock, the attempt by another thread to acquire a
shared read or exclusive write lock will not succeed. In this case, the attempt to acquire the
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lock does not return and will deadlock. If a thread terminates while holding a read lock, the
system automatically releases the read lock.

• If a thread calls pthread_rwlock_wrlock() and currently holds a shared read lock on the
reader/writer lock and no other threads are holding a shared read lock, the exclusive write
request is granted. After the exclusive write lock request is granted, the calling thread holds
both the shared read and the exclusive write lock for the speci�ed reader/writer lock.

• In an implementation in which a thread can hold multiple read and write locks on the same
reader/writer lock, if a thread calls pthread_rwlock_unlock() while holding one or more
shared read locks and one or more exclusive write locks, the exclusive write locks are unlocked
�rst. If more than one outstanding exclusive write lock was held by the thread, a matching
number of successful calls to pthread_rwlock_unlock() must be completed before all write
locks are unlocked. At that time, subsequent calls to pthread_rwlock_unlock() will unlock
the shared read locks.

10.9.4 Example

The program in Listing 10.10 demonstrates the use of reader/writer locks. It would be very simple if
we did not attempt to prevent starvation, either of readers or writers. It uses barrier synchronization
to ensure that no thread enters its main loop until all threads have at least been created. Without
the barrier, the threads that are created �rst in the main program will always get the lock �rst, and
if these are writers, the readers will starve.

If the number of writers is changed to be greater than one, they will starve the readers whenever
the �rst writer grabs the lock. This is because writers are given priority over readers in the code
below.

Listing 10.10: Reader/writer locks: A simple example.

#de f i n e _GNU_SOURCE
#inc lude <pthread . h>
#inc lude <s td i o . h>
#inc lude <s t d l i b . h>
#inc lude <uni s td . h>
#inc lude <errno . h>

/∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
Data Types and Constants

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/

#de f i n e NUM_READERS 10
#de f i n e NUM_WRITERS 1
pthread_rwlock_t rwlock ; /∗ the reader / wr i t e r l o ck ∗/
pthread_barrier_t b a r r i e r ; /∗ to t ry to improve f a i r n e s s ∗/

i n t done ; /∗ to terminate a l l threads ∗/
i n t num_threads_in_lock ; /∗ f o r the monitor code ∗/

/∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
Thread and Helper Functions
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∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/
/∗∗ handle_error (num, mssge )

Pr in t s to standard e r r o r the system message a s s o c i a t ed with e r r o r number num
as we l l as a custom message , and then e x i t s the program with EXIT_FAILURE

∗/
void handle_error ( i n t num, char ∗mssge )
{

errno = num;
pe r ro r (mssge ) ;
e x i t (EXIT_FAILURE) ;

}

/∗∗ reader ( )
∗ A reader r epea t ed ly ge t s the lock , s l e e p s a bit , and then r e l e a s e s the lock ,
∗ un t i l done becomes true .
∗/
void ∗ reader ( void ∗ data )
{

i n t rc ;
i n t t = ( i n t ) data ;

/∗ Wait here u n t i l a l l threads are c reated ∗/
rc = pthread_barrier_wait(&ba r r i e r ) ;
i f ( PTHREAD_BARRIER_SERIAL_THREAD != rc && 0 != rc )

handle_error ( rc , " pthread_barrier_wait " ) ;

/∗ repeat un t i l user says to qu i t ∗/
whi l e ( ! done ) {

rc = pthread_rwlock_rdlock(&rwlock ) ;
i f ( rc ) handle_error ( rc , "pthread_rwlock_rdlock " ) ;
p r i n t f (" Reader %d got the read lock \n" , t ) ;
s l e e p ( 1 ) ;
rc = pthread_rwlock_unlock(&rwlock ) ;
i f ( rc ) handle_error ( rc , "pthread_rwlock_unlock " ) ;
s l e e p ( 1 ) ;

}
pthread_exit (NULL) ;

}

/∗∗ wr i t e r ( )
∗ A wr i t e r does the same th ing as a reader −− i t r epea t ed ly ge t s the lock ,
∗ s l e e p s a bit , and then r e l e a s e s the lock , u n t i l done becomes t rue .
∗/
void ∗wr i t e r ( void ∗ data )
{

i n t rc ;
i n t t = ( i n t ) data ;

/∗ Wait here u n t i l a l l threads are c reated ∗/
rc = pthread_barrier_wait(&ba r r i e r ) ;
i f ( PTHREAD_BARRIER_SERIAL_THREAD != rc && 0 != rc )

handle_error ( rc , " pthread_barrier_wait " ) ;

/∗ repeat un t i l user says to qu i t ∗/
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whi le ( ! done ) {
rc = pthread_rwlock_wrlock(&rwlock ) ;
i f ( rc ) handle_error ( rc , "pthread_rwlock_wrlock " ) ;
p r i n t f ("Writer %d got the wr i t e l ock \n" , t ) ;
s l e e p ( 2 ) ;

rc = pthread_rwlock_unlock(&rwlock ) ;
i f ( rc ) handle_error ( rc , "pthread_rwlock_unlock " ) ;
s l e e p ( 2 ) ;

}
pthread_exit (NULL) ;

}

/∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
Main Program

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/

i n t main ( i n t argc , char ∗argv [ ] )
{

pthread_t threads [NUM_READERS+NUM_WRITERS] ;
i n t r e t v a l ;
i n t t ;
unsigned i n t num_threads = NUM_READERS+NUM_WRITERS;

done = 0 ;
p r i n t f (" This program w i l l s t a r t up a number o f threads that w i l l run \n"

" un t i l you ente r a charac t e r . Type any charac t e r to qu i t \n " ) ;

pthread_rwlockattr_t rwlock_att r ibute s ;
pthread_rwlockattr_in i t (&rwlock_att r ibute s ) ;
/∗ The f o l l ow i n g non−por tab l e func t i on i s a GNU extens i on that a l t e r s the

thread p r i o r i t i e s when reade r s and wr i t e r s are both wai t ing on a rwlock ,
g i v ing p r e f e r en c e to w r i t e r s .

∗/
pthread_rwlockattr_setkind_np(&rwlock_attr ibutes ,

PTHREAD_RWLOCK_PREFER_WRITER_NONRECURSIVE_NP) ;
pthread_rwlock_init(&rwlock , &rwlock_att r ibute s ) ;

/∗ I n i t i a l i z e a b a r r i e r with a count equal to the numebr o f threads ∗/
r e t v a l = pthread_barr i e r_in i t (&bar r i e r , NULL, num_threads ) ;
i f ( r e t v a l ) handle_error ( r e tva l , " pthread_barr i e r_in i t " ) ;

f o r ( t = 0 ; t < NUM_READERS; t++) {
r e t v a l = pthread_create(&threads [ t ] , NULL, reader , ( void ∗) t ) ;
i f ( r e t v a l ) handle_error ( r e tva l , " pthread_create " ) ;

}

f o r ( t = NUM_READERS ; t < NUM_READERS+NUM_WRITERS; t++) {
r e t v a l = pthread_create(&threads [ t ] , NULL, wr i te r , ( void ∗) t ) ;
i f ( r e t v a l ) handle_error ( r e tva l , " pthread_create " ) ;

}

getchar ( ) ;
done = 1 ;
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f o r ( t = 0 ; t < NUM_READERS+NUM_WRITERS; t++)
pthread_join ( threads [ t ] , NULL) ;

re turn 0 ;
}

10.10 Other Topics Not Covered

Any serious multi-threaded program must deal with signals and their interactions with threads. The
man pages for the various thread-related functions usually have a section on how signals interact
with thoze functions. Spin locks are another synchronization primitive not discussed here; they
have limited use. Real-time threads and thread scheduling, where supported, provide the means to
control how threads are scheduled for more accurate performance control. Thread keys are a way
to create thread-speci�c data that is visible to all threads in the process.
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